1
|
Tyagi S, Tyagi N, Singh A, Gautam A, Singh A, Jindal S, Singh RP, Chaturvedi R, Kushwaha HR. Linking COVID-19 and cancer: Underlying mechanism. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167563. [PMID: 39510388 DOI: 10.1016/j.bbadis.2024.167563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), lead to a global health crisis with a spectrum of clinical manifestations. A potentially vulnerable category for SARS-CoV-2 infection was identified in patients with other medical conditions. Intriguingly, parallels exist between COVID-19 and cancer at the pathophysiological level, suggesting a possible connection between them. This review discusses all possible associations between COVID-19 and cancer. Expression of receptors like angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) increases COVID-19 susceptibility. SARS-CoV-2 infection might increase cancer susceptibility and accelerate cancer progression through mechanisms involving cytokine storm, tissue hypoxia, impaired T-cell responses, autophagy, neutrophil activation, and oxidative stress. These mechanisms collectively contribute to immune suppression, hindered apoptosis, and altered cellular signaling in the tumor microenvironment, creating conditions favorable for tumor growth, metastasis, and recurrence. Approved vaccines and their impact on cancer patients along-with new clinical trials are also described.
Collapse
Affiliation(s)
- Sourabh Tyagi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akanksha Gautam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shelja Jindal
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rana P Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rupesh Chaturvedi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Hemant Ritturaj Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Wang K, Wang X, Song L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol Clin Oncol 2024; 21:85. [PMID: 39347476 PMCID: PMC11428085 DOI: 10.3892/mco.2024.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lymphoma, a malignancy of the lymphatic system, which is critical for maintaining the body's immune defenses, has become a focal point in recent research due to its intricate interplay with neutrophils-white blood cells essential for combating infections and inflammation. Unlike prior perceptions associating neutrophils only with tumor support, contemporary studies underscore their intricate and multifaceted involvement in the immune response to lymphoma. Recognizing the nuanced participation of neutrophils in lymphoma is crucial for developing innovative treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Engineering, School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao Wang
- Reproduction Medicine Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Li Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
3
|
Palomino-Secca I, Peña-Tuya M, Quintana-García LA, Guevara Pinares MA, Quiñones-Laveriano DM, Malpartida Palomino R, De La Cruz-Vargas JA. Pan-immune-inflammation value and survival in patients with breast cancer from a Peruvian reference hospital. Sci Rep 2024; 14:17132. [PMID: 39054357 PMCID: PMC11272920 DOI: 10.1038/s41598-024-68304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
The pan-immune-inflammation value (PIV), calculated as (neutrophil × platelet × monocyte)/lymphocyte count, may be useful for estimating survival in breast cancer patients. To determine the prognostic value of PIV for overall survival in breast cancer patients in Lima, Peru. A retrospective cohort study was conducted. 97 breast cancer patients diagnosed between January 2010 and December 2016 had their medical records analyzed. The primary dependent variable was overall survival, and the key independent variable was the PIV, divided into high (≥ 310) and low (< 310) groups. Patient data included demographics, treatment protocols and other clinical variables. Statistical analysis involved Kaplan-Meier survival curves and Cox proportional hazards modeling. Patients with a PIV ≥ 310 had significantly lower 5-year survival functions (p = 0.004). Similar significant differences in survival were observed for clinical stage III-IV (p = 0.015), hemoglobin levels < 12 mg/Dl (p = 0.007), histological grade (p = 0.019), and nuclear grade (p < 0.001); however, molecular classification did not show a significant survival difference (p = 0.371). The adjusted Hazard Ratios showed that PIV ≥ 310 was significantly associated with poor outcome (5.08, IC95%: 1.52-16.92). While clinical stage and hemoglobin levels were associated with survival in the unadjusted model. These factors did not maintain significance after adjustment. PIV is an independent predictor of reduced survival in Peruvian breast cancer patients.
Collapse
Affiliation(s)
- Iris Palomino-Secca
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
| | - Mariella Peña-Tuya
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
| | - Lynn A Quintana-García
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
| | | | | | | | | |
Collapse
|
4
|
Calo CJ, Patil T, Palizzi M, Wheeler N, Hind LE. Collagen concentration regulates neutrophil extravasation and migration in response to infection in an endothelium dependent manner. Front Immunol 2024; 15:1405364. [PMID: 39021568 PMCID: PMC11251947 DOI: 10.3389/fimmu.2024.1405364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction As the body's first line of defense against disease and infection, neutrophils must efficiently navigate to sites of inflammation; however, neutrophil dysregulation contributes to the pathogenesis of numerous diseases that leave people susceptible to infections. Many of these diseases are also associated with changes to the protein composition of the extracellular matrix. While it is known that neutrophils and endothelial cells, which play a key role in neutrophil activation, are sensitive to the mechanical and structural properties of the extracellular matrix, our understanding of how protein composition in the matrix affects the neutrophil response to infection is incomplete. Methods To investigate the effects of extracellular matrix composition on the neutrophil response to infection, we used an infection-on-a-chip microfluidic device that replicates a portion of a blood vessel endothelium surrounded by a model extracellular matrix. Model blood vessels were fabricated by seeding human umbilical vein endothelial cells on 2, 4, or 6 mg/mL type I collagen hydrogels. Primary human neutrophils were loaded into the endothelial lumens and stimulated by adding the bacterial pathogen Pseudomonas aeruginosa to the surrounding matrix. Results Collagen concentration did not affect the cell density or barrier function of the endothelial lumens. Upon infectious challenge, we found greater neutrophil extravasation into the 4 mg/mL collagen gels compared to the 6 mg/mL collagen gels. We further found that extravasated neutrophils had the highest migration speed and distance in 2mg/mL gels and that these values decreased with increasing collagen concentration. However, these phenomena were not observed in the absence of an endothelial lumen. Lastly, no differences in the percent of extravasated neutrophils producing reactive oxygen species were observed across the various collagen concentrations. Discussion Our study suggests that neutrophil extravasation and migration in response to an infectious challenge are regulated by collagen concentration in an endothelial cell-dependent manner. The results demonstrate how the mechanical and structural aspects of the tissue microenvironment affect the neutrophil response to infection. Additionally, these findings underscore the importance of developing and using microphysiological systems for studying the regulatory factors that govern the neutrophil response.
Collapse
Affiliation(s)
| | | | | | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
5
|
Coperchini F, Greco A, Petrosino E, Croce L, Teliti M, Marchesi N, Pascale A, Calì B, Pignatti P, Magri F, Uddin M, Rotondi M. Selective anti-CXCR2 receptor blockade by AZD5069 inhibits CXCL8-mediated pro-tumorigenic activity in human thyroid cancer cells in vitro. J Endocrinol Invest 2024:10.1007/s40618-024-02410-6. [PMID: 38900374 DOI: 10.1007/s40618-024-02410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Thyroid cancer is the most common endocrine malignancy. Current therapies are successful, however some patients progress to therapeutically refractive disease. The immunotherapeutic potential of the CXCL8-chemokine/CXCR2-chemokine-receptor system is currently being explored in numerous human cancers. This study aimed to evaluate if the targeting of CXCR2 by its selective antagonist, AZD5069, could modulate CXCL8-mediated pro-tumorigenic effects in thyroid-cancer (TC) cells in vitro. METHODS Normal human primary thyroid cells (NHT) and TC cell lines TPC-1 (RET/PTC), BCPAP, 8505C and 8305C (BRAFV600e) were treated with AZD5069 (100 pM-10 µM) over a time-course. Viability and proliferation were assessed by WST-1 and crystal violet assays. CXCL8 and CXCR2 mRNA were evaluated by RT-PCR. CXCL8-protein concentrations were measured in cell culture supernatants by ELISA. CXCR2 on cell surface was evaluated by flow-cytometry. Cell-migration was assessed by trans-well-migration chamber-system. RESULTS AZD5069 exerted negligible effects on cell proliferation or viability. AZD5069 significantly reduced CXCR2, (but not CXCL8) mRNAs in all cell types. CXCR2 was reduced on the membrane of some TC cell lines. A significant reduction of the CXCL8 secretion was found in TPC-1 cells (basal-secretion) and NHT (TNFα-induced secretion). AZD5069 significantly reduced basal and CXCL8-induced migration in NHT and different TC cells. CONCLUSIONS Our findings confirm the involvement of the CXCL8/CXCR2-axis in promoting pro-tumorigenic effects in TC cells, further demonstrating its immunotherapeutic significance in human cancer.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - E Petrosino
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - L Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - M Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - N Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - A Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - B Calì
- Department of General and Minimally Invasive Surgery, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia (PV), Italy
| | - P Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - F Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - M Uddin
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Shu Y, Huang H, Gao M, Xu W, Cao X, Jia X, Deng B. Lipid Metabolism-Related Gene Markers Used for Prediction Prognosis, Immune Microenvironment, and Tumor Stage of Pancreatic Cancer. Biochem Genet 2024; 62:931-949. [PMID: 37505298 PMCID: PMC11031448 DOI: 10.1007/s10528-023-10457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Recently, more and more evidence shows that lipid metabolism disorder has been observed in tumor, which impacts tumor cell proliferation, survival, invasion, metastasis, and response to the tumor microenvironment (TME) and tumor treatment. However, hitherto there has not been sufficient research to demonstrate the role of lipid metabolism in pancreatic cancer. This study contrives to get an insight into the relationship between the characteristics of lipid metabolism and pancreatic cancer. We collected samples of patients with pancreatic cancer from the Gene Expression Omnibus (GEO), the Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and the International Cancer Genome Consortium (ICGC) databases. Firstly, we implemented univariate regression analysis to get prognosis-related lipid metabolism genes screened and a construction of protein-protein interaction (PPI) network ensued. Then, contingent on our screening results, we explored the molecular subtypes mediated by lipid metabolism-related genes and the correlated TME cell infiltration. Additionally, we studied the disparately expressed genes among disparate lipid metabolism subtypes and established a scoring model of lipid metabolism-related characteristics using the least absolute shrinkage and selection operator (LASSO) regression analysis. At last, we explored the relationship between the scoring model and disease prognosis, tumor stage, tumor microenvironment, and immunotherapy. Two subtypes, C1 and C2, were identified, and lipid metabolism-related genes were studied. The result indicated that the patients with subtype C2 have a significantly lower survival rate than that of the patients with subtype C1, and we found difference in abundance of different immune-infiltrating cells. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed the association of these differentially expressed genes with functions and pathways related to lipid metabolism. Finally, we established a scoring model of lipid metabolism-related characteristics based on the disparately expressed genes. The results show that our scoring model have a substantial effect on forecasting the prognosis of patients with pancreatic cancer. The lipid metabolism model is an important biomarker of pancreatic cancer. Using the model, the relationship between disease prognosis, molecular subtypes, TME cell infiltration characteristics, and immunotherapy in pancreatic cancer patients could be explored.
Collapse
Affiliation(s)
- Yuan Shu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China
- Departments of Endocrine, The First Hospital of Nanchang, Nanchang, Jiangxi, 330008, People's Republic of China
| | - Haiqiang Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China
- Departments of Endocrine, The First Hospital of Nanchang, Nanchang, Jiangxi, 330008, People's Republic of China
| | - Minjie Gao
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China
- Departments of Endocrine, The First Hospital of Nanchang, Nanchang, Jiangxi, 330008, People's Republic of China
| | - Wenjie Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China
- Departments of Endocrine, The First Hospital of Nanchang, Nanchang, Jiangxi, 330008, People's Republic of China
| | - Xiang Cao
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China
- Departments of Endocrine, The First Hospital of Nanchang, Nanchang, Jiangxi, 330008, People's Republic of China
| | - Xiaoze Jia
- Internet of Things Engineering, College of Wuxi University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Bo Deng
- Departments of Endocrine, The First Hospital of Nanchang, Nanchang, Jiangxi, 330008, People's Republic of China.
| |
Collapse
|
7
|
Liang X, Wang Z, Dai Z, Liu J, Zhang H, Wen J, Zhang N, Zhang J, Luo P, Liu Z, Liu Z, Cheng Q. Oxidative stress is involved in immunosuppression and macrophage regulation in glioblastoma. Clin Immunol 2024; 258:109802. [PMID: 37866784 DOI: 10.1016/j.clim.2023.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Oxidative stress dually affected cancer progression, while its effect on glioblastomas remained unclear. Herein, we clustered the multicenter glioblastoma cohorts based on the oxidative-stress-responsive genes (OSS) expression. We found that cluster 2 with high OSS levels suffered a worse prognosis. Functional analyses and immune-related analyses results exhibited that M2-like pro-tumoral macrophages and neutrophils were enriched in cluster 2, while Natural killer cells' infiltration was decreased. The increased M2-like pro-tumoral macrophages in cluster 2 was confirmed by immunofluorescence. An integrated single-cell analysis validated the malignant features of cluster 2 neoplastic cells and discovered their crosstalk with M2-like pro-tumoral macrophages. Moreover, we observed that SOD3 knockdown might decrease the M2-like pro-tumoral transformation of macrophage in vitro and in vivo. Comprehensively, we revealed oxidative stress' prognostic and immunosuppressive potential in glioblastoma and discovered SOD3's potential role in regulating macrophage M2-like pro-tumoral transformation.
Collapse
Affiliation(s)
- Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Jian Liu
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, PR China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, PR China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
8
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
9
|
Rugambwa TK, Abdihamid O, Zhang X, Peng Y, Cai C, Shen H, Zeng S, Qiu W. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as potential predictive markers of treatment response in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol 2023; 13:1181248. [PMID: 38023176 PMCID: PMC10646751 DOI: 10.3389/fonc.2023.1181248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background The role of platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) as independent prognostic markers in different tumors is well established. However, there is a limited review of the potential of NLR and PLR as predictors of treatment outcomes from immune checkpoint inhibitors (ICIs). Objective To establish a correlation between NLR and PLR and the potential of clinical benefit from ICIs. Methods The literature search was performed for studies that reported the association between NLR, PLR, and treatment outcomes among cancer patients treated with ICIs. The outcomes of interest were objective response rate (ORR), disease control rate (DCR), and progressive disease (PD). ORR was the summation of patients who achieved complete response and partial response. DCR included patients who achieved stable disease. PD was the proportion of patients who progressed, relapsed, or discontinued the treatment. Statistical analysis was performed using the STATA 12.0 package. Heterogeneity was determined by the I2 value. Quality assessment was performed using the Newcastle-Ottawa Scale. Egger's test was used to establish publication bias and sensitivity analysis. Results A total of 40 papers that met the inclusion criteria were included in the systematic review. However, only 17 studies were used in the meta-analysis to determine the correlation between NLR, PLR, and treatment response. We found that treatment with ICIs and monitoring of outcomes and adverse events using PLR and NLR parameters have been studied in different tumors. Our analysis showed that low NLR correlated with higher ORR (OR = 0.62 (95% CI 0.47-0.81, p = 0.001) and higher DCR (OR = 0.23, 95% CI 0.14-0.36, p < 0.001). Higher NLR predicted a higher probability of PD (OR = 3.12, 95% CI 1.44, 6.77, p = 0.004). Similarly, low PLR correlated with higher ORR (OR = 0.69, 95% CI 0.5, 0.95, p = 0.025). Generally, patients with low NLR and PLR were more likely to achieve clinical benefit and better response (p-value < 0.001). Meanwhile, patients with high ratios were more likely to progress (p-value < 0.005), although there was significant heterogeneity among studies. There was no significant publication bias observed. Conclusion The study showed that high NLR and PLR either at baseline or during treatment is associated with poorer treatment outcome. Therefore, these ratios can be utilized in clinical practice with other markers to determine treatment efficacy from immunotherapy.
Collapse
Affiliation(s)
- Tibera K. Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar-es-salaam, Mbeya, Tanzania
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Garissa, Kenya
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Qiu
- Department of Oncology, The First People's Hospital of Loudi, Loudi, Hunan, China
| |
Collapse
|
10
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Sargent AL, Leedberg JA, Burress JE, Dalwadi PS, O'Fallon KS, Gaffney-Stomberg E, Gaines PCW. Quantitatively Assessing the Respiratory Burst in Innate Immune Cells. Methods Mol Biol 2023; 2614:47-70. [PMID: 36587118 DOI: 10.1007/978-1-0716-2914-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The respiratory burst is a rapid cellular consumption of oxygen resulting in abundant production of reactive oxygen species (ROS), most often associated with primary mediators of innate immunity, neutrophils and macrophages. These myeloid cells convert ROS into potent antimicrobial oxidants that efficiently kill pathogens. The respiratory burst also can have destructive consequences, as ROS are well known to support chronic inflammation and aberrant autoimmune responses. Interestingly, ROS perform conflicting roles in the tumor microenvironment; ROS and derived cytotoxic products can destroy cancer cells but also suppress important tumor-fighting functions of T cells or natural killer cells, or yield mutagenized proteins that can promote tumorigenesis or support tumor cell growth. Moreover, high numbers of neutrophils or macrophages in tumors are associated with poor prognosis. Therefore, accurate and quantitative assays to assess the respiratory burst are an important tool for measuring ROS production by neutrophils or cells of the monocyte/macrophage system, each recently identified in the tumor microenvironment. Described are methods to derive mouse or human models of neutrophils or macrophages, which are then used in a detailed assay to quantitatively measure ROS produced by either cell type using luminescence-enhanced reagents and a multi-well platform along with different stimulants that cause rapid ROS production.
Collapse
Affiliation(s)
- Ava L Sargent
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jordan A Leedberg
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jessica E Burress
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Purva S Dalwadi
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Kevin S O'Fallon
- US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | | | - Peter C W Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
12
|
Lähdeniemi IAK, Devlin JR, Nagaraj AS, Talwelkar SS, Bao J, Linnavirta N, Şeref Vujaklija C, Kiss EA, Hemmes A, Verschuren EW. Development of an adenosquamous carcinoma histopathology - selective lung metastasis model. Biol Open 2022; 11:281292. [PMID: 36355420 PMCID: PMC9770245 DOI: 10.1242/bio.059623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Preclinical tumor models with native tissue microenvironments provide essential tools to understand how heterogeneous tumor phenotypes relate to drug response. Here we present syngeneic graft models of aggressive, metastasis-prone histopathology-specific NSCLC tumor types driven by KRAS mutation and loss of LKB1 (KL): adenosquamous carcinoma (ASC) and adenocarcinoma (AC). We show that subcutaneous injection of primary KL; ASC cells results in squamous cell carcinoma (SCC) tumors with high levels of stromal infiltrates, lacking the source heterogeneous histotype. Despite forming subcutaneous tumors, intravenously injected KL;AC cells were unable to form lung tumors. In contrast, intravenous injection of KL;ASC cells leads to their lung re-colonization and lesions recapitulating the mixed AC and SCC histopathology, tumor immune suppressive microenvironment and oncogenic signaling profile of source tumors, demonstrating histopathology-selective phenotypic dominance over genetic drivers. Pan-ERBB inhibition increased survival, while selective ERBB1/EGFR inhibition did not, suggesting a role of the ERBB network crosstalk in resistance to ERBB1/EGFR. This immunocompetent NSCLC lung colonization model hence phenocopies key properties of the metastasis-prone ASC histopathology, and serves as a preclinical model to dissect therapy responses and metastasis-associated processes.
Collapse
Affiliation(s)
- Iris A. K. Lähdeniemi
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jennifer R. Devlin
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ashwini S. Nagaraj
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sarang S. Talwelkar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jie Bao
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nora Linnavirta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ceren Şeref Vujaklija
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina A. Kiss
- University of Helsinki and Wihuri Research Institute, Helsinki, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Emmy W. Verschuren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland,Author for correspondence ()
| |
Collapse
|
13
|
Luo J, Tan J, Zhao J, Wang L, Liu J, Dai X, Sun Y, Kuang Q, Hui J, Chen J, Kuang G, Chen S, Wang Y, Ge C, Xu M. Cynapanoside A exerts protective effects against obesity-induced diabetic nephropathy through ameliorating TRIM31-mediated inflammation, lipid synthesis and fibrosis. Int Immunopharmacol 2022; 113:109395. [PMID: 36375322 DOI: 10.1016/j.intimp.2022.109395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Obesity is a major predictive factor for the diabetic nephropathy (DN). However, the precise mechanism and therapeutic approach still require to be investigated. Cynapanosides A (CPS-A) is a glycoside derived from the Chinese drug Cynanchum paniculatum that has numerous pharmacological activities, but its regulatory function on obesity-induced kidney disease is still obscure. In the present study, we attempted to explore the renoprotective effects of CPS-A on the established DN in high fat diet (HFD)-fed mice, and the underlying mechanisms. We initially found that CPS-A significantly ameliorated the obesity and metabolic syndrome in mice with HFD feeding. Mice with HFD-induced DN exerted renal dysfunctions, indicated by the elevated functional parameters, including up-regulated blood urea nitrogen (BUN), urine albumin and creatinine, which were significantly attenuated by CPS-A in obese mice. Moreover, histological changes including glomerular enlargement, sclerosis index and collagen deposition in kidney of obese mice were detected, while being strongly ameliorated by CPS-A. Additionally, podocyte loss induced by HFD was also markedly mitigated in mice with CPS-A supplementation. HFD feeding also led to lipid deposition and inflammatory response in renal tissues of obese mice, whereas being considerably attenuated after CPS-A consumption. Intriguingly, we found that tripartite motif-containing protein 31 (TRIM31) signaling might be a crucial mechanism for CPS-A to perform its renoprotective functions in mice with DN. The anti-inflammatory, anti-fibrotic and anti-dyslipidemia capacities of CPS-A were confirmed in the mouse podocytes under varying metabolic stresses, which were however almost abolished upon TRIM31 ablation. These data elucidated that TRIM31 expression was largely required for CPS-A to perform its renoprotective effects. Collectively, our study is the first to reveal that CPS-A may be a promising therapeutic strategy for the treatment of obesity-induced DN or associated kidney disease.
Collapse
Affiliation(s)
- Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Junjie Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Longyan Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jin Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Junmin Hui
- Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Jinfeng Chen
- Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaocheng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Yangli Wang
- Chongqing Institute for Food and Drug Control & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 401121, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
14
|
High Neutrophil-to-Lymphocyte Ratio Facilitates Cancer Growth-Currently Marketed Drugs Tadalafil, Isotretinoin, Colchicine, and Omega-3 to Reduce It: The TICO Regimen. Cancers (Basel) 2022; 14:cancers14194965. [PMID: 36230888 PMCID: PMC9564173 DOI: 10.3390/cancers14194965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Several elements that are composed of, or related to, neutrophils, have been shown to inhibit strong immune responses to cancer and promote cancers’ growth. This paper presents the collected data showing these elements and how their coordinated actions as an ensemble facilitate growth in the common cancers. The paper goes on to present a drug regimen, TICO, designed to reduce the cancer growth enhancing effects of the neutrophil related elements. TICO uses four already marketed, readily available generic drugs, repurposed to inhibit neutrophil centered growth facilitation of cancer. Abstract This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.
Collapse
|
15
|
Zheng Z, Xu Y, Shi Y, Shao C. Neutrophils in the tumor microenvironment and their functional modulation by mesenchymal stromal cells. Cell Immunol 2022; 379:104576. [DOI: 10.1016/j.cellimm.2022.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
16
|
Madeddu C, Sanna E, Nemolato S, Mulas O, Oppi S, Scartozzi M, La Nasa G, Maccio A. Pathogenic and Prognostic Roles of Paraneoplastic Leukocytosis in Cervical Cancer: Can Genomic-Based Targeted Therapies Have a Role? A Literature Review and an Emblematic Case Report. Diagnostics (Basel) 2022; 12:diagnostics12081910. [PMID: 36010260 PMCID: PMC9406983 DOI: 10.3390/diagnostics12081910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-associated leukocytosis has been associated with poor prognosis in cervical cancer. Leukemoid reaction (i.e., white blood cell count > 40,000/μL) is defined paraneoplastic (PLR) when it occurs in the presence of a cytokine-secreting tumor (CST) without neoplastic bone marrow infiltration. Cervical cancers displaying PLR represent a peculiar entity characterized by a rapidly progressive behavior typically associated with chemo-radioresistance. The present paper aims to review the literature about the pathogenetic mechanisms of PLR and its prognostic role in cervical cancer. Moreover, it reports the emblematic case of a patient with an advanced cervical cancer associated with PLR that was chemotherapy resistant. The patient underwent a palliative cytoreductive surgery of high complexity, obtaining a temporary regression of PLR. The tumor sample stained positive for G-CSF and IL-6, thus indicating a CST. Notably, the tumor genomic analysis revealed a PI3CKA mutation. Therefore, at the instrumental evidence of a rapidly progressive disease relapse, which was accompanied by reappearance of PLR, we started a targeted treatment with a selective PIK3 inhibitor alpesilib combined with the JAK1-2 inhibitor ruxolitinib. We achieved a relief of symptoms and leukocytosis; however, severe side effects necessitated the treatment suspension. In conclusion, as therapeutic strategies for cancer with PLR are scarcely reported in literature, our study could contribute to expand our understanding of the topic and provide a basis for further research.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Sonia Nemolato
- Department of Pathology, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Olga Mulas
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Sara Oppi
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Mario Scartozzi
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy
| | - Giorgio La Nasa
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
| | - Antonio Maccio
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, 09100 Cagliari, Italy
- Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-675-4228
| |
Collapse
|
17
|
Mafi AR, Ghanbari Motlagh A, Azadeh P. The Impact of COVID-19 on Cancer Recurrence: A Narrative Review. ARCHIVES OF IRANIAN MEDICINE 2022; 25:450-455. [PMID: 36404512 DOI: 10.34172/aim.2022.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) continues to be a worldwide healthcare problem. While our knowledge of the interaction of cancer and its management with COVID-19 mortality is gradually evolving, there are still many unanswered questions regarding the impact of COVID-19 on cancer and its prognosis. Several factors activated during COVID-19 have been implicated in tumorigenesis and the development of metastasis. Inflammation, hypoxia, reduced levels of angiotensin converting enzyme 2, elevated levels of Interleukin 6 and some other cytokines that are hallmarks of COVID-19 are capable of inducing tumor relapse and metastasis. On the other hand, there are reports that COVID-19 has been associated with cancer cure. Understanding the interaction between COVID-19 and tumor cells is essential for evaluating the potential long-term risks of COVID-19 in cancer patients, and for scheduling necessary preventive and therapeutic interventions. In this review, we briefly overview the potential impacts that COVID-19 might have on tumorigenesis and cancer relapse, as well as the role that COVID-19 might play in cancer remission and cure.
Collapse
Affiliation(s)
- Ahmad R Mafi
- Radiation Oncology Department, Imam Hossein Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanbari Motlagh
- Radiation Oncology Department, Imam Hossein Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Azadeh
- Radiation Oncology Department, Imam Hossein Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:231455. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
|
19
|
Han ZJ, Li YB, Yang LX, Cheng HJ, Liu X, Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010137. [PMID: 35011369 PMCID: PMC8746913 DOI: 10.3390/molecules27010137] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive cells to the tumor, increasing tumor angiogenesis, and promoting epithelial-to-mesenchymal transition (EMT). All of these effects of CXCL8 on individual cell types can result in cascading alterations to the TME. The changes in the TME components such as the cancer-associated fibroblasts (CAFs), the immune cells, the extracellular matrix, the blood vessels, or the lymphatic vessels further influence tumor progression and therapeutic resistance. Emerging roles of the microbiome in tumorigenesis or tumor progression revealed the intricate interactions between inflammatory response, dysbiosis, metabolites, CXCL8, immune cells, and the TME. Studies have shown that CXCL8 directly contributes to TME remodeling, cancer plasticity, and the development of resistance to both chemotherapy and immunotherapy. Further, clinical data demonstrate that CXCL8 could be an easily measurable prognostic biomarker in patients receiving immune checkpoint inhibitors. The blockade of the CXCL8-CXCR1/2 axis alone or in combination with other immunotherapy will be a promising strategy to improve antitumor efficacy. Herein, we review recent advances focusing on identifying the mechanisms between TME components and the CXCL8-CXCR1/2 axis for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| | - Yang-Bing Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Hui-Juan Cheng
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Xin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| |
Collapse
|
20
|
Han Z, Hu Z, Zhao Q, Xue W, Duan G. The advanced lung cancer inflammation index predicts outcomes of patients with non-small cell lung cancer following video-assisted thoracic surgery. J Int Med Res 2021; 49:3000605211062442. [PMID: 34871517 PMCID: PMC8652187 DOI: 10.1177/03000605211062442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The advanced lung cancer inflammation index (ALI) predicts overall survival (OS) in patients with advanced lung cancer. However, few studies have tested ALI's prognostic effect in patients with non-small cell lung cancer (NSCLC) following video-assisted thoracic surgery (VATS), especially patients at stage III. This study investigated the relationship between ALI and outcomes of patients with NSCLC following VATS. METHODS We retrospectively examined 339 patients with NSCLC who underwent VATS at Hebei General Hospital, China. Preoperative clinical and laboratory parameters were collected and analyzed. Optimal cutoff values of potential prognostic factors, including ALI, were determined. Kaplan-Meier and Cox regression analyses were used to determine each factor's prognostic value. RESULTS The median OS was 31 months. The optimal cutoff value for ALI was 41.20. Patients with high ALI (≥41.20) displayed increased OS (33.87 vs. 30.24 months), higher survival rates, and milder clinical characteristics. Univariate and multivariate analyses showed a significant correlation between ALI and the prognosis of patients with NSCLC, including those at stage IIIA, who underwent VATS. CONCLUSIONS Low ALI correlated with poor outcomes in patients with NSCLC following VATS. Preoperative ALI might be a potential prognostic biomarker for patients with NSCLC following VATS, including patients at stage IIIA.
Collapse
Affiliation(s)
- Zhaohui Han
- Department of Thoracic Surgery, 117872Hebei General Hospital, Hebei General Hospital, Shijiazhuang, China.,Graduate School, 261761Hebei North University, Hebei North University, Zhangjiakou, China
| | - Zhonghui Hu
- Department of Thoracic Surgery, 117872Hebei General Hospital, Hebei General Hospital, Shijiazhuang, China
| | - Qingtao Zhao
- Department of Thoracic Surgery, 117872Hebei General Hospital, Hebei General Hospital, Shijiazhuang, China
| | - Wenfei Xue
- Department of Thoracic Surgery, 117872Hebei General Hospital, Hebei General Hospital, Shijiazhuang, China
| | - Guochen Duan
- Department of Thoracic Surgery, 117872Hebei General Hospital, Hebei General Hospital, Shijiazhuang, China.,Department of Thoracic Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
21
|
Zhang Y, Li L, Ye Z, Zhang L, Yao N, Gai L. Identification of m6A methyltransferase-related genes predicts prognosis and immune infiltrates in head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1554. [PMID: 34790760 PMCID: PMC8576668 DOI: 10.21037/atm-21-4712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) accounts for 90% of head and neck malignant tumors. As the early symptoms of HNSCC are not obvious, and it is prone to recurrence and metastasis, making the overall survival (OS) rate of patients very low. Existing studies have shown m6A methylation plays a crucial role in various cancers, but it is rarely studied in HNSCC. This study aimed to explore the expression of m6A methylation-related genes in HNSCC and its correlation with prognosis, and to explore its relationship with immune infiltration. Methods The gene expression data of HNSCC patient tumor samples (tumor =510) and adjacent normal tissue samples (normal =50) were extracted from The Cancer Genome Atlas (TCGA) database, and the expression characteristics of m6A regulatory factors were described. Kaplan-Meier survival analysis was used to analyze the relationship between m6A regulatory factors and OS and disease-specific survival (DSS). Least absolute shrinkage and selection operator (LASSO) regression was used to construct the m6A regulatory factor-HNSCC risk prediction model. In addition, the relationship between m6A methylation-related genes and tumor immune infiltration were discussed. Results The differential expression of 20 genes were identified by TCGA, and 18 genes (IGF2BP2, IGF2BP1, IGF2BP3, VIRMA, YTHDF1, YTHDF2, YTHDF3, ZC3H13, METTL14, ALKBH5, METTL3, RBMX, WTAP, YTHDC1, FTO, HNRNPC, HNRNPA2B1, and RBM15) were overexpressed in HNSCC. The survival rate of different gene expression levels was different. The high expression of YTHDC1 and YTHDC2 indicated better OS. Furthermore, for DSS, increased expression of YTHDC2 was also correlated with better clinical outcomes (P<0.05). At the same time, we drew a 3-gene risk score model in the TCGA-HNSCC cohort, and the survival curve showed compared with low-risk patients, high-risk patients had significantly worse OS (P<0.05). Gene enrichment analysis showed EPITHELIAL_MESENCHYMAL_TRANSITIO, MTORC1_SIGNALING, MYC_TARGETS_V1, MYC_TARGETS_V2, MYOGENESIS pathways, high TP53 mutations, and suppressive immunity were related to the high-risk group. The low-risk group was related to ALLOGRAFT_REJECTION, COMPLEMENT, IL6_JAK_STAT3_SIGNALING, INTERFERON_ALPHA_RESPONSE, INTERFERON_GAMMA_RESPONSE pathways, low TP53 mutations, and active immunity. Conclusions The m6A methyltransferase-related genes can predict the prognosis of HNSCC and are related to immune infiltration.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Li Li
- Department of Oncology, Huaian Hospital, Huaian, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhihui Ye
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Oncology, Affiliated Rich Hospital of Nantong University, Nantong, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ling Gai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Role of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Predicting the Response to First Line Chemotherapy in Colorectal Cancer Patients with Synchronous Liver Metastases: A Retrospective Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: There is some evidence that showed that the high level of neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) is associated with poor survival in several malignancies including colorectal cancer (CRC); however data on the significance of these markers to predict response to systemic therapy is limited. Objectives: The aim of this study was to assess the role of pretreatment NLR and PLR in predicting response to first line chemotherapy in CRC patients with synchronous metastases. Methods: Clinical records of 81 CRC patients with synchronous liver metastases, who underwent upfront chemotherapy, were included in this retrospective study. The optimal cut of value for NLR and PLR was determined according to receiver operating characteristic (ROC) curve analysis. Correlation between response to chemotherapy and NLR or PLR was evaluated. Results: The optimal cut off for NLR and PLR was 2.666 and 182.589, respectively. Patients with low NLR had significantly higher objective response (complete response + partial response) compared to patients with high NLR (54.3% versus 13%, respectively, P: < 0.001). In patients with low PLR, 41.2% had objective response compared to 13.3% of patients with high PLR (P = 0.012). The univariate analysis determined that, both NLR and PLR are significantly associated with better objective response, but in multivariate analysis, only NLR was identified as an independent predictive marker of response [odds ratio = 4.55; P = 0.013]. Conclusions: Results of this study indicate that, measuring NLR might provide us an inexpensive method to predict response to first-line chemotherapy in CRC patients with synchronous liver metastases.
Collapse
|
23
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
24
|
Anderson R, Blidner AG, Rapoport BL. Frontiers in Pharmacology: Review Manuscript Targeting of the Neutrophil as an Adjunctive Strategy in Non-Small Cell Lung Cancer. Front Pharmacol 2021; 12:676399. [PMID: 34168563 PMCID: PMC8218630 DOI: 10.3389/fphar.2021.676399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Lung cancer remains the leading cause of cancer mortality in the United States, with non-small cell lung cancer (NSCLC) accounting for around 85% of cases. Of particular concern is the poor responsiveness of this malignancy to therapy, resulting in a very low 5-year survival rate (17.4%) and a prominent tendency to progress to metastatic disease. A number of very recent studies, both pre-clinical and clinical, have implicated the neutrophil in both the pathogenesis and unsatisfactory response to therapy of NSCLC. In this context, movement of neutrophils into the tumor microenvironment (TME) is a common feature of NSCLC. Indeed neutrophils are the dominant type of immune cell in the NSCLC TME, creating a highly immunosuppressive milieu that is not only conducive to tumor growth and spread, but also represents a significant obstacle to the success of anti-tumor therapy, especially novel immunotherapies. The clinically relevant adverse impact of a neutrophil predominance both systemically and in the TME of patients with NSCLC is underscored by the negative prognostic value of both a persistent neutrophilia and, in particular, a high (≥5) neutrophil:lymphocyte ratio. On a more positive note, however, recognition of the involvement of the neutrophil in both the pathophysiology of NSCLC and treatment failure has enabled identification of neutrophil-targeted strategies that have the potential to serve as adjuncts to standard anti-cancer therapies, including immunotherapy. These strategies together with a consideration of the immunosuppressive, pro-tumorigenic properties of the neutrophil represent the major thrusts of this review.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ada Gabriela Blidner
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine CONICET, Buenos Aires, Argentina
| | - Bernardo Leon Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| |
Collapse
|
25
|
Branchi V, Jürgensen B, Esser L, Gonzalez-Carmona M, Weismüller TJ, Strassburg CP, Henn J, Semaan A, Lingohr P, Manekeller S, Kristiansen G, Kalff JC, Toma MI, Matthaei H. Tumor Infiltrating Neutrophils Are Frequently Found in Adenocarcinomas of the Biliary Tract and Their Precursor Lesions with Possible Impact on Prognosis. J Pers Med 2021; 11:jpm11030233. [PMID: 33806804 PMCID: PMC8004909 DOI: 10.3390/jpm11030233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Biliary tract cancer (BTC) is characterized by an intense stromal reaction and a complex landscape of infiltrating immune cells. Evidence is emerging that tumor-infiltrating neutrophils (TINs) have an impact on carcinogenesis and tumor progression. TINs have also been associated with outcomes in various solid malignant tumors but their possible clinical role in BTC is largely unknown. Tissue samples from patients with sporadic BTC ("spBTC" cohort, N = 53) and BTC in association with primary sclerosing cholangitis ("PSC-BTC" cohort, N = 7) were collected. Furthermore, tissue samples from 27 patients with PSC who underwent liver transplantation ("PSC-LTX" cohort) were investigated. All specimens were assessed for TIN density in invasive and precancerous lesions (biliary intraepithelial neoplasia, BilIN). Most spBTC showed low TIN density (LD, 61%). High TIN density (HD) was detected in 16% of the tumors, whereas 23% were classified as intermediate density (ID); the majority of both HD and ID groups were in T1-T2 tumors (83% and 100%, p = 0.012). TIN density in BilIN lesions did not significantly differ among the three groups. The HD group had a mean overall survival (OS) of 53.5 months, whereas the mean OS in the LD and ID groups was significantly shorter (LD 29.5 months vs. ID 24.6 months, log-rank p < 0.05). The results of this study underline the possible prognostic relevance of TINs in BTC and stress the complexity of the immune cell landscape in BTC. The prognostic relevance of TINs suggests a key regulator role in inflammation and immune landscape in BTC.
Collapse
Affiliation(s)
- Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Benedict Jürgensen
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Laura Esser
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (L.E.); (G.K.); (M.I.T.)
| | - Maria Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (M.G.-C.); (T.J.W.); (C.P.S.)
| | - Tobias J. Weismüller
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (M.G.-C.); (T.J.W.); (C.P.S.)
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (M.G.-C.); (T.J.W.); (C.P.S.)
| | - Jonas Henn
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Steffen Manekeller
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (L.E.); (G.K.); (M.I.T.)
| | - Jörg C. Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Marieta I. Toma
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (L.E.); (G.K.); (M.I.T.)
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
- Correspondence:
| |
Collapse
|
26
|
Ng MSF, Tan L, Wang Q, Mackay CR, Ng LG. Neutrophils in cancer-unresolved questions. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1829-1841. [PMID: 33661490 DOI: 10.1007/s11427-020-1853-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
There is growing recognition that neutrophils play an important role in cancer initiation, progression and metastasis. Although they are typically characterized as short-lived effector cells, neutrophils have been shown to acquire immunosuppressive and pro-tumorigenic functions that promote tumor progression and escape. As such, inhibition of their function or depletion of neutrophils are being explored as potential cancer therapies. However, growing evidence of neutrophil diversification in cancer and their potential anti-tumor roles raise many unresolved questions. Here, we review recent advances that address the definition, origin and function of neutrophils in cancer, and elaborate on obstacles that make the study of neutrophils challenging. We envision that this review will provide the groundwork for focused design of therapeutics that will specifically target "tumorreprogrammed" neutrophils while sparing normal neutrophils to improve patient outcomes.
Collapse
Affiliation(s)
- Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore.
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore. .,State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
27
|
Dai X, Jiang W, Ma L, Sun J, Yan X, Qian J, Wang Y, Shi Y, Ni S, Yao N. A metabolism-related gene signature for predicting the prognosis and therapeutic responses in patients with hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:500. [PMID: 33850897 PMCID: PMC8039687 DOI: 10.21037/atm-21-927] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) often has an insidious onset and rapid progression. Often, when the disease is first diagnosed, the opportune time for surgical intervention has already lapsed. In addition, the effects of systemic treatment is relatively unsatisfactory. Metabolic reprogramming is one of the hallmarks of cancer. This study aimed to identify a set of genes related to metabolism to construct a predictive model for the prognosis of HCC. Methods The transcriptomic and clinical data of 352 HCC patients were obtained from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset and divided into a training cohort (n=212) and a testing cohort (n=140) at a ratio of 6:4. Univariate Cox regression analysis and the LASSO Cox regression model were used to identify 5 genes to establish a risk score for predicting the prognosis of HCC patients. Subsequently, the molecular characteristics of the model were assessed and the ability of the model to predict the tumor immune microenvironment and patient response to immunotherapy and chemotherapy was also examined. Results The risk score model was constructed based on the five genes, methyltransferase-like protein 6 (METTL6), RNA polymerase III subunit G (POLR3G), phosphoribosyl pyrophosphate amidotransferase (PPAT), SET Domain Bifurcated 2 (SETDB2), and suppressor of variegation 3-9 homolog 2 (SUV39H2). The Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) curves demonstrated that high-risk patients had a poorer overall survival (OS) compared to low-risk patients. he nomogram score had a better predictive ability compared to the common factors. Our results finally showed that high-risk cases were associated with cell proliferation and cell cycle related gene sets, high tumor protein P53 (TP53) mutation rate, suppressive immunity and increased sensitivity to cisplatin, gemcitabine and docetaxel. Meanwhile, low-risk cases were associated with cell cycle and immune response related pathways, low TP53 mutation rate, active immunity and more benefit from immunotherapy. Conclusions This study provided novel insights into the role of metabolism-related genes in HCC, and demonstrated that our model could be a promising prognostic biomarker for distinguishing the molecular and immune characteristics and inferring the potential response to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Jiang
- Department of Neurology, the Second People's Hospital of Wuxi, Wuxi, China
| | - Liang Ma
- Department of Chemotherapy, First People's Hospital of Yancheng, Yancheng, China
| | - Jie Sun
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shujie Ni
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Blanter M, Gouwy M, Struyf S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. J Inflamm Res 2021; 14:141-162. [PMID: 33505167 PMCID: PMC7829132 DOI: 10.2147/jir.s284941] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are the most abundant immune cell type in the blood and constitute the first line of defense against invading pathogens. Despite their important role in many diseases, they are challenging to study due to their short life span and the inability to cryopreserve or expand them in vitro. Thus, research into neutrophils has to rely on cells freshly isolated from peripheral blood of human donors, introducing donor-dependent variation in the experimental data. To counteract these problems, researchers tried to develop adequate cell models, such as cell lines. For those functional studies that cannot rely on cell models, a standardization of protocols regarding neutrophil purification and culturing could be a solution. In this review, we provide an overview of the most commonly used models for neutrophil function (HL-60, PLB-985, NB4, Kasumi-1 and induced pluripotent stem cells). In addition, we describe the effects of glucose concentration, pH, oxygen tension and temperature on neutrophil function.
Collapse
Affiliation(s)
- Marfa Blanter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
29
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
30
|
Francescangeli F, De Angelis ML, Baiocchi M, Rossi R, Biffoni M, Zeuner A. COVID-19-Induced Modifications in the Tumor Microenvironment: Do They Affect Cancer Reawakening and Metastatic Relapse? Front Oncol 2020; 10:592891. [PMID: 33194755 PMCID: PMC7649335 DOI: 10.3389/fonc.2020.592891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) causes an uncontrolled activation of the innate immune response, resulting in acute respiratory distress syndrome and systemic inflammation. The effects of COVID-19-induced inflammation on cancer cells and their microenvironment are yet to be elucidated. Here, we formulate the hypothesis that COVID-19-associated inflammation may generate a microenvironment favorable to tumor cell proliferation and particularly to the reawakening of dormant cancer cells (DCCs). DCCs often survive treatment of primary tumors and populate premetastatic niches in the lungs and other organs, retaining the potential for metastatic outgrowth. DCCs reawakening may be promoted by several events associated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including activation of neutrophils and monocytes/macrophages, lymphopenia and an uncontrolled production of pro-inflammatory cytokines. Among pro-inflammatory factors produced during COVID-19, neutrophil extracellular traps (NETs) released by activated neutrophils have been specifically shown to activate premetastatic cancer cells disseminated in the lungs, suggesting they may be involved in DCCs reawakening in COVID-19 patients. If confirmed by further studies, the links between COVID-19, DCCs reactivation and tumor relapse may support the use of specific anti-inflammatory and anti-metastatic therapies in patients with COVID-19 and an active or previous cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
31
|
Madariaga A, Garg S, Bruce JP, Thiryayi S, Mandilaras V, Rath P, Oza AM, Dhani NC, Cescon DW, Lee YC, Chen E, Wang L, Clarke B, Lheureux S. Biomarkers of outcome to weekly paclitaxel in epithelial ovarian cancer. Gynecol Oncol 2020; 159:539-545. [PMID: 32912664 DOI: 10.1016/j.ygyno.2020.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We sought to evaluate the role of intrinsic chromosomal aberrations in determining favorable outcome to weekly paclitaxel (WP) in patients with epithelial ovarian cancer (EOC). METHODS We evaluated the common genomic aberrations of two patients with EOC and exceptional WP response in the GENIUS study (NCT03740503). We then searched for potential markers of unusual outcomes to WP in a validation cohort. We performed shallow whole genome sequencing (sWGS) in the tumor tissue of women with EOC considered as short-responders (SR; progression with ≤3 cycles) and long-responders (LR; response at ≥8 cycles) to WP monotherapy. RESULTS We identified two women with exceptional response to WP, lasting over four years, who shared chromosome 8 gain as a common genomic aberration. In order to validate our findings, we reviewed 188 patients with EOC treated with WP and selected 61 women (39 SR, 22 LR) with unusual responses. By sWGS, there was no differential alterations in the copy number changes in chromosome 8, or in genes related to angiogenesis, tubulin superfamily, cell-cycle, apoptosis and paclitaxel metabolism or transportation pathways. Amongst the LR group, we identified six exceptionally long responders (ExLR), with responses lasting over a year. In an exploratory analysis, there was increased amplification of angiogenesis (VEGFB, MMP9), tubulin superfamily (TSC2) and apoptosis related genes (BCL2L1, BAD) in ExLR compared to SR. We identified one patient with a complete response to WP for over 7 years. Molecular profiling identified unique amplifications in interleukin related genes (CXCR1, CXCR2, IL1A, IL1B), not detected in other patients. CONCLUSION Intrinsic tumor pathways may impact outcome with weekly paclitaxel monotherapy and further investigations are required.
Collapse
Affiliation(s)
- Ainhoa Madariaga
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Swati Garg
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sakinah Thiryayi
- University of Toronto, Toronto, ON, Canada; Division of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Victoria Mandilaras
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Neesha C Dhani
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - David W Cescon
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Yeh Chen Lee
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Eric Chen
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Lisa Wang
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Blaise Clarke
- University of Toronto, Toronto, ON, Canada; Division of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Zbakh H, Salhi G, Bochkov V, Ciudad CJ, Noé V, Hassoun M, Riadi H. Insights on the anti-inflammatory and antitumor activities of extracts from the marine green alga Codium decorticatum. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Chen JX, Cheng CS, Chen J, Lv LL, Chen ZJ, Chen C, Zheng L. Cynanchum paniculatum and Its Major Active Constituents for Inflammatory-Related Diseases: A Review of Traditional Use, Multiple Pathway Modulations, and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7259686. [PMID: 32774428 PMCID: PMC7396087 DOI: 10.1155/2020/7259686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Cynanchum paniculatum Radix, known as Xuchangqing in Chinese, is commonly prescribed in Chinese Medicine (CM) for the treatment of various inflammatory diseases. The anti-inflammatory property of Cynanchum paniculatum can be traced from its wind-damp removing, collaterals' obstruction relieving, and toxins counteracting effects as folk medicine in CM. This paper systematically reviewed the research advancement of the pharmacological effects of Cynanchum paniculatum among a variety of human diseases, including diseases of the respiratory, circulatory, digestive, urogenital, hematopoietic, endocrine and metabolomic, neurological, skeletal, and rheumatological systems and malignant diseases. This review aims to link the long history of clinical applications of Cynanchum paniculatum in CM with recent biomedical investigations. The major bioactive chemical compositions of Cynanchum paniculatum and their associated action mechanism unveiled by biomedical investigations as well as the present clinical applications and future perspectives are discussed. The major focuses of this review are on the diverse mechanisms of Cynanchum paniculatum and the role of its active components in inflammatory diseases.
Collapse
Affiliation(s)
- Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Chen
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Zi-Jie Chen
- Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, China
| | - Chuan Chen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
34
|
Rapoport BL, Theron AJ, Vorobiof DA, Langenhoven L, Hall JM, Van Eeden RI, Smit T, Chan SW, Botha MC, Raats JI, Necker MD, Anderson R. Prognostic significance of the neutrophil/lymphocyte ratio in patients undergoing treatment with nivolumab for recurrent non-small-cell lung cancer. Lung Cancer Manag 2020; 9:LMT37. [PMID: 32774468 PMCID: PMC7399612 DOI: 10.2217/lmt-2020-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim We investigated the prognostic potential of pretherapy measurement of the neutrophil/lymphocyte ratio (NLR) in patients (n = 56) with non-small-cell lung cancer deemed suitable for treatment with nivolumab. Materials & methods This was a multicenter, noninterventional, retrospective data analysis, involving five oncology centers. Results Patients with prenivolumab NLR values of <5 and ≥5 had respective median overall survival (OS) values of 14.5 and 7.02 months (p = 0.0026). Patients with ≤2 and >2 metastatic sites had median OS values of 11.4 and 6.1 months, respectively (p = 0.0174). A Cox multiple regression model revealed baseline NLR ≥5 as the only variable significantly associated with decreased OS (p < 0.0447). Conclusion Pretreatment elevated NLR values are associated with poor outcomes in patients with recurrent metastatic non-small-cell lung cancer treated with nivolumab.
Collapse
Affiliation(s)
- Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 667, Pretoria 0001, South Africa.,The Medical Oncology Centre of Rosebank, 129 Oxford Rd, Corner Northwold Rd, Saxonwold, Johannesburg 2196, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 667, Pretoria 0001, South Africa
| | | | - Lizanne Langenhoven
- Panorama Centre for Surgical Oncology, Intercare Building, Rothschild Boulevard, Panorama, Cape Town 7506, South Africa
| | - Jacqueline M Hall
- Oncology Unit, Vincent Pallotti Hospital, Pinelands, Cape Town 7405, South Africa
| | - Ronwyn I Van Eeden
- The Medical Oncology Centre of Rosebank, 129 Oxford Rd, Corner Northwold Rd, Saxonwold, Johannesburg 2196, South Africa
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, 129 Oxford Rd, Corner Northwold Rd, Saxonwold, Johannesburg 2196, South Africa
| | - Sze-Wai Chan
- Medical Oncology, Sandton Oncology Centre, 200 Rivonia Road, Morningside 2057, South Africa
| | - Michael C Botha
- GVI Oncology-Outeniqua Oncology, 3 Gloucester Lane, George 6529, South Africa
| | - Johann I Raats
- Oncology Unit, Vincent Pallotti Hospital, Pinelands, Cape Town 7405, South Africa.,Cancercare Rondebosch, Rondebosch Medical Centre; Klipfontein Road, Rondebosch, Cape Town 7700, South Africa
| | - Margriet De Necker
- TCD Outcomes Research, 121 Amkor Rd, Lyttleton, Centurion 0157, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 667, Pretoria 0001, South Africa
| |
Collapse
|
35
|
Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020; 9:E1664. [PMID: 32664328 PMCID: PMC7407638 DOI: 10.3390/cells9071664] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Liezl Heyman
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Yastira Ramdas
- The Breast Care Centre, Netcare Milpark, 9 Guild Road, Parktown, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
36
|
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020; 78:1019-1033. [PMID: 32559423 PMCID: PMC7339967 DOI: 10.1016/j.molcel.2020.05.034] [Citation(s) in RCA: 496] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The growing field of immune metabolism has revealed promising indications for metabolic targets to modulate anti-cancer immunity. Combination therapies involving metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy, radiation, and/or diet now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment (TME). Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. These changes also reveal opportunities to reshape the TME by targeting metabolic pathways to favor immunity. Here we explore current strategies that shift immune cell metabolism to pro-inflammatory states in the TME and highlight a need to better replicate physiologic conditions to select targets, clarify mechanisms, and optimize metabolic inhibitors. Unifying our understanding of these pathways and interactions within the heterogenous TME will be instrumental to advance this promising field and enhance immunotherapy.
Collapse
Affiliation(s)
- Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|