1
|
Alotaibi N, Alotaibi MO, Alshammari N, Adnan M, Patel M. Network Pharmacology Combined with Molecular Docking, Molecular Dynamics, and In Vitro Experimental Validation Reveals the Therapeutic Potential of Thymus vulgaris L. Essential Oil (Thyme Oil) against Human Breast Cancer. ACS OMEGA 2023; 8:48344-48359. [PMID: 38144096 PMCID: PMC10734022 DOI: 10.1021/acsomega.3c07782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Breast cancer is a major global health issue for women. Thyme oil, extracted from Thymus vulgaris L., has shown promising anticancer effects. In the present study, we investigated how Thyme oil can influence breast cancer treatment using a multimethod approach. We used network pharmacology to identify the active compounds of Thyme oil, their molecular targets, and the pathways involved in breast cancer. We found that Thyme oil can modulate several key proteins (EGFR, AKT1, ESR1, HSP90AA1, STAT-3, SRC, IL-6, HIF1A, JUN, and BCL2) and pathways (EGFR tyrosine kinase inhibitor resistance, prolactin signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway, ERBB signaling pathway, AGE-RAGE signaling pathway, JAK-STAT signaling pathway, FoxO signaling pathway, and PI3K-AKT signaling pathway) related to breast cancer progression. We then used molecular docking and dynamics to study the interactions and stability of the Thyme oil-compound complexes. We discovered three potent compounds (aromadendrene, α-humulene, and viridiflorene) that can bind strongly to important breast cancer proteins. We also performed in vitro experiments on MCF-7 cells to confirm the cytotoxicity and antiproliferative effects of Thyme oil. We observed that Thyme oil can inhibit cancer cell growth and proliferation at a concentration of 365.37 μg/mL. Overall, our results provide a comprehensive understanding of the pharmacological mechanism of Thyme oil in breast cancer treatment and suggest its potential as a new or adjuvant therapy. Further studies are needed to validate and optimize the therapeutic efficacy of Thyme oil and its active compounds.
Collapse
Affiliation(s)
- Nahaa
M. Alotaibi
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Modhi O. Alotaibi
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 55473, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 55473, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
2
|
Shawky AM, Almalki FA, Abdalla AN, Youssif BGM, Abdel-Fattah MM, Hersi F, El-Sherief HAM, Ibrahim NA, Gouda AM. Discovery and optimization of 2,3-diaryl-1,3-thiazolidin-4-one-based derivatives as potent and selective cytotoxic agents with anti-inflammatory activity. Eur J Med Chem 2023; 259:115712. [PMID: 37567059 DOI: 10.1016/j.ejmech.2023.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Several studies have indicated the potential therapeutic outcomes of combining selective COX-2 inhibitors with tubulin-targeting anticancer agents. In the current study, a novel series of thiazolidin-4-one-based derivatives (7a-q) was designed by merging the pharmacophoric features of some COXs inhibitors and tubulin polymerization inhibitors. Compounds 7a-q were synthesized and evaluated for their cytotoxic activity against MCF7, HT29, and A2780 cancer cell lines (IC50 = 0.02-17.02 μM). The cytotoxicity of 7a-q was also assessed against normal MRC5 cells (IC50 = 0.47-13.46 μM). Compounds 7c, 7i, and 7j, the most active in the MTT assay, significantly reduced the number of HT29 colonies compared to the control. Compounds 7c, 7i, and 7j also induced significant decreases in the tumor volumes and masses in Ehrlich solid carcinoma-bearing mice compared to the control. The three compounds also exhibited significant anti-HT29 migration activity in the wound-healing assay. They have also induced cell cycle arrest in HT29 cells at the S and G2/M phases. In addition, they induced significant increases in both early and late apoptotic events in HT29 cells compared to the control, where 7j showed the highest effect. On the other hand, compound 7j (1 μM) displayed weak inhibitory activity against tubulin polymerization compared to colchicine (3 μM). On the other hand, compounds 7a-q inhibited the activity of COX-2 (IC50 = 0.42-29.11 μM) compared to celecoxib (IC50 = 0.86 μM). In addition, 7c, 7i, and 7j showed moderate inhibition of inflammation in rats compared to indomethacin, with better GIT safety profiles. Molecular docking analysis revealed that 7c, 7i, and 7j have higher binding free energies towards COX-2 than COX-1. These above results suggested that 7j could serve as a potential anticancer drug candidate.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatima Hersi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
3
|
Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, Verschoor A, Multhoff G, Bashiri Dezfouli A, Wollenberg B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167:115467. [PMID: 37696087 DOI: 10.1016/j.biopha.2023.115467] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kathrin Werner
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | | | - Admar Verschoor
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
4
|
Mohammed HA, Abd-Elraouf M, Sulaiman GM, Almahmoud SA, Hamada FA, Khan RA, Hegazy MM, Abd-El-Wahab MF, Kedra TA, Ismail A. Variability in the volatile constituents and biological activities of Achillea millefolium L. essential oils obtained from different plant parts and by different solvents. ARAB J CHEM 2023; 16:105103. [DOI: 10.1016/j.arabjc.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
5
|
Gimeno B, Martinez S, Mainar AM, Urieta JS, Perez P. Thermodynamic Behavior of (2-Propanol + 1,8-Cineole) Mixtures: Isothermal Vapor-Liquid Equilibria, Densities, Enthalpies of Mixing, and Modeling. Int J Mol Sci 2023; 24:10380. [PMID: 37373528 DOI: 10.3390/ijms241210380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. In this work, vapor pressures between 278.15 and 323.15 K, densities and enthalpies of mixtures between 288.15 and 318.15 K for the binary mixture (2-propanol + 1,8-cineole) have been measured. From the vapor pressure data, activity coefficients and excess Gibbs energies were calculated via the Barker's method and the Wilson equation. Excess molar volumes and excess molar enthalpies were also obtained from the density and calorimetric measurements. Thermodynamic consistency test between excess molar Gibbs energies and excess molar enthalpies has been carried out using the Gibbs-Helmholtz equation. Robinson-Mathias, and Peng-Robinson-Stryjek-Vera together with volume translation of Peneloux equations of state (EoS) are considered, as well as the statistical associating fluid theory that offers a molecular vision quite suitable for systems having highly non-spherical or associated molecules. Of these three models, the first two fit the experimental vapor pressure results quite adequately; in contrast, only the last one approaches the volumetric behavior of the system. A brief comparison of the thermodynamic excess molar functions for binary mixtures of short-chain alcohol + 1,8-cineole (cyclic ether), or +di-n-propylether (lineal ether) is also included.
Collapse
Affiliation(s)
- Beatriz Gimeno
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Santiago Martinez
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana M Mainar
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Group of Applied Thermodynamics and Surfaces (GATHERS), Aragon Institute for Engineering Research (I3A), 50018 Zaragoza, Spain
| | - Jose S Urieta
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Group of Applied Thermodynamics and Surfaces (GATHERS), Aragon Institute for Engineering Research (I3A), 50018 Zaragoza, Spain
| | - Pascual Perez
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (I2A), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Abosrea AM, Aboul Ezz HS, Mahmoud SM, Mousa MR, Ahmed NA. The potential role of pumpkin seeds oil on methotrexate-induced lung toxicity. Sci Rep 2023; 13:7321. [PMID: 37147356 PMCID: PMC10162995 DOI: 10.1038/s41598-023-34143-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Many chemotherapeutic drugs cause adverse pulmonary reactions leading to severe pulmonary disease. Though methotrexate (MTX) is used for the treatment of cancer and other diseases, it is highly toxic with multiple adverse effects including pulmonary toxicity. Essential oils represent an open frontier for pharmaceutical sciences due to their wide range of pharmacological properties. Pumpkin seeds oil (PSO) was used to investigate its ability to alleviate methotrexate-induced lung toxicity in rats. Lung tissue from MTX-treated group revealed a decrease in malondialdehyde, glutathione, and nitric oxide accompanied by a marked inhibition in cholinesterase activity, and enhanced catalase activity, tumor necrosis factor-α, interleukin-6 and vascular endothelial growth factor levels. Analysis of PSO revealed that the oil was rich in hexadecanoic acid, decane methyl esters, squalene, polydecane, docosane, and other derivatives. Administration of PSO ameliorated the oxidant/antioxidant and proinflammatory changes induced by MTX in the lung tissue. Histological examinations confirmed the potency of PSO in reducing the histopathological alterations induced by MTX. Immunohistochemical analysis showed decreased nuclear factor-kappa B and caspase 3 expression after PSO. The present data indicated the protective efficiency of PSO against MTX-induced lung injury by decreasing oxidative damage, inflammation and apoptosis and could thus be recommended as an adjuvant therapy.
Collapse
Affiliation(s)
- Aya M Abosrea
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sahar M Mahmoud
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nawal A Ahmed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Discovery of a novel highly potent and low-toxic jatrophane derivative enhancing the P-glycoprotein-mediated doxorubicin sensitivity of MCF-7/ADR cells. Eur J Med Chem 2022; 244:114822. [DOI: 10.1016/j.ejmech.2022.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
8
|
Amirzadeh M, Soltanian S, Mohamadi N. Chemical composition, anticancer and antibacterial activity of Nepeta mahanensis essential oil. BMC Complement Med Ther 2022; 22:173. [PMID: 35752826 PMCID: PMC9233784 DOI: 10.1186/s12906-022-03642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Conventional cancer treatments, such as chemotherapy, radiation therapy, and surgery, often affect the patients’ quality of life due to their serious side effects, indicating the urgent need to develop less toxic and more effective alternative treatments. Medicinal plants and their derivatives are invaluable sources for such remedies. The present study aimed to determine the chemical composition, anticancer and antibacterial activities of Nepeta mahanesis essential oil (EO). Methods The chemical composition of EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Cytotoxicity and apoptosis/necrosis induction of EO was analyzed by MTT assay and Flow cytometry. Real-time PCR was performed to evaluate the Bax/Bcl2 gene expression. Also, the effect of the EO on the cells’ mitochondrial membrane potential (MMP) and ROS level was assessed. DPPH assay was done to assess the free radical scavenging activity of the EO. The Antimicrobial activity, MIC, and MBC of the oil were determined via well-diffusion and broth microdilution methods. Results Based on the GC-MS analysis, 24 compounds were identified in the EO, of which 1,8-cineole (28.5%), Nepetalactone (18.8%), germacrene D (8.1%), and β-pinene (7.2%), were the major compounds. Also, the EO showed considerable cytotoxicity against MCF-7, Caco-2, SH-SY5Y, and HepG2 after 24 and 48 h treatment with IC50 values between 0.0.47 to 0.81 mg/mL. It was revealed that this compound increased the Bax/Bcl2 ratio in the MCF-7 cells and induced apoptosis (27%) and necrosis (18%) in the cells. Moreover, the EO treatment led to a substantial decrease in MMP, which is indicative of apoptosis induction. A significant increase in ROS level was also detected in the cells following exposure to the EO. This compound showed strong DPPH radical scavenging activity (IC50: 30). It was also effective against Gram-positive E. faecalis (ATCC 29,212) and Gram-negative E. coli (ATCC 11,333) bacteria. Conclusions The results of this study demonstrated that the EO of N. mahanesis could be considered a bioactive product with biomedical applications that can be used as an alternative cancer treatment and applied in the biomedical industries.
Collapse
|
9
|
Tulbah AS, Bader A, Ong HX, Traini D. In vitro evaluation of nebulized eucalyptol nano-emulsion formulation as a potential COVID-19 treatment. Saudi Pharm J 2022; 30:1691-1699. [PMID: 36164456 PMCID: PMC9494862 DOI: 10.1016/j.jsps.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus is a type of acute atypical respiratory disease representing the leading cause of death worldwide. Eucalyptol (EUC) known also as 1,8-cineole is a potential inhibitor candidate for COVID-19 (main protease-Mpro) with effective antiviral properties but undergoes physico-chemical instability and poor water solubility. Nano-emulsion (NE) is a promising drug delivery system to improve the stability and efficacy of drugs. This work focuses on studying the anti- COVID-19 activity of EUC by developing nebulized eucalyptol nano-emulsion (EUC-NE) as a potentially effective treatment for COVID-19. The EUC -NE formulation was prepared using Tween 80 as a surfactant. In vitro evaluation of the EUC-NE formulation displayed an entrapment efficiency of 77.49 %, a droplet size of 122.37 nm, and an EUC % release of 84.7 %. The aerodynamic characterization and cytotoxicity of EUC-NE formulation were assessed, and results showed high lung deposition and low inhibitory concentration. The antiviral mechanism of the EUC-NE formulation was performed, and it was found that it exerts its action by virucidal, viral replication, and viral adsorption. Our results confirmed the antiviral activity of the EUC-NE formulation against COVID-19 and the efficacy of nano-emulsion as a delivery system, which can improve the cytotoxicity and inhibitory activity of EUC.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Corresponding author
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| |
Collapse
|
10
|
Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227908. [PMID: 36432009 PMCID: PMC9692697 DOI: 10.3390/molecules27227908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Extreme ethanol ingestion is associated with developing gastric ulcers. Achillea millefolium (yarrow) is one of the most commonly used herbs with numerous proven pharmacological actions. The goal of the hereby investigation is to explore the gastroprotective action of yarrow essential oil against ethanol-induced gastric ulcers and to reveal the unexplored mechanisms. Rats were distributed into five groups (n = 6); the control group administered 10% Tween 20, orally, for two weeks; the ethanol group administered absolute ethanol (5 mL/kg) to prompt gastric ulcer on the last day of the experiment. Yarrow essential oil 100 or 200 mg/kg + ethanol groups pretreated with yarrow oil (100 or 200 mg/kg, respectively), orally, for two weeks prior to gastric ulcer induction by absolute ethanol. Lanso + ethanol group administered 20 mg/kg lansoprazole, orally, for two weeks prior to gastric ulcer induction by ethanol. Results of the current study showed that ethanol caused several macroscopic and microscopic alterations, amplified lipid peroxidation, pro-inflammatory cytokines, and apoptotic markers, as well as diminished PGE2, NO, and antioxidant enzyme activities. On the other hand, animals pretreated with yarrow essential oil exhibited fewer macroscopic and microscopic modifications, reduced ulcer surface, and increased Alcian blue binding capacity, pH, and pepsin activity. In addition, yarrow essential oil groups exhibited reduced pro-inflammatory cytokines, apoptotic markers, and MDA, restored the PGE2 and NO levels, and recovered the antioxidant enzyme activities. Ethanol escalated Nrf2 and HO-1 expressions, whereas pretreatment of yarrow essential oil caused further intensification in Nrf2 and HO-1. To conclude, the current study suggested yarrow essential oil as a gastroprotective agent against ethanol-induced gastric lesions. This gastroprotective effect could be related to the antioxidant, anti-inflammatory, and anti-apoptotic actions of the essential oil through the instigation of the Nrf2/HO-1 pathway.
Collapse
|
11
|
Transcriptome Analysis Reveals the Anti-Tumor Mechanism of Eucalyptol Treatment on Neuroblastoma Cell Line SH-SY5Y. Neurochem Res 2022; 47:3854-3862. [DOI: 10.1007/s11064-022-03786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
AbstractEucalyptol (1.8-cineole), an active component in traditional Chinese medicine Artemisia argyi for moxibustion. Previous studies have shown that eucalyptol has anti-tumor effects on leukemia and colon cancer. Nonetheless, the effect and mechanism of eucalyptol on neuroblastoma remains unclear. In the present study, we intended to reveal the effect and mechanism of eucalyptol treatment on the neuroblastoma cell line SH-SY5Y through transcriptome analysis. In the group treated with eucalyptol, 566 brain genes were up-regulated, while 757 genes were down-regulated. GO function analysis showed that positive regulation of cell cycle was down-regulated in biological processes. Meanwhile, cancer-related pathways were identified in KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis, including pathways in cancer, PI3K-Akt signaling pathway, cAMP signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, p53 signaling pathway, and additional pathways. Furthermore, we found a key gene, such as MYC, by constructing a network of cancer related pathways with differentially expressed genes and transcription factor analysis. In conclusion, our research indicates that MYC might play a central role in the anit-tumor mechanisms of eucalyptol.
Collapse
|
12
|
Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186057. [PMID: 36144796 PMCID: PMC9506243 DOI: 10.3390/molecules27186057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold. We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation. A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and β-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA. Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.
Collapse
|
13
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
14
|
Shen J, Li J, Yu P, Du G. Research Status and Hotspots of Anticancer Natural Products Based on the Patent Literature and Scientific Articles. Front Pharmacol 2022; 13:903239. [PMID: 35784720 PMCID: PMC9247190 DOI: 10.3389/fphar.2022.903239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
Background: The patent literature contains a large amount of information on the internal state of current industrial technologies that are not available in other literature studies. Scientific articles are the direct achievements of theoretical research in this field and can reveal how current theories in basic research have developed. In this study, the progress and status of natural anticancer products in this field were summarized, and the research hotspots were explored through the analysis of the relevant patent literature and scientific articles. Methods: Patent data were retrieved from the incoPat patent retrieval database, and paper data were retrieved from the Web of Science core set and PubMed. GraphPad Prism 8, Microsoft Excel 2010, and CiteSpace 5.8.R3 were used to perform visual processing. The analyzed patent literature includes the patent applicant type, country (or region), and technical subject. The analyzed scientific article includes academic groups, subject areas, keyword clustering, and burst detection. Results: A total of 20,435 patent families and 38,746 articles were collected by 4 January 2022. At present, antitumor drugs derived from natural products mainly include 1) apoptosis inducers such as curcumin, gallic acid, resveratrol, Theranekron D6, and gaillardin; 2) topoisomerase inhibitors such as camptothecins, scaffold-hopped flavones, podophyllotoxin, oxocrebanine, and evodiamine derivatives; 3) telomerase inhibitors such as camptothecin and isoquinoline alkaloids of Chelidonium majus, amentoflavone, and emodin; 4) microtubule inhibitors such as kolaflavanone, tanshinone IIA analog, eugenol, and millepachine; 5) immunomodulators such as fucoidan, myricetin, bergapten, and atractylenolide I; 6) tumor microenvironment regulators such as beta-escin and icaritin; 7) multidrug resistance reversal agents such as berberine, quercetin, and dihydromyricetin; and 8) antiangiogenic and antimetastatic agents such as epigallocatechin-3-gallate, lupeol, ononin, and saikosaponin A. Conclusion: Anticancer natural product technology was introduced earlier, but the later development momentum was insufficient. In addition, scientific research activities are relatively closed, and technical exchanges need to be strengthened. Currently, the development of medicinal plants and the research on the anticancer mechanism of natural active products are still research hotspots, especially those related to immune checkpoints, essential oils, and metastatic cancer. Theories of traditional Chinese medicine (TCM), such as "restraining excessiveness to acquire harmony," "same treatment for different diseases," "Meridian induction theory," and "Fuzheng Quxie," have important guiding significance to the research of anticancer mechanisms and the development of new drugs and can provide new ideas for this process. Systematic Review Registration: [https://sourceforge.net/projects/citespace/], identifier [000755430500001].
Collapse
Affiliation(s)
| | - Jiahuan Li
- *Correspondence: Jiahuan Li, ; Gangjun Du,
| | | | - Gangjun Du
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Mesaik MA, Khalid A, Abdalla AN, Sultana S, Youssef AR, Ahmed IE, Mohammed YI, Mirghani HO, Rehman ZU, Alhazmi HA, Al Bratty M. GC-MS and Cellular Toxicity Studies on Smokeless-Tobacco Show Alerting Cytotoxic effect on Human Gingiva and Lung Fibroblasts. JOURNAL OF SPECTROSCOPY 2022; 2022:1-10. [DOI: 10.1155/2022/4005935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Smokeless tobacco (SLT) has been reported to have deleterious effects on the health of its users. This study aims to analyze the constituents of locally collected SLT sample extracts (S1–S11) from Tabuk region of Saudi Arabia using GC-MS and investigate their cytotoxic effect on human gingival fibroblasts (hGFs), normal human fibroblasts (MRC5), and two cancer cell lines (HT29 and HepG2) using MTT assay. GC-MS results showed that pyridine, 3-(1-methyl-1H-pyrrol-2-yl)-, tetracyclo[4.4.1.1(7,10).0(2,5)]dodec-3-en-11-ol, and cotinine were found in S1, while ethyl iso-allocholate was traced in S2. Compounds 9,12-octadecadienoic acid, ethyl ester, 7-methyl-Z-tetradecen-1-ol acetate, cis-10-heptadecenoic acid and octadecanoic acid, ethyl ester, and nicotine traces were found in S4, while compound 3,7,11,15-tetramethyl-2-hexadecen-1-ol, tetradecamethyl-hexasiloxane, and phytol in S5. Additionally, octadecamethyl cyclononasiloxane, oleic acid, and trimethylsilyl ester were found in S6 and S9, respectively. Interestingly, extracts S4, S10, and S6 were the most cytotoxic to the normal fibroblasts (hGF and MRC5, with low selectivity index: <1), compared with doxorubicin and with their effect on the cancerous cells (HT29 and HepG2). Various components detected in SLT samples were carcinogenic, including nicotine and its derivatives, hexadecanoic acid, 1,2-benzenedicarboxylic acid, and octadecanoic acid. The present study showed that the cytotoxic and possibly carcinogenic effects of the SLT samples on gingiva and lung cells are attributed to many compounds and not only nicotine derivatives, all of which could create health threats for SLT users and lead to various types of cancers, including oral, lung, colon, and liver cancers.
Collapse
Affiliation(s)
- M. Ahmed Mesaik
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2424, Khartoum 11111, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdel-Rahman Youssef
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Microbiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Izzaddinn E. Ahmed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Yassin I. Mohammed
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Hyder O. Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Zia ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
16
|
A Narrative Review of the Antitumor Activity of Monoterpenes from Essential Oils: An Update. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6317201. [PMID: 35655488 PMCID: PMC9155973 DOI: 10.1155/2022/6317201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Monoterpenes are a group of natural products that have been widely studied due to their therapeutic potential against various pathologies. These compounds are abundant in the chemical composition of essential oils. Cancer is a term that covers more than 100 different types of malignant diseases and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options applicable to cancer is urgent. In this review, studies on the antitumor activity of monoterpenes found in essential oils were selected, and botanical, chemical, and pharmacological aspects were discussed. The most investigated monoterpenes were carvacrol and linalool with highly significant in vitro and in vivo tumor inhibition in several types of cancers. The action mechanisms of these natural products are also presented and are wildly varied being apoptosis the most prevalent followed by cell cycle impairment, ROS production, autophagy, necroptosis, and others. The studies reported here confirm the antitumor properties of monoterpenes and their anticancer potential against various types of tumors, as demonstrated in in vitro and in vivo studies using various types of cancer cells and tumors in animal models. The data described serve as a reference for the advancement in the mechanistic studies of these compounds and in the preparation of synthetic derivatives or analogues with a better antitumor profile.
Collapse
|
17
|
De Santis D, Carbone K, Garzoli S, Laghezza Masci V, Turchetti G. Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods 2022; 11:foods11101455. [PMID: 35627025 PMCID: PMC9140405 DOI: 10.3390/foods11101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the chemical composition of the extract of leaves of R. idaeus (RH), obtained by steam distillation (SD). The antioxidant capacity; the total phenolic content (TPC); the cytotoxic activity against tumor cell lines; and the antibacterial activity, in addition to the study of the chemical fingerprinting, carried out by Gas/Chromatography-Mass-Spectrometry (GC/MS) and Headspace (HS)-GC/MS, were established. The extract showed a strong antioxidant capacity and a modest antibacterial activity against two bacterial strains, as well as significant cytotoxic activity against tumor cell lines (Caco-2 and HL60) and being proliferative on healthy cells. Many of the GC-identified volatile molecules (1,8-cineol, β-linalool, geraniol, caryophyllene, τ-muurolol, citral, α-terpineol, 3- carene, α-terpinen-7-al, etc.) can explain most of the biological properties exhibited by the extract of R. idaeus L. The high biological activity of the RH and the high compatibility with the various matrices suggest good prospects for this extract, both in the food and cosmetic fields or in dietary supplements for improving human health.
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Square Aldo Moro 5, 00185 Rome, Italy;
| | - Valentina Laghezza Masci
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| | - Giovanni Turchetti
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| |
Collapse
|
18
|
Bader A, AlQathama A, Cioni PL, Ceccarini L, Abdelhady MIS, Al-Shareef W, Ascrizzi R, Flamini G. Essential Oil Biodiversity of Achillea ligustica All. Obtained from Mainland and Island Populations. PLANTS 2022; 11:plants11081054. [PMID: 35448782 PMCID: PMC9027389 DOI: 10.3390/plants11081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Background: The genus Achillea is rich in essential oil (EO) with high chemical diversity. In this study, eight EO samples obtained from flowers and leaves of Achillea ligustica All. collected on the Mediterranean mainland and island locations were analyzed to evaluate their possible chemical diversity. Methods: Sixteen samples of EO were analyzed by GC-MS, leading to the identification of 95 compounds in the leaves and 86 compounds in the flowers; a statistical analysis was performed to determine the chemical polymorphism. Results: Monoterpenes, such as β-pinene, borneol, ɑ-terpineol and isobornyl acetate, were more abundant in the continental samples, while the insular samples were richer in 1,8-cineole. Fragranyl acetate and fragranol were detected in remarkable concentrations in sample 8. The fruits of sample 8 were then cultivated under controlled agronomic conditions, providing plants rich in these compounds (sample 9). The geographical variability influenced the EO compositions, with unique observed chemotypes and a high degree of diversity among samples collected in various areas (mainland or island). Statistical analyses did not reveal any pattern between the geographical provenience and the compositions. Conclusion: Samples were distributed based on the plant organ, confirming the already reported high degree of chemical polymorphism of this species. Sample 8 could be used as a source of fragranol and fragranyl acetate, with potential applications in the insecticidal and pheromone industries.
Collapse
Affiliation(s)
- Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Correspondence: (A.B.); (R.A.)
| | - Aljawharah AlQathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Pier Luigi Cioni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; (P.L.C.); (G.F.)
| | - Lucia Ceccarini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | | | - Wajih Al-Shareef
- 12 Tekne’ Ricerche, Cittadella della Ricerca, S.S.7 Mesagne, 72100 Brindisi, Italy;
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; (P.L.C.); (G.F.)
- Correspondence: (A.B.); (R.A.)
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; (P.L.C.); (G.F.)
| |
Collapse
|
19
|
Akiel MA, Alshehri OY, Aljihani SA, Almuaysib A, Bader A, Al‐Asmari AI, Alamri HS, Alrfaei BM, Halwani MA. Viridiflorol induces anti-neoplastic effects on breast, lung, and brain cancer cells through apoptosis. Saudi J Biol Sci 2022; 29:816-821. [PMID: 35197749 PMCID: PMC8847963 DOI: 10.1016/j.sjbs.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
|
20
|
Abdalla AN, Di Stefano M, Poli G, Tuccinardi T, Bader A, Vassallo A, Abdallah ME, El-Readi MZ, Refaat B, Algarni AS, Ahmad R, Alkahtani HM, Abdel-Aziz AAM, El-Azab AS, Alqathama A. Co-Inhibition of P-gp and Hsp90 by an Isatin-Derived Compound Contributes to the Increase of the Chemosensitivity of MCF7/ADR-Resistant Cells to Doxorubicin. Molecules 2021; 27:molecules27010090. [PMID: 35011321 PMCID: PMC8746493 DOI: 10.3390/molecules27010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex and multi-drug resistant (MDR) disease, which could result in the failure of many chemotherapeutic clinical agents. Discovering effective molecules from natural products or by derivatization from known compounds is the interest of many research studies. The first objective of the present study is to investigate the cytotoxic combinatorial, chemosensitizing, and apoptotic effects of an isatin derived compound (5,5-diphenylimidazolidine-2,4-dione conjugated with 5-substituted isatin, named HAA2021 in the present study) against breast cancer cells (MCF7) and breast cancer cells resistant to doxorubicin (MCF7/ADR) when combined with doxorubicin. The second objective is to investigate the binding mode of HAA2021 withP-glycoprotein (P-gp) and heat shock protein 90 (Hsp90), and to determine whether their co-inhibition by HAA2021 contribute to the increase of the chemosensitization of MCF7/ADR cells to doxorubicin. The combination of HAA2021, at non-toxic doses, with doxorubicin synergistically inhibited the proliferation while inducing significant apoptosis in MCF7 cells. Moreover, HAA2021 increased the chemosensitization of MCF7/ADR cells to doxorubicin, resulting in increased cytotoxicity/selectivity and apoptosis-inducing efficiency compared with the effect of doxorubicin or HAA2021 alone against MCF7/ADR cells. Molecular modeling showed that two molecules of HAA2021 bind to P-gp at the same time, causing P-gp inhibitory effect of the MDR efflux pump, and accumulation of Rhodamine-123 (Rho123) in MCF7/ADR cells. Furthermore, HAA2021 stably interacted with Hsp90α more efficiently compared with 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), which was confirmed with the surface plasmon resonance (SPR) and molecular modeling studies. Additionally, HAA2021 showed multi-target effects via the inhibition of Hsp90 and nuclear factor kappa B (NF-𝜅B) proteins in MCF7 and MCF7/ADR cells. Results of real time-PCR also confirmed the synergistic co-inhibition of P-gp/Hsp90α genes in MCF7/ADR cells. Further pharmacokinetic and in vivo studies are warranted for HAA2021 to confirm its anticancer capabilities.
Collapse
Affiliation(s)
- Ashraf N. Abdalla
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.B.); (A.S.A.); (A.A.)
- Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
- Correspondence: or
| | - Miriana Di Stefano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.S.); (G.P.); (T.T.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.S.); (G.P.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.S.); (G.P.); (T.T.)
| | - Ammar Bader
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.B.); (A.S.A.); (A.A.)
| | - Antonio Vassallo
- Dipartimento di Scienze, Università Degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Mohamed E. Abdallah
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.Z.E.-R.)
| | - Mahmoud Zaki El-Readi
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.Z.E.-R.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Bassem Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Alanood S. Algarni
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.B.); (A.S.A.); (A.A.)
| | - Rizwan Ahmad
- Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Hamad M. Alkahtani
- College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.-M.A.-A.); (A.S.E.-A.)
| | - Alaa A.-M. Abdel-Aziz
- College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.-M.A.-A.); (A.S.E.-A.)
| | - Adel S. El-Azab
- College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.-M.A.-A.); (A.S.E.-A.)
| | - Aljawharah Alqathama
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.B.); (A.S.A.); (A.A.)
| |
Collapse
|
21
|
Hussein EM, Malik MS, Alsantali RI, Asghar BH, Morad M, Ansari MA, Jamal QMS, Alsimaree AA, Abdalla AN, Algarni AS, Jassas RS, Altass HM, Ahmed SA. Bioactive fluorenes. Part IV: Design, synthesis, and a combined in vitro, in silico anticancer and antibacterial evaluation of new fluorene-heterocyclic sulfonamide conjugates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ayan İÇ, Çetinkaya S, Dursun HG, Güneş CE, Şirin S. Anticancer Effect and Phytochemical Profile of the Extract from Achillea ketenoglui against Human Colorectal Cancer Cell Lines. Anticancer Agents Med Chem 2021; 22:1769-1779. [PMID: 34503424 DOI: 10.2174/1871520621666210908110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the treatment of colorectal cancer (CRC), the search for new antineoplastic drugs with fewer side effects and more effectiveness continues. A significant part of these pursuits and efforts focus on medicinal herbs and plant components derived from these plants. A. ketenoglui is one of these medicinal plants, and its anticancer potential has never been studied before. METHODS The phenolic and flavonoid content, and antioxidant activity of A. ketenoglui extracts were determined. The phytochemical profiling and quantification analysis of major components were performed by HPLC-ESI-Q-TOF-MS. Cytotoxicity, proliferation, apoptosis and cell cycle were evaluated to reveal the anticancer activity of the extract on CRC cells (HCT 116 and HT-29). The determined anticancer activity was confirmed by mRNA (RT-qPCR) and protein (Western blotting) analyzes. RESULTS A. ketenoglui methanol extract was found to have high phenolic (281.89±0.23) and flavonoid (33.80±0.15) content and antioxidant activity (IC50 40.03±0.38). According to the XTT assay, the extract has strong cytotoxic activity (IC50 350 µM in HCT 116 and IC50 263 µM in HT-29 cell line). The compounds most commonly found in the plant are, in descending order, chlorogenic acid, apigenin, genistin, baicalin, eupatorin, casticin, and luteolin. In flowcytometric analysis, the extract was found to induce greater apoptosis and cell cycle arrest in both cell lines than in both control and positive control (casticin). According to the results of the mRNA expression analysis, the extract treatment upregulated the expression of the critical genes of the cell cycle and apoptosis, such as p53, p21, caspase-3, and caspase-9. In protein expression analysis, an increase in caspase-3 and p53 expression was observed in both cell lines treated with the extract. In addition, caspase-9 expression was increased in HT-29 cells. CONCLUSION The findings show that A. ketenoglui has an anticancer potential by inducing apoptosis and arresting the cancer cell cycle and may be promising for CRC therapy. This potential of the plant is realized through the synergistic effects of its newly identified components.
Collapse
Affiliation(s)
- İlknur Çınar Ayan
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Meram, Konya. Turkey
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara. Turkey
| | - Hatice Gül Dursun
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Meram, Konya. Turkey
| | - Canan Eroğlu Güneş
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Meram, Konya. Turkey
| | - Seda Şirin
- Department of Biology, Faculty of Science, Gazi University, Teknikokullar, Ankara. Turkey
| |
Collapse
|
23
|
Vuko E, Dunkić V, Maravić A, Ruščić M, Nazlić M, Radan M, Ljubenkov I, Soldo B, Fredotović Ž. Not Only a Weed Plant-Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. PLANTS (BASEL, SWITZERLAND) 2021; 10:1837. [PMID: 34579370 PMCID: PMC8470837 DOI: 10.3390/plants10091837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
With the increasing interest in obtaining biologically active compounds from natural sources, Dittrichia viscosa (L.) Greuter (Asteraceae) came into our focus as a readily available and aromatic wild shrub widely distributed in the Mediterranean region. This work provides a phytochemical profile of D. viscosa in terms of parallel chemical composition in the lipophilic fraction (essential oil) and the water fraction (hydrosol). GC-MS analysis identified 1,8-cineole, caryophyllene oxide, α-terpenyl acetate, and α-muurolol as the major components of the essential oil, while in the hydrosol p-menth-1-en-9-ol, 1,8-cineole, linalool, cis-sabinene hydrate, and α-muurolol were the major volatile components. 3,4-Dihydroxybenzoic acid was found to be the predominant compound in the hydrosol composition by HPLC analysis. The antimicrobial potential of both extracts was evaluated against thirteen opportunistic pathogens associated with common skin and wound infections and emerging food spoilage microorganisms. The antimicrobial activity of the essential oil suggests that the volatiles of D. viscosa could be used as novel antimicrobial agents. The antiproliferative results of D. viscosa volatiles are also new findings, which showed promising activity against three cancer cell lines: HeLa (cervical cancer cell line), HCT116 (human colon cancer cell line), and U2OS (human osteosarcoma cell line). The decrease in GSH level observed in hydrosol-treated HeLa cells suggests oxidative stress as a possible mechanism of the antiproliferative effect of hydrosol on tumor cells. The presented results are also the first report of significant antiphytoviral activity of hydrosol against tobacco mosaic virus (TMV) infection. Based on the results, D. viscosa might have the potential to be used in crop protection, as a natural disinfectant and natural anticancer agent.
Collapse
Affiliation(s)
- Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Valerija Dunkić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Mirko Ruščić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Marija Nazlić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Mila Radan
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 33, 21000 Split, Croatia;
| | - Ivica Ljubenkov
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (I.L.); (B.S.)
| | - Barbara Soldo
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (I.L.); (B.S.)
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| |
Collapse
|
24
|
Yang K, Wu K, Feng J, Yutian L, Zhu X, Xu D. Study on the Antitumor Effect and Glycolysis of Andrographolide in Anaplastic Thyroid Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5526581. [PMID: 34335811 PMCID: PMC8298147 DOI: 10.1155/2021/5526581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVE To investigate the antitumor effect of andrographolide on the ATC cell lines 8505C and CAL62 and to explore the possible mechanism of the effect. METHODS CCK8 and colony formation assays were performed to detect proliferation. Cell migration was tested by scratch assay. Annexin V/PI staining was used to detect cell apoptosis and cell cycle. Glucose and lactic acid kits were carried out to evaluate the glycolysis level after andrographolide treatment. Western blot was used to detect the changes in the apoptosis-related proteins and glycolysis-related enzymes in both 8505C and CAL62 cells. RESULTS Treatment with 60 μM andrographolide had significant effects on 8505C and CAL62, including inhibition of proliferation, inhibition of migration, arrest of the cell cycle, promotion of apoptosis, and inhibition of glycolysis. CONCLUSION Andrographolide has an antitumor effect and can significantly affect glycolysis in ATC cells.
Collapse
Affiliation(s)
- Ke Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China
| | - Ke Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jianguo Feng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ling Yutian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xin Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China
| | - Dong Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
25
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain.,Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
26
|
Shawky AM, Ibrahim NA, Abourehab MAS, Abdalla AN, Gouda AM. Pharmacophore-based virtual screening, synthesis, biological evaluation, and molecular docking study of novel pyrrolizines bearing urea/thiourea moieties with potential cytotoxicity and CDK inhibitory activities. J Enzyme Inhib Med Chem 2021; 36:15-33. [PMID: 33103497 PMCID: PMC7594867 DOI: 10.1080/14756366.2020.1837124] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the current study, virtual screening of a small library of 1302 pyrrolizines bearing urea/thiourea moieties was performed. The top-scoring hits were synthesised and evaluated for their cytotoxicity against three cancer (MCF-7, A2780, and HT29) and one normal (MRC-5) cell lines. The results of the MTT assay revealed potent cytotoxic activities for most of the new compounds (IC50 = 0.16–34.13 μM). The drug-likeness study revealed that all the new compounds conform to Lipinski’s rule. Mechanistic studies of compounds 18 b, 19a, and 20a revealed the induction of apoptosis and cell cycle arrest at the G1 phase in MCF-7 cells. The three compounds also displayed potent inhibitory activity against CDK-2 (IC50 = 25.53–115.30 nM). Moreover, the docking study revealed a nice fitting of compound 19a into the active sites of CDK-2/6/9. These preliminary results suggested that compound 19a could serve as a promising scaffold in the discovery of new potent anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nashwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
27
|
Shawky AM, Abdalla AN, Ibrahim NA, Abourehab MAS, Gouda AM. Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities. Eur J Med Chem 2021; 218:113403. [PMID: 33823396 DOI: 10.1016/j.ejmech.2021.113403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Targeting P-glycoprotein (P-gp, ABCB1 transporter), which plays an essential role in multi-drug resistance (MDR) in cancers, with new cytotoxic agents is a promising strategy in cancer chemotherapy. In the current study, we report the synthesis of thirteen novel pyrimidopyrrolizine, pyrimidoindolizine, and diazepinopyrrolizine derivatives. The new compounds exhibited cytotoxic activities against MCF7, A2780 and HT29 cancer cell lines (IC50 = 0.02-19.58 μM) and MRC5 (IC50 = 0.17-20.57 μM). The six most active compounds (23b, 24a,b and, 31c-e) were evaluated for their MDR reversal activities in MCF7/ADR cells. Mechanistic study using real-time PCR revealed the ability of compound 31c to inhibit P-gp. In addition, compound 31c increased the accumulation of Rho123 inside MCF7/ADR cells in a dose-dependent manner compared to verapamil. Compound 31c arrested the cell cycle of MCF7 cells at the G1 phase. Compound 31c also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for compound 31c toward P-gp. Like zosuquidar, compound 31c displayed one hydrogen bond and several hydrophobic interactions with amino acids in P-gp. These results indicated that compound 31c represents a potential anticancer candidate with MDR reversal activity.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Central Laboratory for Micro-analysis, Minia University, Minia, 61519, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Departmentof Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Nashwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
28
|
Design and Synthesis of 4-O-Podophyllotoxin Sulfamate Derivatives as Potential Cytotoxic Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6672807. [PMID: 33574882 PMCID: PMC7857870 DOI: 10.1155/2021/6672807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 11/17/2022]
Abstract
4-O-Podophyllotoxin sulfamate derivatives were prepared using the natural lignan podophyllotoxin. The prepared compounds were afforded by reacting O-sulfonyl chloride podophyllotoxin with ammonia or aminoaryl/heteroaryl motif. Biological evaluation was performed in human breast cancer (MCF7), ovarian cancer (A2780), colon adenocarcinoma (HT29), and normal lung fibroblast (MRC5) cell lines. Compound 3 exhibited potent inhibitory activity and good selectivity margin. Compounds 2, 3, and 7 exerted apoptotic effect in MCF7 cells in a dose-dependent manner. The cytotoxicity of the verified compounds was inferior to that of podophyllotoxin.
Collapse
|
29
|
Essential Oil Analysis and Antimicrobial Evaluation of Three Aromatic Plant Species Growing in Saudi Arabia. Molecules 2021; 26:molecules26040959. [PMID: 33670315 PMCID: PMC7917617 DOI: 10.3390/molecules26040959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Arabian flora is a rich source of bioactive compounds. In this study, we investigated three aromatic plant species with the aim of finding valuable sources of antimicrobial agents against common pathogenic microorganisms. We focused especially on microorganisms, which cause outbreaks of infectious disease during mass gatherings and pilgrimages season in Saudi Arabia. The essential oils of three aromatic plant species were hydrodistilled from flowering aerial parts of Lavandula pubescens Decne. and Pulicaria incisa subsp. candolleana E.Gamal-Eldin, and from leaves, stems, ripe and unripe fruits of Juniperus procera Hochst. Ex Endl. They were subsequently analyzed by gas chromatography-mass spectrometry (GC-MS). The main constituents of L. pubescens were found to be carvacrol (55.7%), methyl carvacrol (13.4%), and β-bisabolene (9.1%). P. incisa subsp. Candolleana essential oil was rich in linalool (33.0%), chrysanthenone (10.3%), eugenol (8.9%), and cis-chrysanthenol (8.0%); the major components of J. procera essential oil were α-pinene (31.3-62.5%) and δ-3-carene (7.3-30.3%). These essential oils were tested against thirteen American Type Culture Collection (ATCC) strains of Gram-positive and Gram-negative bacteria using the agar diffusion assay. The only effective essential oil was that of L. pubescens and the most sensitive strains were Acinetobacter baumannii, Salmonella typhimurium, Shigella sonnei, Enterococcus faecalis and Staphylococcus epidermidis. Carvacrol, the major constituent of L. pubescens, was tested on these strains and was compared with vancomycin, amikacin, and ciprofloxacin. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays of L. pubescens essential oil and carvacrol revealed that Gram-negative strains were more susceptible than the Gram-positive ones.
Collapse
|
30
|
Chemosensitization of HT29 and HT29-5FU Cell Lines by a Combination of a Multi-Tyrosine Kinase Inhibitor and 5FU Downregulates ABCC1 and Inhibits PIK3CA in Light of Their Importance in Saudi Colorectal Cancer. Molecules 2021; 26:molecules26020334. [PMID: 33440689 PMCID: PMC7827067 DOI: 10.3390/molecules26020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the main causes of death worldwide and in Saudi Arabia. The toxicity and the development of resistance against 5 fluorouracil 5FU pose increasing therapeutic difficulties, which necessitates the development of personalized drugs and drug combinations. Objectives: First, to determine the most important kinases and kinase pathways, and the amount of ABC transporters and KRAS in samples taken from Saudi CRC patients. Second, to investigate the chemosensitizing effect of LY294002 and HAA2020 and their combinations with 5FU on HT29, HT29-5FU, HCT116, and HCT116-5FU CRC cells, their effect on the three ABC transporters, cell cycle, and apoptosis, in light of the important kinase pathways resulting from the first part of this study. Methods: The PamChip® peptide micro-array profiling was used to determine the level of kinase and targets in the Saudi CRC samples. Next, RT-PCR, MTT cytotoxicity, Western blotting, perturbation of cell cycle, annexin V, and immunofluorescence assays were used to investigate the effect on CRC, MRC5, and HUVEC cells. Results: The kinase activity profiling highlighted the importance of the PI3K/AKT, MAPK, and the growth factors pathways in the Saudi CRC samples. PIK3CA was the most overexpressed, and it was associated with increased level of mutated KRAS and the three ABC transporters, especially ABCC1 in the Saudi samples. Next, combining HAA2020 with 5FU exhibited the best synergistic and resistance-reversal effect in the four CRC cells, and the highest selectivity indices compared to MRC5 and HUVEC normal cells. Additionally, HAA2020 with 5FU exerted significant inhibition of ABCC1 in the four CRC cells, and inhibition of PIK3CA/AKT/MAPK7/ERK in HT29 and HT29-5FU cells. The combination also inhibited EGFR, increased the preG1/S cell cycle phases, apoptosis, and caspase 8 in HT29 cells, while it increased the G1 phase, p21/p27, and apoptosis in HT29-5FU cells. Conclusion: We have combined the PamChip kinase profiling of Saudi CRC samples with in vitro drug combination studies in four CRC cells, highlighting the importance of targeting PIK3CA and ABCC1 for Saudi CRC patients, especially given that the overexpression of PIK3CA mutations was previously linked with the lack of activity for the anti-EGFRs as first line treatment for CRC patients. The combination of HAA2020 and 5FU has selectively sensitized the four CRC cells to 5FU and could be further studied.
Collapse
|
31
|
A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8878927. [PMID: 33354224 PMCID: PMC7735857 DOI: 10.1155/2020/8878927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Background Inflammation is a host defense mechanism in the body after it is infected and damaged. If inflammation is not treated in time, then it may cause a variety of diseases, such as cancer and autoimmune diseases. Herbal essential oils are natural extracts that can suppress inflammation effectively and are expected to be used in therapeutic drugs for anti-inflammatory diseases in the future. Aim of the review. We review the anti-inflammatory and immunomodulatory effects of essential oils derived from 16 herbs. Materials and methods. We searched the literature of the fields of anti-inflammatory and immunomodulatory herbal essential oil activity published in English within the past five years via databases (PubMed, EMBASE, Scopus, and The Web of Science). Results A total of 1932 papers were found by searching, and 132 papers were screened after removing duplicates and reading article titles. Fifteen articles met the requirements to be included in this review. Among those selected, 11 articles reported in vivo research results, and 10 articles showed research results. Conclusion Essential oils extracted from herbs can reduce inflammation by regulating the release of inflammatory cytokines involved in multiple signalling pathways. Herbal essential oils are expected to be developed as anti-inflammatory drugs.
Collapse
|
32
|
Significance of Targeting VEGFR-2 and Cyclin D1 in Luminal-A Breast Cancer. Molecules 2020; 25:molecules25204606. [PMID: 33050377 PMCID: PMC7594023 DOI: 10.3390/molecules25204606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The hormonal luminal-A is the most pre-dominant sub type of breast cancer (BC), and it is associated with a high level of cyclin D1 in Saudi patients. Tamoxifen is the golden therapy for hormonal BC, but resistance of cancer cells to tamoxifen contributes to the recurrence of BC due to many reasons, including high levels of AIB1 and cyclin D1. Overcoming drug resistance could be achieved by exploring alternative targetable therapeutic pathways and new drugs or combinations. The objective of this study was to determine the differentially enriched pathways in 12 samples of Saudi women diagnosed with luminal-A using the PamChip peptide microarray-based kinase activity profiling, and to compare the activity of HAA2020 and dinaciclib with tamoxifen in singles and combinations in the MCF7 luminal-A cell line. Our results of network and pathway analysis of the 12 samples highlighted the importance of VEGFR and CDKs in promoting luminal-A breast cancer. The activation of VEGF signaling via VEGFR-2 leads to activation of PI3K/AKT kinases and an increase of cell survival, and leads to activation of Hsp90, which induces the phosphorylation of FAK1, resulting in cytoskeleton remodeling. PLC-gamma 1 is also activated, leading to FAK-2 and PKC activation. Notably, the G1/S cell cycle phases and phosphorylation processes contribute to the top seven tumorigenesis processes in the 12 samples. Further, the MTT combination of HAA2020 and dinaciclib showed the best combination index (CI), was more clonogenic against MCF7 cells compared to the other combinations, and it also showed the best selectivity index (SI) in normal MRC5 cells. Interestingly, HAA2020 and dinaciclib showed a synergistic apoptotic and G1 cell cycle effect in MCF7 cells, which was supported by their synergistic CDK2, cyclin D1, and PCNA inhibition activities. Additionally, the combination showed VEGFR-2 and Hsp90 inhibition activities in MCF7 cells. The results show the significance of targeting VEGFR-2 and cyclin D1 in Saudi luminal-A breast cancer patients, and the effect of combining HAA2020 and dinaciclib on those targets in the MCF7 model. It also warrants further preclinical and in vivo investigations for the combination of HAA2020 and dinaciclib as a possible future second-line treatment for luminal-A breast cancers.
Collapse
|
33
|
Abdallah ME, El-Readi MZ, Althubiti MA, Almaimani RA, Ismail AM, Idris S, Refaat B, Almalki WH, Babakr AT, Mukhtar MH, Abdalla AN, Idris OF. Tamoxifen and the PI3K Inhibitor: LY294002 Synergistically Induce Apoptosis and Cell Cycle Arrest in Breast Cancer MCF-7 Cells. Molecules 2020; 25:E3355. [PMID: 32722075 PMCID: PMC7436112 DOI: 10.3390/molecules25153355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is considered as one of the most aggressive types of cancer. Acquired therapeutic resistance is the major cause of chemotherapy failure in breast cancer patients. To overcome this resistance and to improve the efficacy of treatment, drug combination is employed as a promising approach for this purpose. The synergistic cytotoxic, apoptosis inducing, and cell cycle effects of the combination of LY294002 (LY), a phosphatidylinositide-3-kinase (PI3K) inhibitor, with the traditional cytotoxic anti-estrogen drug tamoxifen (TAM) in breast cancer cells (MCF-7) were investigated. LY and TAM exhibited potent cytotoxic effect on MCF-7 cells with IC50 values 0.87 µM and 1.02 µM. The combination of non-toxic concentration of LY and TAM showed highly significant synergistic interaction as observed from isobologram (IC50: 0.17 µM, combination index: 0.18, colony formation: 9.01%) compared to untreated control. The percentage of early/late apoptosis significantly increased after treatment of MCF-7 cells with LY and TAM combination: 40.3%/28.3% (p < 0.001), compared to LY single treatment (19.8%/11.4%) and TAM single treatment (32.4%/5.9%). In addition, LY and TAM combination induced the apoptotic genes Caspase-3, Caspase-7, and p53, as well as p21 as cell cycle promotor, and significantly downregulated the anti-apoptotic genes Bcl-2 and survivin. The cell cycle assay revealed that the combination induced apoptosis by increasing the pre-G1: 28.3% compared to 1.6% of control. pAKT and Cyclin D1 protein expressions were significantly more downregulated by the combination treatment compared to the single drug treatment. The results suggested that the synergistic cytotoxic effect of LY and TAM is achieved by the induction of apoptosis and cell cycle arrest through cyclin D1, pAKT, caspases, and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Mohamed E. Abdallah
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammad Ahmad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Amar Mohamed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan; (A.M.I.); (O.F.I.)
| | - Shakir Idris
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 7607, Saudi Arabia; (S.I.); (B.R.)
| | - Bassem Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 7607, Saudi Arabia; (S.I.); (B.R.)
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdullatif Taha Babakr
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Mohammed H. Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.E.A.); (M.A.A.); (R.A.A.); (A.T.B.); (M.H.M.)
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Omer Fadul Idris
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan; (A.M.I.); (O.F.I.)
| |
Collapse
|
34
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
35
|
Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L. J CHEM-NY 2020. [DOI: 10.1155/2020/4521951] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Salvadora persica L. (Salvadoraceae) is an evergreen shrub growing in the Middle East, Africa, and Southern Asia. It is traditionally known as “miswak” and used as toothbrushes and for the treatment of toothache, gum diseases, boils, chest infection, gonorrhea, headache, spleen troubles, stomachache, and ulcers. To the best of our knowledge, this is the first study aimed at conducting phytochemical, cytotoxic, and antimicrobial investigations of the fruits (berries) of S. persica collected from the Jazan region of Saudi Arabia. Analysis of the ethanol extract of S. persica fruits using GC-MS showed the presence of six esters (20.71%), seven alkanes (15.47%), tetracosamethyl-cyclododecasiloxane (9.91%), eicosamethyl-cyclodecasiloxane (7.27%), and 1-monolinoleoylglycerol (5.17%). The predominant constituents were acetyl dasycarpidan-1-methanol (10.47%), tetracosamethyl-cyclododecasiloxane (9.91%), eicosamethyl-cyclodecasiloxane (7.27%), and 1-monolinoleoylglycerol (5.17%). The petroleum ether extract of the fruits contained mainly eicosamethyl-cyclodecasiloxane (23.81%), 1-monolinoleoylglycerol (11.78%), (Z,Z,Z)-9,12,15-octadecatrienoic acid ethyl ester derivative (10.56%), and tetracosamethyl-cyclododecasiloxane (9.91%). The cytotoxic properties of the ethanol extract were investigated by MTT assay against the breast MCF7, ovary A2780, and colon HT29 cells. The fruit extract of S. persica was selective against the ovarian and colon cancer cells compared to normal fibroblast cells (MRC5) as it showed IC50 values 17.50, 8.35, and 5.12, against MCF7, A2780, and HT29 cells, respectively. Interestingly, the fruit extract was also found to possess selective antimicrobial activity for Streptococcus mutans isolates with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.12 and 6.25 mg/mL, respectively. Interestingly, it was found to be ineffective against other Gram-positive as well as Gram-negative microorganisms. This study provides insight into the bioactive components present in the fruits of the plant that can be utilized for its cytotoxic and antimicrobial properties.
Collapse
|
36
|
Synergistic Anti Leukemia Effect of a Novel Hsp90 and a Pan Cyclin Dependent Kinase Inhibitors. Molecules 2020; 25:molecules25092220. [PMID: 32397330 PMCID: PMC7248782 DOI: 10.3390/molecules25092220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is among the top four malignancies in Saudi nationals, and it is the top leukemia subtype worldwide. Resistance to available AML drugs requires the identification of new targets and agents. Hsp90 is one of the emerging important targets in AML, which has a central role in the regulation of apoptosis and cell proliferation through client proteins including the growth factor receptors and cyclin dependent kinases. The objective of the first part of this study is to investigate the putative Hsp90 inhibition activity of three novel previously synthesized quinazolines, which showed HL60 cytotoxicity and VEGFR2 and EGFR kinases inhibition activities. Using surface plasmon resonance, compound 1 (HAA2020) showed better Hsp90 inhibition compared to 17-AAG, and a docking study revealed that it fits nicely into the ATPase site. The objective of the second part is to maximize the anti-leukemic activity of HAA2020, which was combined with each of the eleven standard inhibitors. The best resulting synergistic effect in HL60 cells was with the pan cyclin-dependent kinases (CDK) inhibitor dinaciclib, using an MTT assay. Furthermore, the inhibiting effect of the Hsp90α gene by the combination of HAA2020 and dinaciclib was associated with increased caspase-7 and TNF-α, leading to apoptosis in HL60 cells. In addition, the combination upregulated p27 simultaneously with the inhibition of cyclinD3 and CDK2, leading to abolished HL60 proliferation and survival. The actions of HAA2020 propagated the apoptotic and cell cycle control properties of dinaciclib, showing the importance of co-targeting Hsp90 and CDK, which could lead to the better management of leukemia.
Collapse
|