1
|
Chermashentsev GR, Mikheev IV, Ratova DMV, Proskurnina EV, Proskurnin MA. Unveiling the Role of Fractionated Graphene Oxide in Nitric Oxide Scavenging. Molecules 2025; 30:1069. [PMID: 40076294 PMCID: PMC11901896 DOI: 10.3390/molecules30051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The feasibility of saturating aqueous anoxic solutions with in situ-generated high-purity nitric oxide (NO) is shown herein. A methemoglobin assay estimated the average nitric oxide concentration to be ca. 20 ± 3 µM. Graphene oxide aqueous dispersions were prepared by ultrasound-assisted extra exfoliation. These dispersions, including unpurified (pristine) samples and samples purified from transition metal impurities (bulk) fractions (bulkGO) and (nano) separated fractions (nanoGO) in a range of 0.5 to 14 kDa were prepared with ppm level concentrations. A robust and reproducible chemiluminescence (CL) assay validated the interaction between graphene oxide and NO in a luminol-based system. The results showed a significant increase in NO scavenging activity within the bulkGO fractions to nanofractions ranging from 14 to 3.5 kDa. The different reaction pathways underlying the transformation of nitric oxide are being evaluated, focusing on understanding how its presence or absence affects these processes. Our kinetic model suggests a significant difference in nitric oxide regulation; nanoGO demonstrates an interception rate seventy-times higher than that achieved through CL quenching.
Collapse
Affiliation(s)
- Grigoriy R. Chermashentsev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| | - Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| | - Daria-Mariia V. Ratova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| | - Elena V. Proskurnina
- Research Centre for Medical Genetics, Moscow 115522, Russia;
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail A. Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| |
Collapse
|
2
|
Kumar M, Baig MS, Bhardwaj K. Advancements in the development of antivirals against SARS-Coronavirus. Front Cell Infect Microbiol 2025; 15:1520811. [PMID: 39917633 PMCID: PMC11798951 DOI: 10.3389/fcimb.2025.1520811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) caused an outbreak in 2002-2003, spreading to 29 countries with a mortality rate of about 10%. Strict quarantine and infection control methods quickly stopped the spread of the disease. Later research showed that SARS-CoV came from animals (zoonosis) and stressed the possibility of a similar spread from host to human, which was clearly shown by the COVID-19 outbreak. The COVID-19 pandemic, instigated by SARS-CoV-2, has affected 776 million confirmed cases and more than seven million deaths globally as of Sept 15, 2024. The existence of animal reservoirs of coronaviruses continues to pose a risk of re-emergence with improved fitness and virulence. Given the high death rate (up to 70 percent) and the high rate of severe sickness (up to 68.7 percent in long-COVID patients), it is even more critical to identify new therapies as soon as possible. This study combines research on antivirals that target SARS coronaviruses that have been conducted over the course of more than twenty years. It is a beneficial resource that might be useful in directing future studies.
Collapse
Affiliation(s)
- Mrityunjay Kumar
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Mirza Sarwar Baig
- Centre for Virology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India
| | - Kanchan Bhardwaj
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
3
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Filippova AD, Baranchikov AE, Teplonogova MA, Savintseva IV, Popov AL, Ivanov VK. Ligand-to-Metal Ratio Governs Radical-Scavenging Ability of Malate-Stabilised Ceria Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1908. [PMID: 39683296 DOI: 10.3390/nano14231908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Cerium dioxide sols stabilised with L-malic acid were shown to exhibit significant antioxidant activity towards alkyl peroxyl radicals in the range of ligand:CeO2 molar ratios of 0.2-1 (0.2:1, 0.4:1, 0.5:1, 0.6:1, 0.8:1 and 1:1). The antioxidant activity of cerium dioxide nanoparticles greatly depended on L-malic acid content and increased by 8 times when the ligand:CeO2 molar ratio increased from 0.2:1 to 0.4:1. An estimate of the ligand:CeO2 molar ratio required to ensure complete surface coverage of CeO2 nanoparticles with malate anions resulted in a value of 0.2. Aggregation degree of CeO2 nanoparticles depends on the ligand:CeO2 molar ratio. In the range of ligand:CeO2 molar ratios 0.2-0.4, the size of aggregates decreased by an order of magnitude. The antioxidant capacity of 1 mM malate-stabilised cerium dioxide (0.2:1) relative to sodium ascorbate was 0.012 ± 0.001 mM. The antioxidant activity of cerium dioxide stabilised with L-malic acid at a ligand:CeO2 molar ratio of 0.2:1 was 80 times less than the antioxidant activity of sodium ascorbate. Cerium dioxide nanoparticles stabilised with L-malic acid did not demonstrate a cytotoxic effect against human mesenchymal stem cells, in a wide range of concentrations (10-3-10-5 M), and their proliferation was stimulated after 72 h of cultivation. The results obtained show new possibilities for the design of biocompatible ceria-based nanomaterials with tunable pro- and antioxidant properties; these materials can further be assessed in view of their potential for treating oxidative stress-related disorders.
Collapse
Affiliation(s)
- Arina D Filippova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119991, Russia
| | - Alexander E Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119991, Russia
| | - Maria A Teplonogova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119991, Russia
| | - Irina V Savintseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., 3, Pushchino 142290, Russia
| | - Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., 3, Pushchino 142290, Russia
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119991, Russia
| |
Collapse
|
5
|
Li DY, Donadu MG, Shue T, Dangas G, Athanasiadis A, Lan S, Wen X, Battah B, Zanetti S, Mazzarello V, Sarafianos SG, Ferrari M, Michailidis E. Myrtus communis L. Essential Oil Exhibits Antiviral Activity against Coronaviruses. Pharmaceuticals (Basel) 2024; 17:1189. [PMID: 39338351 PMCID: PMC11435418 DOI: 10.3390/ph17091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Human coronaviruses are a continuous threat to the human population and have limited antiviral treatments, and the recent COVID-19 pandemic sparked interest in finding new antiviral strategies, such as natural products, to combat emerging coronaviruses. Rapid efforts in the scientific community to identify effective antiviral agents for coronaviruses remain a focus to minimize mortalities and global setbacks. In this study, an essential oil derived from Myrtus communis L. (MEO) is effective against HCoV-229E and HCoV-OC43 virus infections in comparison to two FDA-approved drugs, Remdesivir and Nirmatrelvir. Gas-chromatography and mass spectrometry were used to identify the chemical composition of MEO. Slight antioxidant activity was observed in MEO, indicating a role in oxidative stress. A dose-response curve measuring the EC50 indicates a high potency against HCoV-229E and HCoV-OC43 virus infections on Huh7.5 cells with low cytotoxicity using a PrestoBlue cell viability assay. Our findings demonstrate that MEO exhibits potent antiviral activity against HCoV-229E and HCoV-OC43 on Huh7.5 cells within a low-cytotoxicity range, but not on SARS-CoV-2. Artificial bacterial chromosome plasmids that expressed SARS-CoV-2 used for replicon-to determine viral replication and viral assembly/egress on HEK293T/17 cells-and virus-like particles on Huh7.5-AT cells-to determine viral entry and assembly/egress-showed no antiviral activity with MEO in comparison to Remdesivir. This study reveals the potential effectiveness of MEO as an alternative natural remedy to treat human coronaviruses and a potential antiviral agent for future coronavirus infections.
Collapse
Affiliation(s)
- Dar-Yin Li
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Matthew G Donadu
- Scuola di Specializzazione in Farmacia Ospedaliera, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy
| | - Taylor Shue
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Georgios Dangas
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Antonis Athanasiadis
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Basem Battah
- Department of Biochemistry and Microbiology, Antioch Syrian Private University, M5, Damascus 22734, Syria
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| | - Marco Ferrari
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy
| | - Eleftherios Michailidis
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1750 Haygood Drive, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Chethan GE, De UK, Singh MK, Chander V, Raja R, Paul BR, Choudhary OP, Thakur N, Sarma K, Prasad H. Antioxidant supplementation during treatment of outpatient dogs with parvovirus enteritis ameliorates oxidative stress and attenuates intestinal injury: A randomized controlled trial. Vet Anim Sci 2023; 21:100300. [PMID: 37333506 PMCID: PMC10276178 DOI: 10.1016/j.vas.2023.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
A prospective randomized controlled clinical study was conducted to determine whether antioxidant supplementation as an adjunct therapy alters hemogram, oxidative stress, serum intestinal fatty acid binding protein-2 (IFABP-2) level, fecal viral load, clinical score (CS) and survivability in outpatient canine parvovirus enteritis (CPVE) dogs. The dogs with CPVE were randomized to one of the five treatment groups: supportive treatment (ST) alone, ST with N-acetylcysteine (ST+NAC), resveratrol (ST+RES), coenzyme Q10 (ST+CoQ10) or ascorbic acid (ST+AA). The primary outcome measures were reduction of CS and fecal HA titre, and enhancement of survivability. Secondary outcome measures were reduction of oxidative stress indices and IFABP-2 level from day 0 to day 7. The mean CS and HA titre were significantly (P < 0.05) decreased from day 0 to 7 in ST and all antioxidant groups. The supplementations of NAC, RES and AA along with ST markedly (P < 0.05) reduced the concentrations of malondialdehyde, nitric oxide and IFABP-2 on day 7 as compared to ST alone. Additionally, NAC and RES supplementations markedly (P < 0.05) improved the total leukocyte count and neutrophil count in CPVE-affected dogs. NAC and RES could serve as better antioxidants for the amelioration of oxidative stress in CPVE but, the antioxidants did not confer any additional benefits in reduction of CS, fecal HA tire, or survivability when compared with ST alone.
Collapse
Affiliation(s)
- Gollahalli Eregowda Chethan
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Mithilesh Kumar Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Vishal Chander
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, 263138, Uttarakhand, India
| | - Raguvaran Raja
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Babul Rudra Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| | - Neeraj Thakur
- Department of Veterinary Medicine, Faculty of Veterinary and Animal Sciences, RGSC-Banaras Hindu University, Barkachha, Mirzapur, 231001, Uttar Pradesh, India
| | - Kalyan Sarma
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| | - Hridayesh Prasad
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| |
Collapse
|
7
|
Saleh EAM, Al-Dolaimy F, Qasim Almajidi Y, Baymakov S, Kader M MA, Ullah MI, Abbas AHR, Khlewee IH, Bisht YS, Alsaalamy AH. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathol Res Pract 2023; 249:154664. [PMID: 37573621 DOI: 10.1016/j.prp.2023.154664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
Oxidative stress is a physiological condition that occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the cell's antioxidant defense system. ROS are highly reactive molecules that can cause damage to cellular structures such as DNA, proteins, and lipids. the regulation of ROS levels and the antioxidant defense system is crucial for cancer prevention and treatment. Strategies to enhance antioxidant defenses or induce oxidative stress selectively in cancer cells are being developed as potential therapeutic approaches. targeting oxidative stress in cancer treatment is an active area of research with several potential therapeutic approaches being investigated. Developing selective and effective therapies that target oxidative stress in cancer cells while sparing normal cells will be crucial for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | | | - Sayfiddin Baymakov
- Department of General surgery and Military-Field surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | - Mohammed Abdul Kader M
- Department Restorative Dental science, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka, 72388 Aljouf, Saudi Arabia
| | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
8
|
Zeng Z. Assessment of the potential value of combining western medicine therapies with traditional chinese medicine in the treatment of COVID-19: Mechanistic perspectives. Technol Health Care 2023; 31:169-184. [PMID: 37038790 PMCID: PMC10200170 DOI: 10.3233/thc-236015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND The pandemic caused by the novel coronavirus disease (COVID-19) since early 2020 is one of the most significant global health issues in history. Although there is currently no specific treatment for COVID-19, researchers have provided a whole array of potential treatments, both from the Western medicine approach, which is molecular target and pathogenesis based, and from the traditional Chinese medicine (TCM) approach, which is based on the exposure to toxins/pathogens and the balance of the body to combat them for recovery. OBJECTIVE The aim of this research is to find combinations of Western medicine and TCM that may offer better therapeutic efficacy synergystically with a better adverse events profile. The findings of the research may provide a new insight in the development of the treatment of COVID-19. METHODS From the Western medicine perspective, drugs target the mechanisms of viral infection, including the stages of viral entry (Arbidol, Camostat Mesylate, Convalescent Plasma therapy) and viral replication (Lopinavir/Ritonavir, Redemsivir, Ribavirin). Additional therapies target host defenses, preventing cytokine storms (Tocilizumab) and stimulating the immune system (Interferons). On the other hand, TCM also proposed a number of treatment methods for COVID-19 with new scientific approaches identifying their antiviral and immunomodulatory activities. The novel combination of Western medicine and TCM can be proposed by analyzing their respective molecular targets. RESULTS Although TCM is not generally accepted in the Western community because of the general lack of knowledge on their detailed mechanisms, studies and clinical trials suggest that TCM could be beneficial in combating COVID-19. CONCLUSION Based on the principle of combining TCM and Western medicine, two combinations are tested effective in clinical trials, and three possible combinations that might be effective are proposed in the paper.
Collapse
Affiliation(s)
- Zirui Zeng
- International Department, The Affiliated High School of South China Normal University, Guangzhou, Guangdong, China
- University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Teymori A, Sedaghat A, Kobarfard F. Ca-mediated Nenitzescu synthesis of 5-hydroxyindoles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Guo Z, Zhang Y, Gan S, He H, Cai N, Xu J, Guo P, Chen B, Pan X. Effective degradation of COVID-19 related drugs by biochar-supported red mud catalyst activated persulfate process: Mechanism and pathway. JOURNAL OF CLEANER PRODUCTION 2022; 340:130753. [PMID: 36032562 PMCID: PMC9396784 DOI: 10.1016/j.jclepro.2022.130753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 05/25/2023]
Abstract
With the global spread of the COVID-19 pandemic, the water pollution caused by extensive production and application of COVID-19 related drugs has aroused growing attention. Herein, a novel biochar-supported red mud catalyst (RM-BC) containing abundant free hydroxyl groups was synthesized. The RM-BC activated persulfate process was firstly put forward to degrade COVID-19 related drugs, including arbidol (ARB), chloroquine phosphate, hydroxychloroquine sulfate, and acyclovir. Highly effective removal of these pharmaceuticals was achieved and even 100% of ARB was removed within 12 min at optimum conditions. Mechanism study indicated that SO4 •- and HO• were the predominant radicals, and these radicals were responsible for the formation of DMPOX in electron spin resonance experiments. Fe species (Fe0 and Fe3O4) and oxygen-containing functional groups in RM-BC played crucial roles in the elimination of ARB. Effects of degradation conditions and several common water matrices were also investigated. Finally, the degradation products of ARB were identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and possible degradation pathways were proposed. This study demonstrated that RM-BC/PS system would have great potential for the removal of COVID-19 related drug residues in water by the catalyst synthesized from the solid waste.
Collapse
Affiliation(s)
- Ziwei Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510000, China
| | - Shuchai Gan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nan Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Jingwei Xu
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
11
|
Ul'yanovskii NV, Kosyakov DS, Sypalov SA, Varsegov IS, Shavrina IS, Lebedev AT. Antiviral drug Umifenovir (Arbidol) in municipal wastewater during the COVID-19 pandemic: Estimated levels and transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150380. [PMID: 34818770 PMCID: PMC8451976 DOI: 10.1016/j.scitotenv.2021.150380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 05/04/2023]
Abstract
An indole derivative umifenovir (Arbidol) is one of the most widely used antiviral drugs for the prevention and treatment of COVID-19 and some other viral infections. The purpose of the present study was to shed light on the transformation processes of umifenovir in municipal wastewater, including disinfection with active chlorine, as well as to assess the levels of the antiviral drug and its metabolites entering and accumulating in natural reservoirs under conditions of the SARS-CoV-2 pandemic. The combination of high-performance liquid chromatography with electrospray ionization high-resolution mass-spectrometry and inductively coupled plasma mass spectrometry was used for tentative identification and quantification of umifenovir and its transformation products in model reaction mixtures and real samples of wastewater, river water, biological sludge and bottom sediments taken at the wastewater treatment plant in Arkhangelsk, a large cultural and industrial center at the Russian North. Laboratory experiments allowed identifying fifteen bromine-containing transformation products, forming at the initial stages of the chlorination and fourteen classic volatile and semi volatile disinfection by-products with bromoform as the dominant one. Chlorinated derivatives are only the minor disinfection by-products forming by substitution of alkylamine group in the aromatic ring. The schemes of umifenovir transformation in reactions with dissolved oxygen and sodium hypochlorite are proposed. Two established primary transformation products formed by oxidation of the thioether group to sulfoxide and elimination of thiophenol were detected in noticeable concentrations in the wastewater together with their precursor. The level of umifenovir reached 1.3 mg kg-1 in the sludge and municipal wastewater treat contained 1 μg L-1 of that drug, while its removal during biological wastewater treatment was about 40%. Pronounced accumulation of umifenovir and its transformation products in biological sludge and bottom sediments of natural reservoirs may be a source of the future secondary pollution of the environment.
Collapse
Affiliation(s)
- Nikolay V Ul'yanovskii
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russian Federation
| | - Dmitry S Kosyakov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russian Federation.
| | - Sergey A Sypalov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russian Federation
| | - Ilya S Varsegov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russian Federation
| | - Irina S Shavrina
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russian Federation
| | - Albert T Lebedev
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| |
Collapse
|
12
|
Therapeutic options in coronavirus treatment. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217689 DOI: 10.1016/b978-0-323-85156-5.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter details the various therapeutic options available for the treatment of the novel coronavirus, SARS-CoV-2, that has brought the world to a standstill. As at 3.53 CEST, June 28, 2020, WHO reported 9,843,073 confirmed cases of COVID-19, with a death toll of 495,760. The rate of the spread of this disease is alarming posing serious threat to the world healthcare system. Clinical investigations and research are on the way for the development of vaccines or antiviral drugs. Despite this effort, no medication has been found to be very effective for its treatment. In this chapter, emphasis was laid on the need for repurposing of antiviral drugs to combat COVID-19 along with other alternatives such as convalescent plasma therapy and exploitation of drugs from medicinal plants and other natural resources.
Collapse
|
13
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
14
|
Zarkesh K, Entezar-Almahdi E, Ghasemiyeh P, Akbarian M, Bahmani M, Roudaki S, Fazlinejad R, Mohammadi-Samani S, Firouzabadi N, Hosseini M, Farjadian F. Drug-based therapeutic strategies for COVID-19-infected patients and their challenges. Future Microbiol 2021; 16:1415-1451. [PMID: 34812049 PMCID: PMC8610072 DOI: 10.2217/fmb-2021-0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging epidemic-prone diseases have introduced numerous health and economic challenges in recent years. Given current knowledge of COVID-19, herd immunity through vaccines alone is unlikely. In addition, vaccination of the global population is an ongoing challenge. Besides, the questions regarding the prevalence and the timing of immunization are still under investigation. Therefore, medical treatment remains essential in the management of COVID-19. Herein, recent advances from beginning observations of COVID-19 outbreak to an understanding of the essential factors contributing to the spread and transmission of COVID-19 and its treatment are reviewed. Furthermore, an in-depth discussion on the epidemiological aspects, clinical symptoms and most efficient medical treatment strategies to mitigate the mortality and spread rates of COVID-19 is presented.
Collapse
Affiliation(s)
- Khatereh Zarkesh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Entezar-Almahdi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Bahmani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Roudaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinejad
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Hosseini
- Department of Manufacturing & Industrial Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Juárez-Méndez MT, Borges-Argáez R, Ayora-Talavera G, Escalante-Rebolledo SE, Escalante-Erosa F, Cáceres-Farfán M. Diospyros anisandra phytochemical analysis and anti-hemagglutinin-neuraminidase activity on influenza AH1N1pdm09 virus. Nat Prod Res 2021; 36:2666-2672. [PMID: 34109896 DOI: 10.1080/14786419.2021.1917568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Influenza viral proteins Haemagglutinin (HA) and Neuraminidase (NA) are important targets for antiviral design. We analyzed for the first time the anti-HA activity and the NA inhibitory activity of extracts and their fractions from Diospyros anisandra on the influenza AH1N1pdm09 virus. The n-hexane fruit extract exhibited HA inhibitory (HAI) activity, and fraction F3 inhibited the hemagglutination from 12.5 up to 100 μg/ml. Gas chromatography-mass spectrometry analysis (GC-MS) on fraction F3, and the n-hexane fruit extract, identified six compounds that were individually evaluated. Only vitamin E and lupeol showed a slight inhibitory activity on HA at 100 μg/ml. Regarding the NA assays, the presence of fluorescent (coumarin) and antioxidant (α-tocopherol) compounds in the root extract, masked the NA assays when using fluorescence techniques. We concluded that D. anisandra is a promising source of bioactive compounds with diverse properties including anti-HA activity on the influenza AH1N1pdm09 virus.
Collapse
Affiliation(s)
| | | | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida, México
| | | | | | | |
Collapse
|
16
|
Mikheev IV, Sozarukova MM, Izmailov DY, Kareev IE, Proskurnina EV, Proskurnin MA. Antioxidant Potential of Aqueous Dispersions of Fullerenes C 60, C 70, and Gd@C 82. Int J Mol Sci 2021; 22:5838. [PMID: 34072504 PMCID: PMC8199091 DOI: 10.3390/ijms22115838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
The antioxidant potential (capacity and activity) of aqueous fullerene dispersions (AFD) of non-functionalized C60, C70, and Gd@C82 endofullerene (in micromolar concentration range) was estimated based on chemiluminescence measurements of the model of luminol and generation of organic radicals by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP). The antioxidant capacity was estimated by the TRAP method, from the concentration of half-suppression, and from the suppression area in the initial period. All three approaches agree and show that the antioxidant capacity of AFDs increased in the order Gd@C82 < C70 < C60. Mathematical modeling of the long-term kinetics data was used for antioxidant activity estimation. The effect of C60 and C70 is found to be quenching of the excited product of luminol with ABAP-generated radical and not an actual antioxidant effect; quenching constants differ insignificantly. Apart from quenching with a similar constant, the AFD of Gd@C82 exhibits actual antioxidant action. The antioxidant activity in Gd@C82 is 300-fold higher than quenching constants.
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.S.); (M.A.P.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.S.); (M.A.P.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Dmitry Yu. Izmailov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Ivan E. Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Moscow, Russia;
| | | | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.S.); (M.A.P.)
| |
Collapse
|
17
|
Rossi FV, Gentili D, Marcantoni E. Metal-Promoted Heterocyclization: A Heterosynthetic Approach to Face a Pandemic Crisis. Molecules 2021; 26:2620. [PMID: 33947170 PMCID: PMC8124705 DOI: 10.3390/molecules26092620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
The outbreak of SARS-CoV-2 has drastically changed our everyday life and the life of scientists from all over the world. In the last year, the scientific community has faced this worldwide threat using any tool available in order to find an effective response. The recent formulation, production, and ongoing administration of vaccines represent a starting point in the battle against SARS-CoV-2, but they cannot be the only aid available. In this regard, the use of drugs capable to mitigate and fight the virus is a crucial aspect of the pharmacological strategy. Among the plethora of approved drugs, a consistent element is a heterocyclic framework inside its skeleton. Heterocycles have played a pivotal role for decades in the pharmaceutical industry due to their high bioactivity derived from anticancer, antiviral, and anti-inflammatory capabilities. In this context, the development of new performing and sustainable synthetic strategies to obtain heterocyclic molecules has become a key focus of scientists. In this review, we present the recent trends in metal-promoted heterocyclization, and we focus our attention on the construction of heterocycles associated with the skeleton of drugs targeting SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Federico Vittorio Rossi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
- Laboratori Alchemia Srl, Via San Faustino, 20134 Milano, Italy
| | - Dario Gentili
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
| | - Enrico Marcantoni
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy; (D.G.); (E.M.)
| |
Collapse
|
18
|
Kumar A, Singh R, Kaur J, Pandey S, Sharma V, Thakur L, Sati S, Mani S, Asthana S, Sharma TK, Chaudhuri S, Bhattacharyya S, Kumar N. Wuhan to World: The COVID-19 Pandemic. Front Cell Infect Microbiol 2021; 11:596201. [PMID: 33859951 PMCID: PMC8042280 DOI: 10.3389/fcimb.2021.596201] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 is a Severe Acute Respiratory Syndrome (SARS), caused by SARS-CoV-2, a novel virus which belongs to the family Coronaviridae. It was first reported in December 2019 in the Wuhan city of China and soon after, the virus and hence the disease got spread to the entire world. As of February 26, 2021, SARS-CoV-2 has infected ~112.20 million people and caused ~2.49 million deaths across the globe. Although the case fatality rate among SARS-CoV-2 patient is lower (~2.15%) than its earlier relatives, SARS-CoV (~9.5%) and MERS-CoV (~34.4%), the SARS-CoV-2 has been observed to be more infectious and caused higher morbidity and mortality worldwide. As of now, only the knowledge regarding potential transmission routes and the rapidly developed diagnostics has been guiding the world for managing the disease indicating an immediate need for a detailed understanding of the pathogen and the disease-biology. Over a very short period of time, researchers have generated a lot of information in unprecedented ways in the key areas, including viral entry into the host, dominant mutation, potential transmission routes, diagnostic targets and their detection assays, potential therapeutic targets and drug molecules for inhibiting viral entry and/or its replication in the host including cross-neutralizing antibodies and vaccine candidates that could help us to combat the ongoing COVID-19 pandemic. In the current review, we have summarized the available knowledge about the pathogen and the disease, COVID-19. We believe that this readily available knowledge base would serve as a valuable resource to the scientific and clinical community and may help in faster development of the solution to combat the disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rita Singh
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Jaskaran Kaur
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sweta Pandey
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Vinita Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Central University of Haryana, Mahendragarh, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sangeeta Sati
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Susmita Chaudhuri
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | | | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
19
|
Kumar D, Kumari K, Chandra R, Jain P, Vodwal L, Gambhir G, Singh P. A review targeting the infection by CHIKV using computational and experimental approaches. J Biomol Struct Dyn 2021; 40:8127-8141. [PMID: 33783313 DOI: 10.1080/07391102.2021.1904004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of normal body temperature of 98.6 °F beyond 100.4 °F in humans indicates fever due to some illness or infection. Viral infections caused by different viruses are one of the major causes of fever. One of such viruses is, Chikungunya virus (CHIKV) is known to cause Chikungunya fever (CHIKF) which is transmitted to humans through the mosquitoes, which actually become the primary source of transmission of the virus. The genomic structure of the CHIKV consists of the two open reading frames (ORFs). The first one is a 5' end ORF and it encodes the nonstructural protein (nsP1-nsP4). The second is a 3' end ORF and it encodes the structural proteins, which is consisted of capsid, envelope (E), accessory peptides, E3 and 6 K. Till date, there is no effective vaccine or medicine available for early detection of the CHIKV infection and appropriate diagnosis to cure the patients from the infection. NSP3 of CHIKV is the prime target of the researchers as it is responsible for the catalytic activity. This review has updates of literature on CHIKV; pathogenesis of CHIKV; inhibition of CHIKV using theoretical and experimental approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Faculty of Engineering and Technology, Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, New Delhi, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
20
|
Antiviral Abidol is Associated with the Reduction of In-Hospital Mortality in COVID-19 Patients. CARDIOLOGY DISCOVERY 2021; 1:37-43. [PMID: 34977907 PMCID: PMC8710295 DOI: 10.1097/cd9.0000000000000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Objective: Coronavirus disease 2019 (COVID-19) is a global public health crisis. There are no specific antiviral agents for the treatment of SARS-CoV-2. Information regarding the effect of Abidol on in-hospital mortality is scarce. The present study aimed to evaluate the treatment effect of Abidol for patients with COVID-19 before and after propensity score matching (PSM). Methods: This retrospective cohort study analyzed 1019 patients with confirmed COVID-19 in China from December 22, 2019 to March 13, 2020. Patients were divided to Abidol (200 mg, tid, 5–7 days, n = 788, 77.3%) and No-Abidol (n = 231, 22.7%) groups. The primary outcome was the mortality during hospitalization. Results: Among 1019 COVID-19 patients, the age was (60.4 ± 14.5) years. Abidol-treated patients, compared with No-Abidol-treated patients, had a shorter duration from onset of symptoms to admission, less frequent renal dysfunction, lower white blood cell counts (lymphocytes <0.8) and erythrocyte sending rate, lower interleukin-6, higher platelet counts and plasma IgG and oxygen saturation, and less frequent myocardial injury. The mortality during hospitalization before PSM was 17.9% in Abidol group and 34.6% in No-Abidol (hazard ratio (HR) = 2.610, 95% confident interval (CI): 1.980–3.440), all seen in severe and critical patients. After PSM, the in-hospital death was 13.6% in Abidol and 28.6% in No-Abidol group (HR = 2.728, 95% CI: 1.598–4.659). Conclusions: Abidol-treatment results in less in-hospital death for severe and critical patients with COVID-19. Further randomized study is warranted to confirm the findings from this study.
Collapse
|
21
|
Manchanda K, Singh J, Bhagat R, Tiwana IK, Singh H. Safety of pharmacological options for the management of COVID-19 in pregnant women: An Indian perspective. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2021; 32:3-17. [PMID: 33386817 DOI: 10.3233/jrs-200060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral illness caused by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) presenting with pulmonary and extra-pulmonary manifestations. The first case was reported in Wuhan, China in December 2019 and it has rapidly progressed to the form of a pandemic. The presentation is mild in about 80 percent of the cases but the disease can also progress to a severe form of respiratory illness leading to acute respiratory distress syndrome (ARDS) and sometimes multi-organ failure, especially in people with other co-morbidities. Pregnant women also appear to be at a greater risk of acquiring a severe infection due to physiological changes during pregnancy. Many drugs with in vitro activity against the virus or an immunomodulatory effect have been considered for repurposing or have been tried as off-label drugs. The safety data regarding the use of newly approved or off-label or investigational drugs in pregnant women is limited and this poses a great challenge for clinicians. Therefore, it is important to know the utility and safety of the medications to avoid untoward adverse effects on pregnant women and fetuses. In this review, we aim to provide an overview of the approved, off-label, unlicensed, new and some promising pharmacological options for their use in the treatment of COVID-19 and the safety profile in pregnancy in an Indian scenario.
Collapse
Affiliation(s)
- Kavita Manchanda
- Fellow in Reproductive Medicine, Milann Fertility Centre, Bangalore, India
| | - Jasbir Singh
- Associate Professor, Department of Pharmacology, Government Medical College and Rajindra Hospital, Patiala, India
| | - Ranjeev Bhagat
- Assistant Professor, Department of Pathology, Government Medical College and Hospital, Chandigarh, India
| | - Ilmjot Kaur Tiwana
- MBBS Intern, Government Medical College and Rajindra Hospital, Patiala, India
| | - Harmanjit Singh
- Assistant Professor, Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
22
|
Zyryanov SK, Butranova OI, Gaidai DS, Kryshen KL. [Pharmacotherapy for acute respiratory infections caused by influenza viruses: current possibilities]. TERAPEVT ARKH 2021; 93:114-124. [PMID: 33720636 DOI: 10.26442/00403660.2021.01.200551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023]
Abstract
Routinely the influenza virus significantly contributes to the formation of the annual incidence of acute respiratory infections, with a peak in winter season. The high level of mutagenic potential of influenza viruses is a standard factor determining the complexity of the rational choice of pharmacotherapy. The upcoming epidemiological season 20202021 brings additional challenges for health care practitioners mediated by the widespread prevalence in the human population of a new infection caused by the SARS-CoV-2 virus affecting the respiratory system among many organs and systems. An adequate choice of pharmacotherapy tools should be based on high efficiency and safety of drugs, with a possible reduction in such negative factors as polypharmacy. This review includes comparative pharmacological characteristics of drugs with activity against RNA viruses, along with parameters of their clinical efficacy.
Collapse
Affiliation(s)
- S K Zyryanov
- People's Friendship University of Russia.,City Clinical Hospital №24
| | | | | | | |
Collapse
|
23
|
Wang JH, Lee SB, Lee DS, Son CG. Total Antioxidant Capacity in HBV Carriers, a Promising Biomarker for Evaluating Hepatic Fibrosis: A Pilot Study. Antioxidants (Basel) 2021; 10:antiox10010077. [PMID: 33435626 PMCID: PMC7826661 DOI: 10.3390/antiox10010077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress plays a pivotal role in the progression of chronic hepatitis B; however, it is unclear whether the status of blood oxidative stress and antioxidant components differs depending on the degree of hepatic fibrosis. To explore the relationship between oxidative stress/antioxidant capacity and the extent of hepatic fibrosis, fifty-four subjects with liver fibrosis (5.5 ≤ liver stiffness measurement (LSM) score ≤ 16.0 kPa) by chronic hepatitis B virus (HBV) were analyzed. From the analysis of eight kinds of serum oxidative stress/antioxidant profiles and liver fibrosis degrees, the level of total antioxidant capacity (TAC) reflected a negative correlation with the severity of hepatic fibrosis (Pearson correlation, r = −0.35, p = 0.01). Moreover, TAC showed higher sensitivity (73.91%) than the aspartate transaminase (AST) to platelet ratio index (APRI, 56.52%) in the receiver operating characteristic (ROC) curves. Interestingly, the TAC level finely reflected the fibrosis degree in inactive carriers (HBV DNA < 2000 IU/mL), while the APRI did in active carriers (HBV DNA > 2000 IU/mL). In conclusion, TAC is a promising biomarker for evaluating the progression of liver fibrosis in patients with HBV, and this finding may indicate the involvement of TAC-composing factors in the pathogenesis of hepatic fibrosis in chronic HBV carriers.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-H.W.); (S.-B.L.)
| | - Sung-Bae Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-H.W.); (S.-B.L.)
| | - Dong-Soo Lee
- Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-H.W.); (S.-B.L.)
- Correspondence: ; Tel.: +82-42-229-6723; Fax: +82-42-257-6398
| |
Collapse
|
24
|
Konwar M, Sarma D. Advances in developing small molecule SARS 3CL pro inhibitors as potential remedy for corona virus infection. Tetrahedron 2021; 77:131761. [PMID: 33230349 PMCID: PMC7674993 DOI: 10.1016/j.tet.2020.131761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Originated in China, coronavirus disease 2019 (COVID-19)- the highly contagious and fatal respiratory disease caused by SARS-CoV-2 has already infected more than 29 million people worldwide with a mortality rate of 3.15% (according to World Health Organization's (WHO's) report, September 2020) and the number is exponentially increasing with no remedy whatsoever discovered till date. But it is not the first time this infectious viral disease has appeared, in 2002 SARS-CoV infected more than 8000 individuals of which 9.6% patients died and in 2012 approximately 35% of MERS-CoV infected patients have died. Literature reports indicate that a chymotripsin-like cystein protease (3CLpro) is responsible for the replication of the virus inside the host cell. Therefore, design and synthesis of 3CLpro inhibitor molecules play a great impact in drug development against this COVID-19 pandemic. In this review, we are discussing the anti-SARS effect of some small molecule 3CLpro inhibitors with their various binding modes of interactions to the target protein.
Collapse
Affiliation(s)
- Manashjyoti Konwar
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Dibru College, Dibrugarh, 786003, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
25
|
Fernandes IG, de Brito CA, dos Reis VMS, Sato MN, Pereira NZ. SARS-CoV-2 and Other Respiratory Viruses: What Does Oxidative Stress Have to Do with It? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8844280. [PMID: 33381273 PMCID: PMC7757116 DOI: 10.1155/2020/8844280] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The phenomenon of oxidative stress, characterized as an imbalance in the production of reactive oxygen species and antioxidant responses, is a well-known inflammatory mechanism and constitutes an important cellular process. The relationship of viral infections, reactive species production, oxidative stress, and the antiviral response is relevant. Therefore, the aim of this review is to report studies showing how reactive oxygen species may positively or negatively affect the pathophysiology of viral infection. We focus on known respiratory viral infections, especially severe acute respiratory syndrome coronaviruses (SARS-CoVs), in an attempt to provide important information on the challenges posed by the current COVID-19 pandemic. Because antiviral therapies for severe acute respiratory syndrome coronaviruses (e.g., SARS-CoV-2) are rare, knowledge about relevant antioxidant compounds and oxidative pathways may be important for understanding viral pathogenesis and identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Iara Grigoletto Fernandes
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
El Kantar S, Nehmeh B, Saad P, Mitri G, Estephan C, Mroueh M, Akoury E, Taleb RI. Derivatization and combination therapy of current COVID-19 therapeutic agents: a review of mechanistic pathways, adverse effects, and binding sites. Drug Discov Today 2020; 25:1822-1838. [PMID: 32801052 PMCID: PMC7422796 DOI: 10.1016/j.drudis.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Current treatment of patients with coronavirus 2019 (COVID-19) involves repurposed drugs that inhibit viral infection by either binding to their respective targets or via modulating cellular signal transduction. However, there is still a great deal of efficacy enhancement through combination therapy and derivatization. Combination therapy should involve agents with significant activity and different mechanisms of action. The structural map of the interaction between a drug and its target protein will help guide drug discovery for devising safe and effective ways to treat COVID-19. Herein, we report numerous synthetic designs based on enhanced affinity to the viral carbohydrate-rich protein spikes and protein-binding sites of COVID-19.
Collapse
Affiliation(s)
- Sally El Kantar
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Bilal Nehmeh
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Philippe Saad
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Gabie Mitri
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Celine Estephan
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Elias Akoury
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Robin I. Taleb
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon,Corresponding author:
| |
Collapse
|
27
|
Jomah S, Asdaq SMB, Al-Yamani MJ. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J Infect Public Health 2020; 13:1187-1195. [PMID: 32773212 PMCID: PMC7396961 DOI: 10.1016/j.jiph.2020.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
The unprecedented challenge faced by mankind due to emergence of coronavirus 2019 (COVID-19) pandemic has obligated researchers across the globe to develop effective medicine for prevention and treatment of this deadly infection. The aim of this review is to compile recently published research articles on anti-COVID 19 management with their benefits and risk to facilitate decision making of the practitioners and policy makers. Unfortunately, clinical outcomes reported for antivirals are not consistent. Initial favorable reports on lopinavir/ritonavir contradicted by recent studies. Ostalmovir has conflicting reports. Short term therapy of remdesivir claimed to be beneficial. Favipiravir demonstrated good recovery in some of the cases of COVID-19. Umifenovir (Arbidol) was associated with reduction in mortality in few studies. Overall, until now, U.S. Food and Drug administration issued only emergency use authorization to remdesivir for the treatment of suspected or laboratory-confirmed COVID-19 in adults and children hospitalized with severe disease.
Collapse
Affiliation(s)
- Shahamah Jomah
- College of Pharmacy, Al Maarefa University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
28
|
Li C, Wang L, Ren L. Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection. Virus Res 2020; 286:198073. [PMID: 32592817 PMCID: PMC7313518 DOI: 10.1016/j.virusres.2020.198073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global pandemic. Up to now, numerous medicines have been applied or approved for the prevention and control of the virus infection. However, the efficiency of each medicine or combination is completely different or still unknown. In this review, we discuss the types, characteristics, antiviral mechanisms, and shortcomings of recommended candidate medicines for SARS-CoV-2 infection, as well as perspectives of the drugs for the disease treatment, which may provide a theoretical basis for drug screening and application.
Collapse
Affiliation(s)
- Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Lin Wang
- Key Lab for Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
29
|
Santos IDA, Grosche VR, Bergamini FRG, Sabino-Silva R, Jardim ACG. Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment? Front Microbiol 2020; 11:1818. [PMID: 32903349 PMCID: PMC7438404 DOI: 10.3389/fmicb.2020.01818] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a group of viruses from the family Coronaviridae that can infect humans and animals, causing mild to severe diseases. The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a global threat, urging the development of new therapeutic strategies. Here we present a selection of relevant compounds that have been described from 2005 until now as having in vitro and/or in vivo antiviral activities against human and/or animal CoVs. We also present compounds that have reached clinical trials as well as further discussing the potentiality of other molecules for application in (re)emergent CoVs outbreaks. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential SARS-CoV-2 drug candidates.
Collapse
Affiliation(s)
- Igor de Andrade Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Victória Riquena Grosche
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
- Institute of Biosciences, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| | | | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
- Institute of Biosciences, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| |
Collapse
|
30
|
The COVID-19 pandemic: biological evolution, treatment options and consequences. INNOVATIVE INFRASTRUCTURE SOLUTIONS 2020. [PMCID: PMC7330532 DOI: 10.1007/s41062-020-00325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The spread of novel coronavirus SARS-CoV-2, the cause of the pandemic COVID-19 has emerged as a global matter of concern in the last couple of months. It has rapidly spread around the globe, which initially began in the city of Wuhan, People’s Republic of China and is hypothesized to originate from the group of Rhinolophus bats. Till date, there has been no clinically proven vaccine against the SARS-CoV-2 and thus the doctors are employing the other well-known techniques, which have previously successfully tackled similar other human coronaviruses. To prevent the further spread of COVID-19, doctors are advising isolation of the infected patients, and also regular washing of hands and the use of face mask for the common people. In the wake of the COVID-19 outbreak, the countries are going for nationwide lockdown as the only preventive measure to avert community transmission of this disease, which is having economic, social and psychological effect on the general mass. Therefore, this comprehensive review article encapsulates the biological evolution of human coronaviruses, probable treatment and control strategies to combat COVID-19 and, its impact on human life.
Collapse
|
31
|
Ghasemiyeh P, Borhani-Haghighi A, Karimzadeh I, Mohammadi-Samani S, Vazin A, Safari A, Qureshi AI. Major Neurologic Adverse Drug Reactions, Potential Drug-Drug Interactions and Pharmacokinetic Aspects of Drugs Used in COVID-19 Patients with Stroke: A Narrative Review. Ther Clin Risk Manag 2020; 16:595-605. [PMID: 32669846 PMCID: PMC7335700 DOI: 10.2147/tcrm.s259152] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/10/2020] [Indexed: 01/20/2023] Open
Abstract
Stroke has been considered as one of the underlying diseases that increases the probability of severe infection and mortality. Meanwhile, there are ongoing reports of stroke subsequent to COVID-19 infection. In this narrative paper, we reviewed major neurologic adverse drug reactions (ADRs) and pharmacokinetics of drugs which are routinely used for COVID-19 infection and their potential drug-drug interactions (PDDIs) with common drugs used for the treatment of stroke. It is highly recommended to monitor patients on chloroquine (CQ), hydroxychloroquine (HCQ), antiviral drugs, and/or corticosteroids about initiation or progression of cardiac arrhythmias, delirium, seizure, myopathy, and/or neuropathy. In addition, PDDIs of anti-COVID-19 drugs with tissue plasminogen activator (tPA), anticoagulants, antiaggregants, statins, antihypertensive agents, and iodine-contrast agents should be considered. The most dangerous PDDIs were interaction of lopinavir/ritonavir or atazanavir with clopidogrel, prasugrel, and new oral anticoagulants (NOACs).
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adnan I Qureshi
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
32
|
Hussain A, Kaler J, Dubey AK. Emerging Pharmaceutical Treatments of Novel COVID-19: A Review. Cureus 2020; 12:e8260. [PMID: 32596078 PMCID: PMC7313429 DOI: 10.7759/cureus.8260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
As a new decade began, COVID-19 quickly gained importance as it became the cause of the current global pandemic. Research has been focusing on studying the structure of SARS-CoV-2 and investigates possible pharmaceutical approaches. With the number of cases increasing every day, globally, multiple drugs are being researched as possible candidates. Although multiple drugs show promise in the treatment of COVID-19 via either inhibiting viral replication or preventing fusion of the virus to the ACE2 receptors, further investigation is still warranted and necessary before the admission of any type of pharmaceutical agent. Furthermore, several supplements have also been documented in being utilized as treatment of COVID-19. The exact mechanism and efficacy of current candidate drugs are still being explored through clinical trials. Despite the advancements in current research with emerging treatments, social distancing and engaging in preventative measures remains crucial to attempt to prevent the occurrence of more cases and deaths, worldwide. This review explores various drugs and their mechanism of action which are either currently being used in clinical trials or may be used in the future for the treatment of COVID-19.
Collapse
Affiliation(s)
- Azhar Hussain
- Healthcare Administration, Franklin University, Columbus, USA
- Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | - Jasndeep Kaler
- Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | - Arun Kumar Dubey
- Pharmacology, Xavier University School of Medicine, Oranjestad, ABW
| |
Collapse
|
33
|
Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect 2020; 26:917-921. [PMID: 32344167 PMCID: PMC7182750 DOI: 10.1016/j.cmi.2020.04.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Objectives Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Umifenovir (Arbidol®) is an antiviral drug being used to treat influenza in Russia and China. This study aimed to investigate the effectiveness and safety of umifenovir for COVID-19. Methods A retrospective study was performed in a non-intensive care unit (ICU) ward in Jinyintan Hospital from 2 February 2020 to 20 March 2020. COVID-19 was confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR) assay of pharyngeal swab specimens. The confirmed patients were divided into the umifenovir group and the control group according to the use of umifenovir. The main outcomes were the rate of negative pharyngeal swab tests for SARS-CoV-2 within 1 week after admission and the time for the virus to turn negative. The negativity time of SARS-CoV-2 was defined as the first day of a negative test if the nucleic acid of SARS-CoV-2 was negative for two consecutive tests. Results A total of 81 COVID-19 patients were included, with 45 in the umifenovir group and 36 in the control group. Baseline clinical and laboratory characteristics were comparable between the two groups. Thirty-three out of 45 (73%) patients in the umifenovir group tested negative for SARS-CoV-2 within 7 days after admission, the number was 28/36 (78%) in the control group (p 0.19). The median time from onset of symptoms to SARS-CoV-2 turning negative was 18 days (interquartile range (IQR) 12–21) in the umifenovir group and 16 days (IQR 11–21) in the control group (p 0.42). Patients in the umifenovir group had a longer hospital stay than patients in the control group (13 days (IQR 9–17) vs 11 days (IQR 9–14), p 0.04). No deaths or severe adverse reactions were found in both groups. Discussion Umifenovir might not improve the prognosis or accelerate SARS-CoV-2 clearance in non-ICU patients. A randomized control clinical trial is needed to assess the efficacy of umifenovir.
Collapse
Affiliation(s)
- N Lian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - H Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - S Lin
- Liver Research Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - J Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - J Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Q Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|