1
|
Liu X, Xie X, Wang K, Liu X, Gong J, Yang Z, Li J. Raddeanin A suppresses intracellular 5Methylcytosine DNA modification engaged the metastasis of hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119036. [PMID: 39515681 DOI: 10.1016/j.jep.2024.119036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Anemonoides Raddeana (Rege) Holubhe is commonly employed in clinical practice as a traditional Chinese medicine for the treatment of conditions such as rheumatism and limb numbness. Raddeanin A (RA), an active compound derived from this Traditional Chinese Medicine (TCM), demonstrates specific anticancer properties against many tumorigeneses. However, the molecular mechanism underlying its effects on hepatocellular carcinoma (HCC) remains unexplored. AIM OF THE STUDY The aim of this study is to investigate the inhibitory effects of RA in human HCC stimulated cells and its impact on DNA methylation in tumor cells, as well as to elucidate the molecular mechanisms underlying RA's anti-tumor activity. MATERIALS AND METHODS The inhibitory effects of RA on QGY-7703 and HepG2 cells were evaluated. The IC50 values were determined by employing non-linear sigmoidal curve fitting to analyze the normalized response. The impact of RA was investigated in cells overexpressing DNMT3A and DNMT3B. The effects of RA on cell cycle progression and apoptosis were assessed. Furthermore, the influence of RA on cellular methylation was determined, along with its effects on the expression levels of DNMT3A, DNMT3B, Bcl-2, Bax, and Caspase-3. RESULTS The findings demonstrate that RA induces cell cycle arrest at the G0/G1 phase and promotes apoptosis in hepatocellular carcinoma cells. Furthermore, RA effectively inhibits the invasion and migration of human HCC stimulated cells. The expression of DNMT3A and DNMT3B is downregulated by RA, effectively suppressing the intracellular 5mC DNA modification level. Moreover, the overexpression of these enzymes in RA-treated human HCC stimulated cells significantly impacts the overall 5mC level and hinders tumor metastasis by restricting migration and invasion. CONCLUSION The RA compound acts as an antagonist against HCC by reducing intracellular DNA 5mC levels through mechanisms mediated by methyltransferase. Moreover, RA demonstrates the capacity to induce apoptosis in tumor cells, thereby exerting its anti-tumor effects. The findings of this study provide valuable insights for enhancing the pharmacodynamic efficacy of RA in HCC treatment.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China; Postgraduate School, Jilin Normal University, Siping, 136000, China
| | - Xiaoyan Xie
- Department of Pharmacy, The 3rd Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Kangyu Wang
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xiaokang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jiyu Gong
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Jiannan Li
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Chen J, Zhang Y, Chen X, Luo D, Liu D, Yu Z, Lin Y, He X, Huang J, Lian L. Raddeanin A Inhibits Colorectal Cancer Growth and Ameliorates Oxaliplatin Resistance Through the WNT/β-Catenin Signaling Pathway. Cancer Biother Radiopharm 2024. [PMID: 39585204 DOI: 10.1089/cbr.2024.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Background: Chemotherapy based on oxaliplatin (OXA) is the first-line treatment for advanced colorectal cancer (CRC), and acquired resistance to OXA is the main reason for clinical treatment failure in CRC. Methods: To search for compounds that can reverse OXA resistance, we screened a small molecule inhibitor drug library and identified a drug, Raddeanin A (RA), that enhanced the anticancer effect of OXA. Using human CRC cell lines, CRC organoid models, and in vivo subcutaneous tumorigenic studies, we determined that RA inhibits the proliferation of CRC cells by promoting apoptosis and inducing cell cycle arrest. Results: We constructed OXA-resistant CRC cell lines and demonstrated that RA enhances the sensitivity of these cells to OXA. Further experiments showed that the mechanism by which RA enhanced the anticancer effects of OXA in CRC was by inhibiting the activation of the WNT/β-catenin signaling pathway. Conclusions: Because RA has been shown to be biocompatible in animal models, there is a possibility that RA could be developed as a sensitizer for resistant cancer cells or as a novel lead compound to enhance the therapeutic efficacy of OXA in resistant CRCs.
Collapse
Affiliation(s)
- Junguo Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xijie Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandong Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danlin Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoliang Yu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanni Huang
- Department of Geriatrics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Lian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Jian X, Sun Q, Xu W, Qu H, Feng X, Li C. Engineering the Substrate Specificity of UDP-Glycosyltransferases for Synthesizing Triterpenoid Glycosides with a Linear Trisaccharide as Aided by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202409867. [PMID: 39172135 DOI: 10.1002/anie.202409867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Triterpenoids have wide applications in the pharmaceutical and agricultural industries. The glycosylation of triterpenoids catalyzed by UDP-glycosyltransferases (UGTs) is a crucial method for producing valuable derivatives with enhanced functions. However, only a few UDP-glucosyltransferases have been reported to synthesize the rare triterpenoids with linear-chain trisaccharide at C3-OH. This study revealed that the UGT91H subfamily primarily contributed to the 2"-O-glycosylation of triterpenoids with high regioselectivity, then the substrate scope was further expanded by ancestral sequence reconstruction (ASR). With ancestral enzyme UGT91H_A1 as a model, the sequence-structure-function relationship was explored. A RTAS loop (R212/T213/A214/S215) was identified to affect the substrate specificity of UGT91H_A1. Transferring this RTAS loop to the corresponding position of UGT91H enzymes successfully expanded their substrate spectra. The functional role of RTAS loop was further elucidated by molecular dynamics simulation and quantum mechanical computation. UGT91H_A1 was applied to the low-cost synthesis of terpenoid rhamnosides with a linear trisaccharide in combining with a self-sufficient UDP-rhamnose regeneration system. Finally, we developed a phylogeny-based platform to efficiently mining new UGT91Hs from plant genomic data. This study provided robust biocatalysts for synthesizing various triterpenoid glycosides with a linear trisaccharide and demonstrated ASR as an efficient tool in engineering the function of UDP-glycosyltransferases.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Qiuyan Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Wentao Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Haobo Qu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
4
|
Jiang MZ, Li C, Mao CM, Yu H, Zhou YC, Pu SQ, Li RZ, Liao YJ, Zhang DY, Yang P, Li MH, Li M. The MAPK/ERK signaling pathway involved in Raddeanin A induces apoptosis via the mitochondrial pathway and G2 phase arrest in multiple myeloma. Sci Rep 2024; 14:29061. [PMID: 39580496 PMCID: PMC11585587 DOI: 10.1038/s41598-024-76465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete immunoglobulin in the bone marrow. Extracted primarily from Anemone raddeana regel, Raddeanin A (RA) is a natural triterpenoid saponin compound with anti-inflammatory and anti-tumor activities. However, most research on the anti-tumor effects of RA has concentrated on solid tumors, with little exploration into non-solid tumors like MM. Furthermore, there is a dearth of research investigating the interplay between RA and MM, encompassing their interaction targets and mechanisms. This study aims to delve into the biological activity and molecular mechanism of RA's anti-MM properties through the lens of network pharmacology and experimental validation. The findings from GO enrichment analysis, KEGG enrichment analysis, and molecular docking prediction suggested a potential correlation between the MAPK signaling pathway, including the MAPK1 gene (also known as ERK2), and the impact of RA on MM. Results from the CCK-8 assay revealed a time-dependent and concentration-dependent inhibition of proliferation in MM cell lines treated with RA. Notably, in the cell lines used for the test, the IC50 values for MM.1 S cells were 1.616 µM at 24 H and 1.058 µM at 48 H, for MM.1R cells were 3.905 µM at 24 H and 2.18 µM at 48 H, while for RPMI 8226 cells, they were 6.091 µM at 24 H and 3.438 µM at 48 H. The PI, Annexin V-FITC/PI, and JC-1 staining showed that RA could arrest the cell cycle in the G2 phase, cause apoptosis, and induce the change of mitochondrial membrane potential (MMP) in MM cells. Treated with RA, the Western blot analysis showed that the expression levels of Bim, Cleaved Caspase 3/9, and Cleaved PARP were increased, and the expression level of Mcl-1 was decreased in MM cells. Concurrently, the phosphorylated protein expression levels of p-ERK1/2, p-MSK1, p-P90RSK, and p-MEK1/2 were diminished following RA treatment. These results suggest that RA has the activity of anti-MM, and the MAPK/ERK signaling pathway is involved in the growth inhibition effect of RA on MM cells via cycle arrest and mitochondrial-pathway-dependent apoptosis.
Collapse
Affiliation(s)
- Ming-Zheng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Laboratory Medicine, People's Hospital of Xingwen County, Xingwen, 644400, China
| | - Chen Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Chun-Mei Mao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Huan Yu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yi-Chuan Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Shi-Qi Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Run-Zi Li
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Yu-Jiao Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Dan-Yin Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Ping Yang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Academic Office, Chengdu Medical College, Chengdu, 610500, China.
| | - Min-Hui Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Center of Scientific Research and Experiment, Chengdu Medical College, Chengdu, 610500, China.
| | - Minhui Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
5
|
Heller CD, Zahedifard F, Doskocil I, Pamfil D, Zoltner M, Kokoska L, Rondevaldova J. Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential. Int J Mol Sci 2024; 25:10987. [PMID: 39456769 PMCID: PMC11507926 DOI: 10.3390/ijms252010987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
Collapse
Affiliation(s)
- Cristina D. Heller
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic;
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Doru Pamfil
- Department of Horticulture and Landscape Architecture, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| |
Collapse
|
6
|
Deng Z, Yuan J, Ma B, Zhu J, Yan B, Wei J, Jin X, Li J, Zhang Q, Ma B. Ziyuglycoside II, a triterpene glycoside compound in Sanguisorbae officinalis l. extract, suppresses metastasis in osteosarcoma via CBX4-mediated Wnt/β-catenin signal pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155716. [PMID: 38924929 DOI: 10.1016/j.phymed.2024.155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Osteosarcoma (OS), the most prevalent primary bone malignancy, exhibits rapid growth and a high tendency for lung metastasis, posing significant treatment challenges. Ziyuglycoside II (ZGS II), a main active compound derived from Sanguisorba officinalis l., has shown potential in cancer treatment. However, the effects of ZGS II and its potential mechanism in OS remain elusive. PURPOSE This study aims to explore the anti-metastatic potential of ZGS II in OS, offering a novel therapeutic strategy for improved patient outcomes. METHODS Cell viability and proliferation was detected by cell counting kit-8 (CCK-8) and clone formation assay, respectively. Transwell and wound-healing assay were applied to evaluate the potential metastatic abilities of OS cells in vitro. More critically, the chromobox protein homolog 4 (CBX4) and Wnt/β-catenin signaling pathway was investigated utilizing Western blotting, immunohistochemistry, shRNA knockdown and immunofluorescence. An orthotopic metastasis mouse model was utilized to evaluate the efficacy of ZGS II in suppressing OS metastasis in vivo, with molecular docking studies conducted to elucidate the interaction between ZGS II and the CBX4 protein. RESULTS Our study demonstrated the potent inhibitory effects of ZGS II on OS cell proliferation and induced apoptosis in vitro, as evidenced by decreased cell viability, enhanced caspase-3 activation, and mitochondrial dysfunction. Furthermore, using an orthotopic metastasis mouse model, we illustrated that ZGS II effectively suppressed tumor growth and lung metastasis in vivo. Notably, our investigation revealed that the antitumor action of ZGS II is dependent on the reduction of CBX4 levels, leading to the attenuation of the Wnt/β-catenin signaling pathway activation. Molecular docking analyses supported this pathway's suppression, showing that ZGS II has the capability to directly bind and disrupt CBX4 function. To further confirm this mechanism, we utilized shRNA to silence CBX4 in OS cells, which significantly enhanced the inhibitory impact of ZGS II on cell migration. CONCLUSION Our study findings reveal that ZGS II efficiently suppresses both metastasis and tumor growth in OS by a novel mechanism that entails the inhibition of the CBX4-regulated Wnt/β-catenin pathway. These outcomes highlight the promising potential of ZGS II as a therapeutic agent for managing metastatic OS, thus justifying the need for additional clinical investigations.
Collapse
Affiliation(s)
- Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jitong Yuan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jie Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Bingrong Yan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xin Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
7
|
Hsieh M, Lin J, Chuang Y, Lo Y, Lin C, Ho H, Chen M. Raddeanin A augments the cytotoxicity of natural killer cells against chronic myeloid leukaemia cells by modulating MAPK and Ras/Raf signalling pathways. J Cell Mol Med 2024; 28:e70016. [PMID: 39175122 PMCID: PMC11341432 DOI: 10.1111/jcmm.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024] Open
Abstract
Natural killer (NK) cell therapy, a developing approach in cancer immunotherapy, involves isolating NK cells from peripheral blood. However, due to their limited number and activity, it is essential to significantly expand these primary NK cells and enhance their cytotoxicity. In this study, we investigated how Raddeanin A potentiate NK activity using KHYG-1 cells. The results indicated that Raddeanin A increased the expression levels of cytolytic molecules such as perforin, granzymes A and granzymes B, granulysin and FasL in KHYG-1 cells. Raddeanin A treatment increased CREB phosphorylation, p65 phosphorylation, NFAT1 and acetyl-histone H3 expression. Raddeanin A elevated caspase 3 and PARP cleavage, increased t-Bid expression, promoting apoptosis in K562 cells. Furthermore, it reduced the expression of HMGB2, SET and Ape1, impairing the DNA repair process and causing K562 cells to die caspase-independently. Additionally, Raddeanin A increased ERK, p38 and JNK phosphorylation at the molecular level, which increased granzyme B production in KHYG-1 cells. Raddeanin A treatment increased Ras, Raf phosphorylation, MEK phosphorylation, NKG2D, NKp44 and NKp30 expression in KHYG-1 cells. Collectively, our data indicate that Raddeanin A enhances the cytotoxic activity of NK cells against different cancer cells.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Apoptosis
- ras Proteins/metabolism
- Cytotoxicity, Immunologic
- Signal Transduction
- raf Kinases/metabolism
- MAP Kinase Signaling System/drug effects
- DNA Repair
- Granzymes/metabolism
Collapse
Affiliation(s)
- Ming‐Ju Hsieh
- Oral Cancer Research CenterChanghua Christian HospitalChanghuaTaiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Graduate Institute of Clinical Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Jen‐Tsun Lin
- Division of Hematology and Oncology, Department of MedicineChanghua Christian HospitalChanghuaTaiwan
| | - Yi‐Ching Chuang
- Oral Cancer Research CenterChanghua Christian HospitalChanghuaTaiwan
| | - Yu‐Sheng Lo
- Oral Cancer Research CenterChanghua Christian HospitalChanghuaTaiwan
| | - Chia‐Chieh Lin
- Oral Cancer Research CenterChanghua Christian HospitalChanghuaTaiwan
| | - Hsin‐Yu Ho
- Oral Cancer Research CenterChanghua Christian HospitalChanghuaTaiwan
| | - Mu‐Kuan Chen
- Graduate Institute of Clinical Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of Otorhinolaryngology, Head and Neck SurgeryChanghua Christian HospitalChanghuaTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
8
|
Wang XF, Xiang XH, Wei J, Zhang PB, Xu Q, Liu MH, Qu LQ, Wang XX, Yu L, Wu AG, Qing DL, Wu JM, Law BYK, Yu CL, Yong-Tang. Raddeanin A Protects the BRB Through Inhibiting Inflammation and Apoptosis in the Retina of Alzheimer's Disease. Neurochem Res 2024; 49:2197-2214. [PMID: 38834846 DOI: 10.1007/s11064-024-04145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular β-amyloid (Aβ) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting β-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aβ-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/β-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Xiao-Hong Xiang
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Wei
- Eye School and Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection of Chengdu University of TCM, Chengdu, China
| | - Peng-Bo Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 15651, China
| | - Qin Xu
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Meng-Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li-Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Da-Lian Qing
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Jian-Ming Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chong-Lin Yu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| | - Yong-Tang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| |
Collapse
|
9
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
10
|
Lv D, Liu Y, Tang R, Fu S, Kong S, Liao Q, Li H, Lin L. Analysis of Clinical Trials Using Anti-Tumor Traditional Chinese Medicine Monomers. Drug Des Devel Ther 2024; 18:1997-2020. [PMID: 38855536 PMCID: PMC11162644 DOI: 10.2147/dddt.s454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
The potential anti-cancer effect of traditional Chinese medicine (TCM) monomers has been widely studied due to their advantages of well-defined structure, clear therapeutic effects, and easy quality control during the manufacturing process. However, clinical trial information on these monomers is scarce, resulting in a lack of knowledge regarding the research progress, efficacy, and adverse reactions at the clinical stage. Therefore, this study systematically reviewed the clinical trials on the anti-cancer effect of TCM monomers registered in the Clinicaltrials.gov website before 2023.4.30, paying special attention to the trials on tumors, aiming to explore the research results and development prospects in this field. A total of 1982 trials were started using 69 of the 131 TCM monomers. The number of clinical trials performed each year showed an overall upward trend. However, only 26 monomers entered into 519 interventional anti-tumor trials, with vinblastine (194, 37.38%) and camptothecin (146, 28.13%) being the most used. A total of 45 tumors were studied in these 519 trials, with lymphoma (112, 21.58%) being the most frequently studied. Clinical trials are also unevenly distributed across locations and sponsors/collaborators. The location and the sponsor/collaborator with the highest number of performed trials were the United States (651,32.85%) and NIH (77). Therefore, China and its institutions still have large room for progress in promoting TCM monomers in anti-tumor clinical trials. In the next step, priority should be given to the improvement of the research and development ability of domestic enterprises, universities and other institutions, using modern scientific and technological means to solve the problems of poor water solubility and strong toxic and side effects of monomers, so as to promote the clinical research of TCM monomers.
Collapse
Affiliation(s)
- Dan Lv
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Jiangxi, 330006, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
11
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
12
|
Wang Y, Xie L, Liu F, Ding D, Wei W, Han F. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117299. [PMID: 37816474 DOI: 10.1016/j.jep.2023.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a "silent killer" that threatens women's lives and health, ovarian cancer (OC) has the clinical characteristics of being difficult to detect, difficult to treat, and high recurrence. Traditional Chinese medicine (TCM) can be utilized as a long-term complementary and alternative therapy since it has shown benefits in alleviating clinical symptoms of OC, decreasing toxic side effects of radiation and chemotherapy, as well as enhancing patients' quality of life. AIM OF THE REVIEW This paper reviews how TCM contributes to the apoptosis of OC cells through signaling pathways, including active constituents, extracts, and herbal formulas, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in OC. METHODS The search was conducted from scientific databases PubMed, Embase, Web of Science, CNKI, Wanfang, VIP, and SinoMed databases aiming to elucidate the apoptosis signaling pathways in OC cells by TCM. The articles were searched by the keywords "ovarian cancer", "apoptosis", "signaling pathway", "traditional Chinese medicine", "Chinese herbal monomer", "Chinese herbal extract", and "herbal formula". The search was conducted from January 2013 to June 2023. A total of 97 potentially relevant articles were included, including 93 articles on Chinese medicine active constituents or extracts and 4 articles on Chinese herbal compound prescriptions. RESULTS TCM can induce apoptosis in OC cells by regulating signaling pathways with obvious advantages, including STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, Nrf2, HIF-1α, Fas/Fas L signaling pathway, etc. CONCLUSION: Chinese medicine can induce apoptosis in OC cells through multiple pathways, targets, and routes. TCM has special advantages for treating OC, providing more reasonable evidence for the research and development of new apoptosis inducers.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Liangzhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Danni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
13
|
Liu MH, Tang Y, Qu LQ, Song LL, Lo HH, Zhang RL, Yun XY, Wang HM, Chan JTW, Wu JH, Wang CR, Wong VKW, Wu AG, Law BYK. Raddeanin A isolated from Anemone raddeana Regel improves pathological and cognitive deficits of the mice model of Alzheimer's disease by targeting β-amyloidosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155121. [PMID: 37856988 DOI: 10.1016/j.phymed.2023.155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Raddeanin A is a triterpenoid isolated from Anemone raddeana Regel. It exhibits a broad spectrum of biological activities such as anti-tumor and anti-inflammatory, however, its neuroprotective effect in targeting Alzheimer's disease (AD) remains uninvestigated. PURPOSE To provide scientific base for the development of novel AD drug by clarifying the neuroprotective effect and molecular mechanisms of raddeanin A in both in vitro and in vivo AD model. STUDY DESIGN To confirm the neuroprotective role of raddeanin A in the treatment of AD, its mechanisms and effects on β-amyloidosis and Aβ fibrillation was studied in U87 cells. Besides, the improvement on cognitive deficit, pathological defects, reactive astrocyte clusters, inhibition on neuronal inflammation and apoptosis were further studied in 3 x Tg-AD mice model of AD. METHODS Real-time PCR, western blot, dot blot, biolayer interferometry and bioinformatics analysis were used to confirm the in vitro effect and targets of raddeanin A on β-amyloidosis and its associated protein network. A series of experiments including Morris water maze, H&E staining, nissl staining and immunofluorescence analysis were conducted to confirm the protective behavioral effect of raddeanin A in the in vivo AD mice model. RESULTS Raddeanin A was identified to reduce β-amyloidosis in U87 cells and 3 x Tg-AD mice model of AD by decreasing level of BACE1, APP, APP-β and Aβ. Raddeanin A improved behavioral, spatial memory and learning ability in the AD mice. In the cortex and hippocampus, raddeanin A improved the morphology and arrangement of neurons, lower the level of reactive astrocyte marker GFAP and apoptotic marker proteins Bax/Bcl2 ratio. Moreover, raddeanin A upregulated the mRNA and protein level of Prkcα in the hippocampus of AD mice whose neuroprotective effect was exerted possibly via the activation of protein kinase C. CONCLUSION As a novel natural agent targeting β-amyloidosis, our results provide the first evidence of the multiple in vitro and in vivo neuroprotective effect of raddeanin A, suggesting its potential therapeutic application in preventing or alleviating the symptoms of AD.
Collapse
Affiliation(s)
- Meng Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Tang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui Long Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao Yun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Miao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Joyce Tsz Wai Chan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jian Hui Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cai Ren Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
14
|
Plehn S, Wagle S, Rupasinghe HV. Chaga mushroom triterpenoids as adjuncts to minimally invasive cancer therapies: A review. Curr Res Toxicol 2023; 5:100137. [PMID: 38046279 PMCID: PMC10692653 DOI: 10.1016/j.crtox.2023.100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer has become the second leading cause of death in the world. Integrative cancer therapy management is continuously evolving to enhance treatment outcomes. Chaga mushroom (Inonotus obliquus) is a parasitic fungus acclaimed to contain pharmaceutical and nutraceutical value in the fight against cancer. In particular, triterpenoid constituents derived from Chaga mushrooms have been recognized for their anti-cancer activity after distinguished cytotoxicity was repeatedly observed in cancer cells treated in vitro with lipophilic fractions of extract compared to aqueous ones. Studies that investigate the anti-cancer activity of Chaga mushroom triterpenoids are reviewed in this article to determine which cancer cell lines demonstrate the greatest susceptibility to them while highlighting the structure-activity relationships that are involved. Triterpenoid supplementation as an adjunct to cancer treatment may be a viable option as inotodiol and 3-β-22 α-dihydroxylanosta-8, 25-diene-24-one have been shown to exhibit anti-cancer activity similar to that of conventional drugs. Advances in addressing bioavailability challenges are also included in this review as studies include in vivo components.
Collapse
Affiliation(s)
- Selina Plehn
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Sajeev Wagle
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| |
Collapse
|
15
|
Viana Barbosa LG, Silva de Jesus EN, Botelho Jerônimo L, Silva da Costa J, Cunha Silva R, Setzer WN, R da Silva JK, da Silva Freitas JJ, B Figueiredo PL. Siparuna guianensis Essential Oil Antitumoral Activity on Ehrlich Model and Its Effect on Oxidative Stress. Chem Biodivers 2023; 20:e202301120. [PMID: 37691004 DOI: 10.1002/cbdv.202301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
This work aims to evaluate the chemical composition, in vitro antioxidant capacity, and in vivo antitumoral activity of S. guianensis essential oil against Ehrlich's ascitic carcinoma and the effects on oxidative stress. The animals (Mus musculus) received a daily dose of S. guianensis oil orally (100 mg/kg) for 9 days. The main constituents of essential oil were curzerenone (16.4±1.5 %), drimenol (13.7±0.2 %), and spathulenol (12.4±0.8 %). S. guianensis oil showed antioxidant activity, inhibiting 11.1 % of DPPH radicals (95.7 mgTE/g); and 15.5 % of the β-carotene peroxidation. The group treated with S. guianensis showed a significant reduction in tumor cells (59.76±12.33) compared to the tumor group (96.88±19.15). Essential oil of S. guianensis decreased MDA levels and increased SOD levels in liver tissue. The essential oil of S. guianensis reduced oxidative stress, and showed antitumor and antioxidant activity, being characterized as a new chemical profile in the investigation of pathologies such as cancer.
Collapse
Affiliation(s)
- Lucas Gabriel Viana Barbosa
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém, 66087-662, Brazil
- Laboratório de Morfofisiologia Aplicada a Saúde, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Belém, 66087-662, Brazil
| | - Ellen Nayara Silva de Jesus
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém, 66087-662, Brazil
- Laboratório de Morfofisiologia Aplicada a Saúde, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Belém, 66087-662, Brazil
| | - Lucas Botelho Jerônimo
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém, 66087-662, Brazil
| | - Jamile Silva da Costa
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém, 66087-662, Brazil
| | - Renata Cunha Silva
- Laboratório de Morfofisiologia Aplicada a Saúde, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Belém, 66087-662, Brazil
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT, 84043, USA
| | - Joyce Kelly R da Silva
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT, 84043, USA
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, 66075-900, Brazil
| | - Jofre Jacob da Silva Freitas
- Laboratório de Morfofisiologia Aplicada a Saúde, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Belém, 66087-662, Brazil
| | - Pablo Luis B Figueiredo
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém, 66087-662, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belem, 66075-110, Brazil
| |
Collapse
|
16
|
Sun Q, Guo F, Ren S, Zhang L, Liu X, Li C, Feng X. Construction of a UDP-Arabinose Regeneration System for Efficient Arabinosylation of Pentacyclic Triterpenoids. ACS Synth Biol 2023; 12:2463-2474. [PMID: 37473419 DOI: 10.1021/acssynbio.3c00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Glycosylation is an important method of modifying natural products and is usually catalyzed by uridine 5'-diphosphate (UDP)-glycosyltransferase. UDP-β-l-arabinose (UDP-Ara) confers specific functions to natural products such as pentacyclic triterpenoids. However, UDP-arabinosyltransferase with high regioselectivity toward pentacyclic triterpenoids has rarely been reported. In addition, UDP-Ara is mainly biosynthesized from UDP-α-d-glucose (UDP-Glc) through several reaction steps, resulting in the high cost of UDP-Ara. Herein, UGT99D1 was systematically characterized for specifically transferring one moiety of arabinose to the C-3 position of typical pentacyclic triterpenoids. Subsequently, 15 enzymes from plants, mammals, and microorganisms were characterized, and a four-enzyme cascade comprising sucrose synthase, UDP-Glc dehydrogenase, UDP-α-d-glucuronic acid decarboxylase, and UDP-Glc 4-epimerase was constructed to transform sucrose into UDP-Ara with UDP recycling. This system was demonstrated to efficiently produce the arabinosylated derivative (Ara-BA) of typical pentacyclic triterpenoid betulinic acid (BA). Finally, the in vitro cytotoxicity tests indicated that Ara-BA showed much higher anticancer activities than BA. The established arabinosylation platform shows the potential to enhance the pharmacological activity of natural products.
Collapse
Affiliation(s)
- Qiuyan Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shichao Ren
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liang Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinhe Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Yin M, Dong J, Sun C, Liu X, Liu Z, Liu L, Kuang Z, Zhang N, Xiao D, Zhou X, Deng H. Raddeanin A Enhances Mitochondrial DNA-cGAS/STING Axis-Mediated Antitumor Immunity by Targeting Transactive Responsive DNA-Binding Protein 43. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206737. [PMID: 36876644 PMCID: PMC10161045 DOI: 10.1002/advs.202206737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Indexed: 05/06/2023]
Abstract
Immune checkpoint therapies (ICT) have achieved unprecedented efficacy in multiple cancer treatments, but are still limited by low clinical response rates. Identification of immunogenic cell death (ICD)-inducing drugs that can induce tumor cell immunogenicity and reprogram the tumor microenvironment is an attractive approach to enhance antitumor immunity. In the present study, Raddeanin A (RA), an oleanane class triterpenoid saponin isolated from Anemone raddeana Regel, is uncovered as a potent ICD inducer through an ICD reporter assay combined with a T cell activation assay. RA significantly increases high-mobility group box 1 release in tumor cells and promotes dendritic cell (DC) maturation and CD8+ T cell activation for tumor control. Mechanistically, RA directly binds to transactive responsive DNA-binding protein 43 (TDP-43) and induces TDP-43 localization to mitochondria and mtDNA leakage, leading to cyclic GMP-AMP synthase/stimulator of interferon gene-dependent upregulation of nuclear factor κB and type I interferon signaling, thereby potentiating the DC-mediated antigen cross-presentation and T cell activation. Moreover, combining RA with anti-programmed death 1 antibody effectively enhances the efficacy of ICT in animals. These findings highlight the importance of TDP-43 in ICD drug-induced antitumor immunity and reveal a potential chemo-immunotherapeutic role of RA in enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Cuicui Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaojia Liu
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Zhirui Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Lu Liu
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, P. R. China
| | - Zean Kuang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
18
|
Lin L, Wu X, Jiang Y, Luo X, Cao X. Raddeanin A Improves the Therapeutic Effect of Osimertinib in NSCLC by Accelerating ROS/NLRP3-mediated Pyroptosis. Curr Pharm Des 2023; 29:2591-2600. [PMID: 37861040 DOI: 10.2174/0113816128263069231010111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Osimertinib (Osm) is the preferred treatment for non-small cell lung cancer (NSCLC) patients with the epidermal growth factor receptor (EGFR) T790M mutation. Nevertheless, the resistance of NSCLC cells to Osm will eventually develop, which remains the biggest obstacle to treating such diseases. Raddeanin A (RA) exhibits a potent anti-tumor effect on various types of cancer cells. In this study, we aimed to investigate whether RA suppresses NSCLC growth and increases the therapeutic effect of Osm. METHODS The effects of RA on inhibiting NSCLC cell viability and proliferation were tested using cell counting kit 8 (CCK-8) and EdU assay. The roles of RA in improving the anti-tumor effect of Osm were tested with CCK-8 and colony formation assays. The roles of RA in regulating reactive oxygen species (ROS)/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-mediated pyroptosis were assessed using quantitative real- time PCR (qRT-PCR) and western blotting analysis. RESULTS RA treatment decreased A549 and H1975 cell viability in a dose- and time-dependent way. RA inhibited NSCLC cell proliferation and tumor growth in vivo. Mechanistically, RA induced ROS overgeneration and resulted in subsequent NLRP3-mediated pyroptosis. In particular, combination treatment with Osm and RA reduced cell viability and clonogenic growth capacity more efficiently than Osm mono treatment in A549 and H1975 cells. Combination treatment also promoted NLRP3-mediated pyroptosis more efficiently than Osm mono treatment. CONCLUSION RA inhibited the NSCLC growth and increased the anti-tumor role of Osm in NSCLC by facilitating ROS/NLRP3-mediated pyroptosis. These results suggested that combination therapy with RA and Osm might be an effective strategy to treat Osm-resistant NSCLC.
Collapse
Affiliation(s)
- Liping Lin
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| | - Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanxue Jiang
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| | - Xi Luo
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| |
Collapse
|
19
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
20
|
Raddeanin A synergistically enhances the anti-tumor effect of MAP30 in multiple ways, more than promoting endosomal escape. Toxicol Appl Pharmacol 2022; 449:116139. [PMID: 35750203 DOI: 10.1016/j.taap.2022.116139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
Biomacromolecules such as proteins and nucleic acids are very attractive due to their high efficiency and specificity as cancer therapeutics. In fact, the endocytosed macromolecules are often trapped in the endosomes and cannot exhibit pharmacological effects well. Many strategies have been used to address this bottleneck, and one promising approach is to exploit the endosomal escape-promoting effect of triterpenoid saponins to aid in the release of biomacromolecules. Here, Raddeanin A (RA, an oleanane-type triterpenoid saponin) was proved to significantly promote endosomal escape as it recruited Galectin-9, an endosomal escape event reporter. As expected, RA effectively enhanced the anti-tumor effect of MAP30 (a type I ribosome-inactivating protein derived from Momordica charantia). However, based on the results of fluorescent colocalization, RA did not significantly promote MAP30 release from endosomes, suggesting that RA enhances MAP30 activity not only by promoting endosomal escape. Furthermore, it was found that the inhibitors of micropinocytosis and caveolae could almost completely inhibit the cytotoxicity of MAP30 combined with RA without affecting the cytotoxicity of MAP30 alone, indicating that RA may regulate the endocytic pathway of MAP30. Meanwhile, the effect of RA is related to the intra vesicular pH and cholesterol content on cell membrane, and is also cell-type dependent. Therefore, RA enhanced the anti-tumor effect of MAP30 in multiple ways, not just by promoting endosomal escape. Our findings will help to further decipher the possible mechanisms by which triterpenoid saponins enhance drug activity, and provide a new perspective for improving the activity of endocytosed drugs.
Collapse
|
21
|
Wu Y, You X, Lin Q, Xiong W, Guo Y, Huang Z, Dai X, Chen Z, Mei S, Long Y, Tian X, Zhou Q. Exploring the Pharmacological Mechanisms of Xihuang Pills Against Prostate Cancer via Integrating Network Pharmacology and Experimental Validation In Vitro and In Vivo. Front Pharmacol 2022; 12:791269. [PMID: 35342388 PMCID: PMC8948438 DOI: 10.3389/fphar.2021.791269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Drug resistance is the major cause of increasing mortality in prostate cancer (PCa). Therefore, it an urgent to develop more effective therapeutic agents for PCa treatment. Xihuang pills (XHP) have been recorded as the efficient anti-tumor formula in ancient Chinese medical literature, which has been utilized in several types of cancers nowadays. However, the effect protective role of XHP on the PCa and its underlying mechanisms are still unclear. Methods: The active ingredients of XHP were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and BATMAN-TCM. The potential targets of PCa were acquired from the Gene Cards and OMIM databases. R language and Perl language program were utilized to clarify the interaction between the PCa-related targets and the potential targets of XHP. The potential targets of XHP for prostate cancer were gathered from the Gene ontology and KEGG pathway. Furthermore, cell proliferation assays were verified by PC3 and LNCaP cells. The efficacy and potential mechanism tests were confirmed by the PCa PC3 cells and mice subcutaneous transplantation. The effects of PI3K/Akt/mTOR-related proteins on proliferation, apoptosis, and cell cycle of PCa cells were measured by the Cell Counting Kit-8(CCK8), TUNEL assay, real-time quantitative reverse transcription PCR (QRT-PCR), and Western Blotting, respectively. Results: The active components of four traditional Chinese medicines in XHP were searched on the TCMSP and Batman TCM database. The biological active components of XHP were obtained as OB ≥30% and DL ≥0.18. The analysis of gene ontology and KEGG pathway identified the PI3K/Akt/mTOR signaling pathway as the XHP-associated pathway. Collectively, the results of in vitro and in vivo experiments showed that XHP had the effect of inhibiting on the proliferation of PC3 and LNCaP cells. XHP promoted the apoptosis and restrained the cell cycle and invasion of the PC3 cells and subcutaneous transplantation. Meanwhile, the suppression of XHP on the level of expression of PI3K, Akt, and mTOR-pathway-related pathway proteins has been identified in a dose-dependent manner. Conclusion: PI3K/Akt/mTOR pathway-related pathway proteins were confirmed as the potential XHP-associated targets for PCa. XHP can suppress the proliferation of prostate cancer via inhibitions of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China.,Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Qunfang Lin
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Xiong
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yinmei Guo
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinjun Dai
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengjia Chen
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Long
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory of Chinese Medicine Oncology, Changsha, China
| | - Qing Zhou
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
22
|
Sun Y, Pan R, Chen H, Zhao C, Han R, Li M, Xue G, Chen H, Du K, Wang J, Feng W. Cytotoxic Polyhydroxylated Oleanane Triterpenoids from Cissampelos pareira var. hirsuta. Molecules 2022; 27:1183. [PMID: 35208972 PMCID: PMC8876210 DOI: 10.3390/molecules27041183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Three new polyhydroxylated oleanane triterpenoids, cissatriterpenoid A-C (1-3), along with one known analogue (4), were isolated from the whole plant of Cissampelos pareira var. hirsuta. Their chemical structures were elucidated by extensive spectroscopic data (IR, HR-ESI-MS, 1H-NMR, 13C-NMR, DEPT, 1H-1H COSY, HSQC, HMBC, NOESY) and the microhydrolysis method. The isolation of compounds 1-4 represents the first report of polyhydroxylated oleanane triterpenoids from the family Menispermaceae. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines, and the inhibitory activity against NO release in LPS-induced RAW 264.7 cells. Compound 3 showed the most potent cytotoxic activities against the A549, SMMC-7721, MCF-7, and SW480 cell lines, with IC50 values of 17.55, 34.74, 19.77, and 30.39 μM, respectively, whereas three remaining ones were found to be inactive. The preliminary structure-activity relationship analysis indicated that the γ-lactone ring at C-22 and C-29, and the olefinic bond at C-12 and C-13 were structurally required for the cytotoxicity of polyhydroxylated oleanane triterpenoids against these four cell lines. Based on lipid-water partition coefficients, compound 3 is less lipophilic than 1 and 4, which agrees with their cytotoxic activities. This confirms the potential of C. pareira var. hirsuta in the tumor treatment.
Collapse
Affiliation(s)
- Yanjun Sun
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, China
| | - Ruyi Pan
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haojie Chen
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen Zhao
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ruijie Han
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Meng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Guimin Xue
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Chen
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kun Du
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junmin Wang
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine, Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; (R.P.); (H.C.); (C.Z.); (R.H.); (M.L.); (G.X.); (H.C.); (K.D.); (J.W.)
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
23
|
Setlai BP, Hull R, Reis RM, Agbor C, Ambele MA, Mulaudzi TV, Dlamini Z. MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in Glioblastoma. Genes (Basel) 2022; 13:244. [PMID: 35205289 PMCID: PMC8872331 DOI: 10.3390/genes13020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that are 20-23 nucleotides in length, functioning as regulators of oncogenes or tumor suppressor genes. They are molecular modulators that regulate gene expression by suppressing gene translation through gene silencing/degradation, or by promoting translation of messenger RNA (mRNA) into proteins. Circulating miRNAs have attracted attention as possible prognostic markers of cancer, which could aid in the early detection of the disease. Epithelial to mesenchymal transition (EMT) has been implicated in tumorigenic processes, primarily by promoting tumor invasiveness and metastatic activity; this is a process that could be manipulated to halt or prevent brain metastasis. Studies show that miRNAs influence the function of EMT in glioblastomas. Thus, miRNA-related EMT can be exploited as a potential therapeutic target in glioblastomas. This review points out the interrelation between miRNA and EMT signatures, and how they can be used as reliable molecular signatures for diagnostic purposes or targeted therapy in glioblastomas.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| | - Rui Manuel Reis
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Cyril Agbor
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Melvin Anyasi Ambele
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, P.O. Box 1266, Pretoria 0001, South Africa;
- Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| |
Collapse
|
24
|
Chand J, Panda SR, Jain S, Murty USN, Das AM, Kumar GJ, Naidu VGM. Phytochemistry and polypharmacology of cleome species: A comprehensive Ethnopharmacological review of the medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114600. [PMID: 34487845 DOI: 10.1016/j.jep.2021.114600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cleome species in particular (C. gynandra Linn, C. viscosa Linn, C. rutidosperma DC, C. felina Linn.), commonly known as spider flowers, belong to the genus of flowering plants in Cleomaceae family. Found primarily in the African countries (Kenya, Tanzania, Egypt, South Africa, and Nigeria), Asian countries (India and Afghanistan), European countries (Italy), and also in other countries like Brazil and Austria. These plants are commonly cultivated as a vegetable crop for their nutritional benefits, and the leaves are widely consumed for their health-promoting effects. The different parts of the plants, such as leaves, seeds, flowers, and roots, are used to treat acute and chronic inflammatory disorders, hepatotoxicity, malaria, fungal diseases, and cancer. AIM OF THE STUDY Detailed investigations in underlining the molecular mechanisms and their wide variety of effects in treating various diseases remain ambiguous. The review focuses on an in-depth discussion of studies targeting phytochemistry and polypharmacology. Thus, the review aims to recapitulate the therapeutic potential of the components of Cleome involved in the treatment of a wide variety of ailments from ancient times were collected and presented along with strategies aiming for future studies. MATERIALS AND METHODS The information provided is collected from several scientific databases (PubMed, Elsevier, ScienceDirect) and traditional medicine books, and other professional websites. RESULTS AND CONCLUSION Investigations and current evidence revealed that the different chemical constituents present in cleome species possess various health-promoting effects along with the aerial parts showing promising traditional uses in traditional healing and culinary. An explorative survey in the current review highlights the traditional healing effects along with a broad scope of studies that can be performed in the future.
Collapse
Affiliation(s)
- Jagdish Chand
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, 844102, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - U S N Murty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Archana Moni Das
- Chemical Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India; Center for GMP Extraction Facility, NIPER, Guwahati, India.
| |
Collapse
|
25
|
Li Z, Xu B, Sun Y, Zhou L, Tao Y, Hou W, Bao J, Liu J, Fan W. 1α,25(OH) 2D 3(VD3) promotes Raddeanin A-induced anti-proliferative effects on HeLa cell apoptosis and autophagy through negative regulation of HPV18E6-E7/PD-L1/VDR axis. Bioengineered 2022; 13:357-369. [PMID: 34974811 PMCID: PMC8805891 DOI: 10.1080/21655979.2021.2005223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Raddeanin A (RA) has indicated suppressive effects on various human tumor cells, and insufficient vitamin D was associated with human papillomavirus (HPV) persistence and gynecological tumors. However, combined effects of RA and vitamin D on HPV-positive cells remain elusive. Herein, we aimed to investigate the combined effects of RA and 1ɑ,25(OH)2D3 (VD3) on cellular viability and modulation of HPV18E6/E7, programmed cell death 1 ligand (PD-L1) and vitamin D receptor (VDR) expression in HeLa cells in vitro. HeLa cells were treated with RA alone or VD3 combined with RA. Cell viability was measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), and apoptosis was detected by flow cytometry. Real-time PCR (qRT-PCR) and Western blot were used to determine the gene/protein expression levels. The autophagosomes were observed by Transmission electron microscopy (TEM). The result showed that cell viability was inhibited by RA, and apoptosis in HeLa cells treated with RA was elevated accordingly. The expression of Bax, Cleaved-caspase-3, Cleaved-caspase-9 and Cleaved-PARP increased, and Bcl-2 decreased. The autophagy was induced by RA, as evidenced by elevated autophagosomes and the increased LC3-II/I ratio and Beclin-1. The expression of HPV18E6/E7, PD-L1 and VDR was reduced by RA. Moreover, RA combined with VD3 had a stronger effect on HeLa cells than RA alone. In conclusion, RA inhibits HeLa proliferation and induces apoptosis and autophagy via suppressing HPV18E6/E7, PD-L1 and VDR, and VD3 showed reinforced effects of RA on HeLa cells. Therefore, combined usage of VD3 with RA might be a potential novel immunotherapy strategy for HPV-related diseases.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Biyun Xu
- Department of Statistics, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuexin Sun
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lanbo Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Hou
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Bao
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Liu
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weixin Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Hei B, Ouyang J, Zhou J, Wang D, Miao Z, Liu RE. Raddeanin A (RA) reduced acute inflammatory injury in mouse experimental cerebral hemorrhage by suppression of TLR4. Int J Med Sci 2022; 19:1235-1240. [PMID: 35928716 PMCID: PMC9346382 DOI: 10.7150/ijms.73007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is associated with high mortality and disability rates. The microglia-induced inflammatory response is a critical factor determining brain tissue damage after ICH. Raddeanin A (RA) is a natural triterpenoid compound with anti-inflammatory effects, although its effects on ICH and the underlying molecular mechanism have not been elucidated. In this study, we found that RA reduced the volume of cerebral hematoma and cerebral edema, attenuated neuronal apoptosis and improved the behavioral indices in a murine model of acute cerebral hemorrhage. Mechanistically, RA downregulated the TLR4-mediated pro-inflammatory effectors, reduced infiltration of microglia in peri-intracerebral hemorrhage and inhibited apoptosis of neurons co-cultured with activated microglia. In conclusion, RA can alleviate ICH-related tissue damage and promote the recovery of neuronal function by suppressing microglia-induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Bo Hei
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Jia Ouyang
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Jingru Zhou
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Dongliang Wang
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Zeyu Miao
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Ru-En Liu
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| |
Collapse
|
27
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
28
|
Ramchandani S, Mohan CD, Mistry JR, Su Q, Naz I, Rangappa KS, Ahn KS. The multifaceted antineoplastic role of pyrimethamine against different human malignancies. IUBMB Life 2021; 74:198-212. [PMID: 34921584 DOI: 10.1002/iub.2590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Cancer accounted for nearly 10 million deaths in 2020 and is the second leading cause of death worldwide. The chemotherapeutic agents that are in clinical practice possess a broad range of severe adverse effects towards vital organs which emphasizes the importance of the discovery of new therapeutic agents or repurposing of existing drugs for the treatment of human cancers. Pyrimethamine is an antiparasitic drug used for the treatment of malaria and toxoplasmosis with a well-documented excellent safety profile. In the last five years, numerous efforts have been made to explore the anticancer potential of pyrimethamine in in vitro and in vivo preclinical models and to repurpose it as an anticancer agent. The studies have demonstrated that pyrimethamine inhibits oncogenic proteins such as STAT3, NF-κB, DX2, MAPK, DHFR, thymidine phosphorylase, telomerase, and many more in a different types of cancer models. Moreover, pyrimethamine has been reported to work in synergy with other anticancer agents, such as temozolomide, to induce apoptosis of tumor cells. Recently, the results of phase-1/2 clinical trials demonstrated that pyrimethamine administration reduces the expression of STAT3 signature genes in tumor tissues of chronic lymphocytic leukemia patients with a good therapeutic response. In the present article, we have reviewed most of the published papers related to the antitumor effects of pyrimethamine in malignancies of breast, liver, lung, skin, ovary, prostate, pituitary, and leukemia in in vitro and in vivo settings. We have also discussed the pharmacokinetic profile and results of clinical trials obtained after pyrimethamine treatment. From these studies, we believe that pyrimethamine has the potential to be repurposed as an anticancer drug. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology and Biochemistry, University of Melbourne, Parkville, VIC, Australia
| | | | - Jenaifer Rustom Mistry
- Jenaifer Rustom Mistry, Department of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Qi Su
- Qi Su, Department of Pharmacy, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Irum Naz
- Irum Naz, Qaid-i-Azam, University of Islamabad & Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University, Bahawalpur, Pakistan
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
29
|
Li L, Chen M, Li G, Cai R. Raddeanin A induced apoptosis of non-small cell lung cancer cells by promoting ROS-mediated STAT3 inactivation. Tissue Cell 2021; 71:101577. [PMID: 34146943 DOI: 10.1016/j.tice.2021.101577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a high-risk type of lung cancer. Raddeanin A exerts anti-tumor activity by regulating cell proliferation and apoptosis, but its role in NSCLC remains to be elucidated. This study was to investigate the effect of raddeanin A in NSCLC and its mechanism. METHODS The effect of raddeanin A (2, 4, 8, 10 μmol/L) on the viability, proliferation and apoptosis of A549 and H1299 cells was determined by cell counting kit-8, colony formation and flow cytometry assays, respectively. Next, western blot was performed to examine the protein expressions of cleaved caspase-3, Bax, phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and STAT3. Subsequently, the intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential of NSCLC cells were detected by 2', 7'-dichlorofluorescein-diacetate (DCFH-DA) and JC-1 assay. Lastly, the effect of N-acetylcysteine (NAC) on the apoptosis, ROS generation, and STAT3 was evaluated by the above-mentioned assays again. RESULTS Raddeanin A treatment had no obvious effect on 16HBE cells viability, but it inhibited viability and proliferation of A549 and H1299 cells, promoted the apoptosis, increased the protein expressions of cleaved caspase-3 and Bax, generated intracellular ROS, as well as decreased mitochondrial membrane potential and the expressions of p-STAT3 and STAT3 in A549 and H1299 cells. After cells treated with NAC, the effect of raddeanin A was reversed, as evidenced by the apoptosis and ROS generation were suppressed, and the expression of p-STAT3 was promoted. CONCLUSION Raddeanin A suppressed the proliferation and induced apoptosis of NSCLC cells via promoting the ROS-mediated STAT3 inactivation.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, Hainan General Hospital, China
| | - Minbiao Chen
- Department of Thoracic Surgery, Hainan General Hospital, China
| | - Gao Li
- Department of Thoracic Surgery, Hainan General Hospital, China
| | - Renzhong Cai
- Department of Thoracic Surgery, Hainan General Hospital, China.
| |
Collapse
|
30
|
Zhong Y, Li HN, Zhou L, Su HS, Cheng MS, Liu Y. Synthesis and antitumor activity evaluation of oleanolic acid saponins bearing an acetylated l-arabinose moiety. Carbohydr Res 2021; 503:108311. [PMID: 33866267 DOI: 10.1016/j.carres.2021.108311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023]
Abstract
A series of oleanolic acid derivatives bearing acetyl-substituted l-arabinose moiety has been synthesized and screened in vitro for cytotoxicity against ten cancer cell lines and four normal cell lines. The antiproliferative evaluation indicated that synthetic derivatives showed excellent selectivity, as they were toxic against only A431 cell line. Among them, the compound 6 possesses the best inhibitory activity. A series of pharmacology experiments showed that compound 6 significantly induced A431 cells apoptosis and cell cycle arrest, which could serve as a promising lead candidate for further study.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Ning Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lin Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua-Sheng Su
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
31
|
Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, Kashani SH, Hushmandi K, Najafi M, Zarrabi A, Ahn KS, Khan H. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci 2021; 270:119006. [PMID: 33421521 DOI: 10.1016/j.lfs.2020.119006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Uncontrolled growth and metastasis of cancer cells is an increasing challenge for overcoming cancer, and improving survival of patients. Complicated signaling networks account for proliferation and invasion of cancer cells that need to be elucidated for providing effective cancer therapy, and minimizing their malignancy. Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 200 nucleotides. They participate in cellular events, and their dysregulation in a common phenomenon in different cancers. Noteworthy, lncRNAs can regulate different molecular pathways, and signal transducer and activator of transcription 3 (STAT3) is one of them. STAT3 is a tumor-promoting factors in cancers due to its role in cancer proliferation (cell cycle progression and apoptosis inhibition) and metastasis (EMT induction). LncRNAs can function as upstream mediators of STAT3 pathway, reducing/enhancing its expression. This dual relationship is of importance in affecting proliferation and metastasis of cancer cells. The response of cancer cells to therapy such as chemotherapy and radiotherapy is regulated by lncRNA/STAT3 axis. Tumor-promoting lncRNAs including NEAT1, SNHG3 and H19 induces STAT3 expression, while tumor-suppressing lncRNAs such as MEG3, PTCSC3 and NKILA down-regulate STAT3 expression. Noteworthy, upstream mediators of STAT3 such as microRNAs can be regulated by lncRNAs. These complicated signaling networks are mechanistically described in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
32
|
Wu B, Zhu J, Dai X, Ye L, Wang B, Cheng H, Wang W. Raddeanin A inhibited epithelial-mesenchymal transition (EMT) and angiogenesis in glioblastoma by downregulating β-catenin expression. Int J Med Sci 2021; 18:1609-1617. [PMID: 33746577 PMCID: PMC7976575 DOI: 10.7150/ijms.52206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Raddeanin A (RA), an oleanane-type triterpenoid saponin derived from Anemone raddeana Regel, has been found to suppress the viability and metastasis of several cancers, including GBM, through various signaling pathways. However, the mechanisms underlying the anti-GBM properties of RA have not been fully elucidated. Epithelial to mesenchymal transition (EMT) and angiogenesis are important for the genesis and progression of GBM. These two crucial processes can be regulated by multiple molecular, including β-catenin, which has been demonstrated to act as a pro-tumorigenic molecular. In this study, we aimed to determine whether RA could suppress EMT and angiogenesis by inhibiting the action of β-catenin in GBM. We found that RA inhibited the proliferation, invasion and migratory properties of GBM cells. RA was also found to have downregulated the expressions of β-catenin and EMT-related biomarkers (N-cadherin, vimentin, and snail). In addition, the overexpression of β-catenin reversed the therapeutic effects of RA exerted on the EMT of GBM cells. RA restricted angiogenesis, as shown by the tube formation assay and CAM assay, while it downregulated VEGF levels in HUVECs. Moreover, massive β-catenin could reverse the suppression of angiogenesis induced by RA. Finally, we demonstrated that RA inhibited tumor growth and prolonged survival time in an intracranial U87 xenograft mouse model. Similar to the results in vitro, RA downregulated the expression of β-catenin, EMT makers and VEGF, and decreased vessel density in vivo. In summary, our results demonstrated that RA repressed GBM via downregulating β-catenin-mediated EMT and angiogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Bingshan Wu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China 230032
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu City, Sichuan Province, 611731, China
| | - Xingliang Dai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China 230032
| | - Lei Ye
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China 230032
| | - Bin Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China 230032
| | - Hongwei Cheng
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China 230032
| | - Weihong Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China 230032
| |
Collapse
|
33
|
Ramchandani S, Naz I, Dhudha N, Garg M. An overview of the potential anticancer properties of cardamonin. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:413-426. [PMID: 36046386 PMCID: PMC9400778 DOI: 10.37349/etat.2020.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of mortality, contributing to 9.6 million deaths globally in 2018 alone. Although several cancer treatments exist, they are often associated with severe side effects and high toxicities, leaving room for significant advancements to be made in the field. In recent years, several phytochemicals from plants and natural bioresources have been extracted and tested against various human malignancies using both in vitro and in vivo preclinical model systems. Cardamonin, a chalcone extracted from the Alpinia species, is an example of a natural therapeutic agent that has anti-cancer and anti-inflammatory effects against human cancer cell lines, including breast, lung, colon, and gastric, in both in vitro culture systems as well as xenograft mouse models. Earlier, cardamonin was used as a natural medicine against stomach related issues, diarrhea, insulin resistance, nephroprotection against cisplatin treatment, vasorelaxant and antinociceptive. The compound is well-known to inhibit proliferation, migration, invasion, and induce apoptosis, through the involvement of Wnt/β-catenin, NF-κB, and PI3K/Akt pathways. The good biosafety and pharmacokinetic profiling of cardamonin satisfy it as an attractive molecule for the development of an anticancer agent. The present review has summarized the chemo-preventive ability of cardamonin as an anticancer agent against numerous human malignancies.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology Biomedicine, the University of Melbourne, Parkville Victoria 3010, Australia
| | - Irum Naz
- Department of Biochemistry, Quaid-i-Azam University, Higher Education Commission of Pakistan, Islamabad 44000, Pakistan
| | - Namrata Dhudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Noida 201301, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
34
|
Kasprzak A. Angiogenesis-Related Functions of Wnt Signaling in Colorectal Carcinogenesis. Cancers (Basel) 2020; 12:cancers12123601. [PMID: 33276489 PMCID: PMC7761462 DOI: 10.3390/cancers12123601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Angiogenesis belongs to the most clinical characteristics of colorectal cancer (CRC) and is strongly linked to the activation of Wnt/β-catenin signaling. The most prominent factors stimulating constitutive activation of this pathway, and in consequence angiogenesis, are genetic alterations (mainly mutations) concerning APC and the β-catenin encoding gene (CTNNB1), detected in a large majority of CRC patients. Wnt/β-catenin signaling is involved in the basic types of vascularization (sprouting and nonsprouting angiogenesis), vasculogenic mimicry as well as the formation of mosaic vessels. The number of known Wnt/β-catenin signaling components and other pathways interacting with Wnt signaling, regulating angiogenesis, and enabling CRC progression continuously increases. This review summarizes the current knowledge about the role of the Wnt/Fzd/β-catenin signaling pathway in the process of CRC angiogenesis, aiming to improve the understanding of the mechanisms of metastasis as well as improvements in the management of this cancer. Abstract Aberrant activation of the Wnt/Fzd/β-catenin signaling pathway is one of the major molecular mechanisms of colorectal cancer (CRC) development and progression. On the other hand, one of the most common clinical CRC characteristics include high levels of angiogenesis, which is a key event in cancer cell dissemination and distant metastasis. The canonical Wnt/β-catenin downstream signaling regulates the most important pro-angiogenic molecules including vascular endothelial growth factor (VEGF) family members, matrix metalloproteinases (MMPs), and chemokines. Furthermore, mutations of the β-catenin gene associated with nuclear localization of the protein have been mainly detected in microsatellite unstable CRC. Elevated nuclear β-catenin increases the expression of many genes involved in tumor angiogenesis. Factors regulating angiogenesis with the participation of Wnt/β-catenin signaling include different groups of biologically active molecules including Wnt pathway components (e.g., Wnt2, DKK, BCL9 proteins), and non-Wnt pathway factors (e.g., chemoattractant cytokines, enzymatic proteins, and bioactive compounds of plants). Several lines of evidence argue for the use of angiogenesis inhibition in the treatment of CRC. In the context of this paper, components of the Wnt pathway are among the most promising targets for CRC therapy. This review summarizes the current knowledge about the role of the Wnt/Fzd/β-catenin signaling pathway in the process of CRC angiogenesis, aiming to improve the understanding of the mechanisms of metastasis as well as improvements in the management of this cancer.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland
| |
Collapse
|
35
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
36
|
Elhady SS, Eltamany EE, Shaaban AE, Bagalagel AA, Muhammad YA, El-Sayed NM, Ayyad SN, Ahmed AAM, Elgawish MS, Ahmed SA. Jaceidin Flavonoid Isolated from Chiliadenus montanus Attenuates Tumor Progression in Mice via VEGF Inhibition: In Vivo and In Silico Studies. PLANTS 2020; 9:plants9081031. [PMID: 32823927 PMCID: PMC7464537 DOI: 10.3390/plants9081031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Phytochemical study of Chiliadenus montanus aerial parts afforded six compounds; Intermedeol (1), 5α-hydroperoxy-β-eudesmol (2), 5,7-dihydroxy-3,3’,4’-trimethoxyflavone (3), 5,7,4’-trihydroxy-3,6,3’-trimethoxyflavone (jaceidin) (4), eudesm-11,13-ene-1β,4β,7α-triol (5) and 1β,4β,7β,11-tetrahydroxyeudesmane (6). These compounds were identified based on their NMR spectral data. The isolated compounds were tested for their cytotoxicity against liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). Jaceidin flavonoid (4) exhibited the highest cytotoxic effect in vitro. Therefore, both of jaceidin and C. montanus extract were evaluated for their in vivo anti-tumor activity against Ehrlich’s ascites carcinoma (EAC). Compared to control group, jaceidin and C. montanus extract decreased the tumor weight, improved the histological picture of tumor cells, lowered the levels of VEGF and ameliorate the oxidative stress. Molecular docking and in silico studies suggested that jaceidin was a selective inhibitor of VEGF-mediated angiogenesis with excellent membrane permeability and oral bioavailability.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
| | - Amera E. Shaaban
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Norhan M. El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt;
| | - Seif N. Ayyad
- Department of Organic Chemistry, Faculty of Science, Damietta University, New Damietta 34511, Egypt;
| | - Amal A. M. Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Elgawish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
- Correspondence: ; Tel.: +20-010-92638387; Fax: +20-064-3230741
| |
Collapse
|
37
|
Naz I, Merarchi M, Ramchandani S, Khan MR, Malik MN, Sarwar S, Narula AS, Ahn KS. An overview of the anti-cancer actions of Tanshinones, derived from Salvia miltiorrhiza (Danshen). EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:153-170. [PMID: 36046197 PMCID: PMC9400791 DOI: 10.37349/etat.2020.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
Tanshinone is a herbal medicinal compound described in Chinese medicine, extracted from the roots of Salvia miltiorrhiza (Danshen). This family of compounds, including Tanshinone IIA and Tanshinone I, have shown remarkable potential as anti-cancer molecules, especially against breast, cervical, colorectal, gastric, lung, and prostate cancer cell lines, as well as leukaemia, melanoma, and hepatocellular carcinoma among others. Recent data has indicated that Tanshinones can modulate multiple molecular pathways such as PI3K/Akt, MAPK and JAK/STAT3, and exert their pharmacological effects against different malignancies. In addition, preclinical and clinical data, together with the safety profile of Tanshinones, encourage further applications of these compounds in cancer therapeutics. In this review article, the effect of Tanshinones on different cancers, challenges in their pharmacological development, and opportunities to harness their clinical potential have been documented.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Myriam Merarchi
- Faculty of Pharmacy, University of Paris Descartes, 75006 Paris, France
| | - Shanaya Ramchandani
- Department of Pharmacology-Biomedicine, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Muhammad Nouman Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumaira Sarwar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| |
Collapse
|
38
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|