1
|
Salehzadeh J, Nassiri M, Dehghani Z. Catalyst-free synthesis, antimicrobial evaluation, DFT, and molecular docking studies of novel spiro benzo[d]pyrrolo[2,1-b]thiazole-1,2′-indene hybrids. J Mol Struct 2025; 1321:139741. [DOI: 10.1016/j.molstruc.2024.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
I A, Purawarga Matada GS, Pal R, Ghara A, Aishwarya NVSS, B K, Hosamani KR, B V M, E H. Benzothiazole a privileged scaffold for Cutting-Edges anticancer agents: Exploring drug design, structure-activity relationship, and docking studies. Eur J Med Chem 2024; 279:116831. [PMID: 39255643 DOI: 10.1016/j.ejmech.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Cancer is a major societal, public health, and economic burden in the 21st century, with 9.7 million deaths in 2022 (9.96 million in 2020) and 20 million new cancer cases (19.6 million in 2020). Considering the increasing number of cancer cases and deaths, heterocyclic compounds always paved the gold mine for the development of potential anticancer drugs as these compounds have unique flexibility and dynamic cores. Benzothiazoles and their derivatives have potential anticancer properties, making them a desirable scaffold among different heterocycles. Title structures are a class of chemicals that may bind to various receptors with high affinity, particularly those engaged in oncogenic processes. The use of these compounds allows medicinal chemists to rapidly produce anticancer treatments across a large range of targets over an extended length of time. The current study presents a thorough success story of benzothiazole derivatives as anticancer agents. It discusses the current state of cancer, the profile of benzothiazole-based derivatives synthetic pathways, and its relevance as an anticancer agent on several oncogenic pathways. The structure-activity relationship was also added to offer insight into the connection of biological data with structure and the rational design of more active drugs.
Collapse
Affiliation(s)
- Aayishamma I
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Abhishek Ghara
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | | | - Kumaraswamy B
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Ketan R Hosamani
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Manjushree B V
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Haripriya E
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
3
|
Huang Y, You C, Hong B, Han X, Weng Z. One-Pot Assembly of 2-Trifluoromethyl Benzothiazole and Benzoselenazole via Copper-Mediated Three-Component Cascade Reaction. Chem Asian J 2024; 19:e202400331. [PMID: 38576218 DOI: 10.1002/asia.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
A domino one-pot synthesis of 2-(trifluoromethyl) benzothiazole via copper-mediated three-component cascade reaction starting from the easily accessible starting materials such as o-iodoanilines, methyl trifluoropyruvate, and elemental sulfur is reported. The present strategy displayed a comprehensive substrate scope and good functional group tolerance and enabled access to a variety of substituted 2-(trifluoromethyl) benzothiazoles. A 2-(trifluoromethyl) benzoselenazole has also been synthesized utilizing this reaction methodology.
Collapse
Affiliation(s)
- Yangjie Huang
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Chenhui You
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Biqiong Hong
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Xiaoyan Han
- Testing and Analysis Center, Soochow University, Suzhou, 215123, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Bland GD, Abrahamsson D, Wang M, Zlatnik MG, Morello-Frosch R, Park JS, Sirota M, Woodruff TJ. Exploring applications of non-targeted analysis in the characterization of the prenatal exposome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169458. [PMID: 38142008 PMCID: PMC10947484 DOI: 10.1016/j.scitotenv.2023.169458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Capturing the breadth of chemical exposures in utero is critical in understanding their long-term health effects for mother and child. We explored methodological adaptations in a Non-Targeted Analysis (NTA) pipeline and evaluated the effects on chemical annotation and discovery for maternal and infant exposure. We focus on lesser-known/underreported chemicals in maternal and umbilical cord serum analyzed with liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). The samples were collected from a demographically diverse cohort of 296 maternal-cord pairs (n = 592) recruited in San Francisco Bay area. We developed and evaluated two data processing pipelines, primarily differing by detection frequency cut-off, to extract chemical features from non-targeted analysis (NTA). We annotated the detected chemical features by matching with EPA CompTox Chemicals Dashboard (n = 860,000 chemicals) and Human Metabolome Database (n = 3140 chemicals) and applied a Kendrick Mass Defect filter to detect homologous series. We collected fragmentation spectra (MS/MS) on a subset of serum samples and matched to an experimental MS/MS database within the MS-Dial website and other experimental MS/MS spectra collected from standards in our lab. We annotated ~72 % of the features (total features = 32,197, levels 1-4). We confirmed 22 compounds with analytical standards, tentatively identified 88 compounds with MS/MS spectra, and annotated 4862 exogenous chemicals with an in-house developed annotation algorithm. We detected 36 chemicals that appear to not have been previously reported in human blood and 9 chemicals that were reported in less than five studies. Our findings underline the importance of NTA in the discovery of lesser-known/unreported chemicals important to characterize human exposures.
Collapse
Affiliation(s)
- Garret D Bland
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA, United States
| | - Dimitri Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA, United States.
| | - Miaomiao Wang
- Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, United States
| | - Marya G Zlatnik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA, United States
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - June-Soo Park
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA, United States; Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, Department of Pediatrics, University of California San Francisco, San Francisco 94158, CA, United States
| | - Tracey J Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
5
|
Kumar D, Kuijken PF, van de Poel T, Neumann K, Galimberti DR. Revealing the Unique Role of Water in the Formation of Benzothiazoles: an Experimental and Computational Study. Chemistry 2024; 30:e202302596. [PMID: 37812133 DOI: 10.1002/chem.202302596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/10/2023]
Abstract
We present here a joint experimental and computational study on the formation of benzothiazoles. Our investigation reveals a green protocol for accessing benzothiazoles from acyl chlorides using either water alongside a reducing agent as the reaction medium or in combination with stoichiometric amounts of a weak acid, instead of the harsh conditions and catalysts previously reported. Specifically, we show that a protic solvent, particularly water, enables the formation of 2-substituted benzothiazoles from N-acyl 1,2-aminothiophenols already at room temperature, without the need for strong acids or metal catalysts. DFT Molecular Dynamics simulations coupled with advanced enhanced sampling techniques provide a clear understanding of the catalytic role of water. We demonstrate how bulk water - due to its extended network of hydrogen bonds and an efficient Grotthuss mechanism - provides a reaction path that strongly reduces the reaction barriers compared to aprotic environments, namely more than 80 kJ/mol for the first reaction step and 250 kJ/mol for the second. Finally, we discuss the influence of different aliphatic and aromatic substituents with varying electronic properties on chemical reactivity. Besides providing in-depth mechanistic insights, we believe that our findings pave the way for a greener route toward an important class of bioactive molecules.
Collapse
Affiliation(s)
- Dipanshu Kumar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Peter F Kuijken
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tjerk van de Poel
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daria Ruth Galimberti
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Heredia AA, Argüello JE, Schmidt LC. Metal- and base-free, aerobic photoredox catalysis with riboflavin to synthesize 2-substituted benzothiazoles. Org Biomol Chem 2024; 22:1064-1072. [PMID: 38205732 DOI: 10.1039/d3ob01851b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Sustainable approaches for the synthesis of 2-substituted benzothiazoles are sought after for their use in organic chemistry, bioorganic chemistry, and industrial applications. Here, we described a visible light-driven photoredox catalytic cyclization of thioanilides to afford 2-substituted benzothiazoles using riboflavin as a photocatalyst, where oxygen is used as a clean oxidant and ethanol as a greener solvent. These results provide a new photochemical route for environmentally benign synthesis.
Collapse
Affiliation(s)
- Adrián A Heredia
- INFIQC-CONICET-UNC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Luciana C Schmidt
- INFIQC-CONICET-UNC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022, Valencia, Spain
| |
Collapse
|
7
|
Gong H, Zhou F, Cai C. Construction of benzoheterocycles by the reaction of α-arylglyoxylic acids and ortho-functionalized aniline under mild and minimal conditions. Org Biomol Chem 2023; 21:7639-7642. [PMID: 37682085 DOI: 10.1039/d3ob01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
This work describes an environmentally friendly method for the synthesis of benzoxazinones, quinoxalinones and benzothiazoles by the reaction of α-arylglyoxylic acids and ortho-functionalized aniline. In this reaction, no other reagents are needed except for reactants and solvents. The reaction was carried out at a mild temperature of 50 °C with only water and/or carbon dioxide as the by-product. Therefore, the reaction has high practical atom economy. In addition, this strategy could be scaled up to the gram level, and the natural product Cephamandole A could be synthesized on a mass scale.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Fangyuan Zhou
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Changqun Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
8
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
9
|
Mourtas S, Athanasopoulos V, Gatos D, Barlos K. Solid-Phase Synthesis of 2-Benzothiazolyl and 2-(Aminophenyl)benzothiazolyl Amino Acids and Peptides. Molecules 2023; 28:5412. [PMID: 37513284 PMCID: PMC10385376 DOI: 10.3390/molecules28145412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
2-benzothiazoles and 2-(aminophenyl)benzothiazoles represent biologically interesting heterocycles with high pharmacological activity. The combination of these heterocycles with amino acids and peptides is of special interest, as such structures combine the advantages of amino acids and peptides with the advantages of the 2-benzothiazolyl and 2-(aminophenyl)benzothiazolyl pharmacophore group. In this work, we developed an easy and efficient method for the solid-phase synthesis of 2-benzothiazolyl (BTH) and 2-(aminophenyl)benzothiazolyl (AP-BTH) C-terminal modified amino acids and peptides with high chiral purity.
Collapse
Affiliation(s)
- Spyridon Mourtas
- Department of Chemistry, University of Patras, 26510 Rio Patras, Greece
| | | | - Dimitrios Gatos
- Department of Chemistry, University of Patras, 26510 Rio Patras, Greece
| | - Kleomenis Barlos
- CBL-Patras, Patras Industrial Area, Block 1, 25018 Patras, Greece
| |
Collapse
|
10
|
Sun M, Liu W, Wu W, Li Q, Shen L. Fe 3O 4@ABA-aniline-CuI nanocomposite as a highly efficient and reusable nanocatalyst for the synthesis of benzothiazole-sulfide aryls and heteroaryls. RSC Adv 2023; 13:20351-20364. [PMID: 37448779 PMCID: PMC10337755 DOI: 10.1039/d3ra03069e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Studying diaryl sulfides and benzothiazoles is important in organic synthesis because numerous natural and medicinal products contain these scaffolds. Over the past few years, research on the synthesis of compounds containing benzothiazole-sulfide aryls, as important biological molecules, has received significant attention. Multicomponent reactions are the most popular strategy for performing difficult reactions and the synthesis of complexed molecules such as benzothiazole-sulfide aryls. In this work, CuI was successfully immobilized on the surface of magnetic Fe3O4 nanoparticles modified with aniline and 4-aminobenzoic acid [Fe3O4@ABA-Aniline-CuI nanocomposite] and its catalytic activity was investigated in the preparation of a broad range of benzothiazole-sulfide aryls and heteroaryls through the one-pot three-component reactions of 2-iodoaniline with carbon disulfide and aryl or heteroaryl iodides in the presence of KOAc as base in PEG-400 as solvent. TEM and SEM images revealed that the shape of the Fe3O4@ABA-Aniline-CuI particles is spherical and the size of the particles is approximately between 12-25 nanometers.
Collapse
Affiliation(s)
- Mingzhe Sun
- College of Food and Biology, Changchun Polytechnic Changchun Jilin 130033 China
| | - Wei Liu
- College of computer science, Jilin Normal University Siping Jilin 136000 China
| | - Wei Wu
- College of computer science, Jilin Normal University Siping Jilin 136000 China
| | - Qun Li
- College of Food and Biology, Changchun Polytechnic Changchun Jilin 130033 China
| | - Li Shen
- Institute Chemical and Nanotechnology Beijing China
| |
Collapse
|
11
|
Mendieta-Wejebe JE, Rosales-Hernández MC, Padilla-Martínez II, García-Báez EV, Cruz A. Design, Synthesis and Biological Activities of (Thio)Urea Benzothiazole Derivatives. Int J Mol Sci 2023; 24:9488. [PMID: 37298442 PMCID: PMC10253887 DOI: 10.3390/ijms24119488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
(Thio)ureas ((T)Us) and benzothiazoles (BTs) each have demonstrated to have a great variety of biological activities. When these groups come together, the 2-(thio)ureabenzothizoles [(T)UBTs] are formed, improving the physicochemical as well as the biological properties, making these compounds very interesting in medicinal chemistry. Frentizole, bentaluron and methabenzthiazuron are examples of UBTs used for treatment of rheumatoid arthritis and as wood preservatives and herbicides in winter corn crops, respectively. With this antecedent, we recently reported a bibliographic review about the synthesis of this class of compounds, from the reaction of substituted 2-aminobenzothiazoles (ABTs) with iso(thio)cyanates, (thio)phosgenes, (thio)carbamoyl chlorides, 1,1'-(thio)carbonyldiimidazoles, and carbon disulfide. Herein, we prepared a bibliographic review about those features of design, chemical synthesis, and biological activities relating to (T)UBTs as potential therapeutic agents. This review is about synthetic methodologies generated from 1968 to the present day, highlighting the focus to transform (T)UBTs to compounds containing a range substituents, as illustrated with 37 schemes and 11 figures and concluded with 148 references. In this topic, the scientists dedicated to medicinal chemistry and pharmaceutical industry will find useful information for the design and synthesis of this interesting group of compounds with the aim of repurposing these compounds.
Collapse
Affiliation(s)
- Jessica E. Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (J.E.M.-W.); (M.C.R.-H.)
| | - Martha C. Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (J.E.M.-W.); (M.C.R.-H.)
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de Mexico 07340, Mexico; (I.I.P.-M.); (E.V.G.-B.)
| | - Efrén V. García-Báez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de Mexico 07340, Mexico; (I.I.P.-M.); (E.V.G.-B.)
| | - Alejandro Cruz
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de Mexico 07340, Mexico; (I.I.P.-M.); (E.V.G.-B.)
| |
Collapse
|
12
|
Schäfer G, Merot A, Fleischer T. Development of a Scalable Route for a Key Benzothiazole Building Block via a Pd-Catalyzed Migita Coupling with a Nonsmelly Thiol Surrogate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gabriel Schäfer
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Aurélien Merot
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Tony Fleischer
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
13
|
Haroun M. Review on the Developments of Benzothiazole-containing Antimicrobial Agents. Curr Top Med Chem 2022; 22:2630-2659. [PMID: 36503470 DOI: 10.2174/1568026623666221207161752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The infectious diseases caused by bacterial resistance to antibiotics constitute an increasing threat to human health on a global scale. An increasing number of infections, including tuberculosis, pneumonia, salmonellosis and gonorrhea, are becoming progressively challenging to cure owing to the ineffectiveness of current clinically used antibiotics and presents a serious health threat worldwide in medical community. The major concern of this global health threat is the ability of microorganisms to develop one or several mechanisms of resistance to antibiotics, making them inefficient to therapeutic treatment. The quest for discovering novel scaffold with antimicrobial property is particularly in great need to face future challenges in hospital and healthcare settings. Hence, the development of benzothiazoles is of considerable interest to medicinal chemists. Benzothiazole, being part of an important class of heterocyclic scaffold retains a wide spectrum of various attractive pharmacological activities. Antibiotic resistance represents an increasing burden comprising medical cost, hospital stay and mortality. Several derivatives containing a benzothiazole scaffold, reported in the literature, were found to display remarkable potencies towards diverse Grampositive and Gram-negative bacterial pathogens. The principal focus concerns the antibacterial potential of benzothiazole-based derivatives as antimicrobial agents interacting with targets in bacterial pathogens. In this review, we also disclose the significance of the benzothiazole moiety in the discovery of new antibacterial compounds, the potential of benzothiazole-based derivatives in the case of resistant bacterial strains, optimization of their antibacterial activity, and their future perspectives. The structure-activity relationship study and the mode of action of the title derivatives are highlighted too.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
14
|
Ciocarlan A. From (-)-sclareol to Norlabdane Heterocyclic Hybrid Compounds. CHEMISTRY JOURNAL OF MOLDOVA 2022. [DOI: 10.19261/cjm.2022.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
This review relates to chemistry of the well-known biologically active natural labdane diterpenoid (-)-sclareol easily available from Clary sage (Salvia sclarea L.). It is mainly used in industry, especially for synthesis of fragrance compounds and natural analogs. The paper covers achievements on the synthesis, structure determination and biological activity of molecular hybrid compounds bearing hydrazide and thiosemicarbazone fragments or diazine, 1,2,4-triazole, carbazole, 1,3-thiazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole units prepared based on it.
Collapse
Affiliation(s)
- Alexandru Ciocarlan
- Institute of Chemistry, 3 Academiei str., Chisinau MD 2028, Republic of Moldova
| |
Collapse
|
15
|
Broudic N, Pacheco-Benichou A, Fruit C, Besson T. Synthesis of 2-Cyanobenzothiazoles via Pd-Catalyzed/Cu-Assisted C-H Functionalization/Intramolecular C-S Bond Formation from N-Arylcyanothioformamides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238426. [PMID: 36500519 PMCID: PMC9738468 DOI: 10.3390/molecules27238426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
We report herein on a catalytic system involving palladium and copper to achieve the cyclization of N-arylcyanothioformamides and the synthesis of 2-cyanobenzothiazoles. The C-H functionalization/intramolecular C-S bond formation reaction was achieved in the presence of air, using 2.0 equiv of an inorganic additive (KI). In many cases, the reaction led to a sole product regioselectively obtained in good yields, allowing the synthesis of a wide range of substituted 2-cyanobenzothiazole derivatives, providing valuable building blocks for the design of more complex heterocyclic or molecular labeling systems.
Collapse
|
16
|
Rosales-Hernández MC, Mendieta-Wejebe JE, Padilla-Martínez II, García-Báez EV, Cruz A. Synthesis and Biological Importance of 2-(thio)ureabenzothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186104. [PMID: 36144837 PMCID: PMC9502297 DOI: 10.3390/molecules27186104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The (thio)urea and benzothiazole (BT) derivatives have been shown to have a broad spectrum of biological activities. These groups, when bonded, result in the 2-(thio)ureabenzothizoles (TBT and UBT), which could favor the physicochemical and biological properties. UBTs and TBTs are compounds of great importance in medicinal chemistry. For instance, Frentizole is a UBT derivative used for the treatment of rheumatoid arthritis and systemic lupus erythematosus. The UBTs Bentaluron and Bethabenthiazuron are commercial fungicides used as wood preservatives and herbicides in winter corn crops. On these bases, we prepared this bibliography review, which covers chemical aspects of UBTs and TBTs as potential therapeutic agents as well as their studies on the mechanisms of a variety of pharmacological activities. This work covers synthetic methodologies from 1935 to nowadays, highlighting the most recent approaches to afford UBTs and TBTs with a variety of substituents as illustrated in 42 schemes and 13 figures and concluded with 187 references. In addition, this interesting review is designed on chemical reactions of 2-aminobenzothiazoles (2ABTs) with (thio)phosgenes, iso(thio)cyanates, 1,1′-(thio)carbonyldiimidazoles [(T)CDI]s, (thio)carbamoyl chlorides, and carbon disulfide. This topic will provide information of utility for medicinal chemists dedicated to the design and synthesis of this class of compounds to be tested with respect to their biological activities and be proposed as new pharmacophores.
Collapse
Affiliation(s)
- Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Jessica E. Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Itzia I. Padilla-Martínez
- Instituto Politécnico Nacional-UPIBI, Laboratorio de Química Supramolecular y Nanociencias, Av. Acueducto s/n, Barrio la Laguna Ticomán, Mexico City 07340, Mexico
| | - Efrén V. García-Báez
- Instituto Politécnico Nacional-UPIBI, Laboratorio de Química Supramolecular y Nanociencias, Av. Acueducto s/n, Barrio la Laguna Ticomán, Mexico City 07340, Mexico
| | - Alejandro Cruz
- Instituto Politécnico Nacional-UPIBI, Laboratorio de Química Supramolecular y Nanociencias, Av. Acueducto s/n, Barrio la Laguna Ticomán, Mexico City 07340, Mexico
- Correspondence:
| |
Collapse
|
17
|
Dahno PG, Zhilyaev DM, Dotsenko VV, Strelkov VD, Krapivin GD, Aksenov NA, Aksenova IV, Likhovid NG. Oxidation of 2-Cyanothioacrylamides with Sodium Nitrite in Acidic Medium. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222090080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
(E)-3-Aryl-2-cyanoprop-2-entioamides, prepared by Knoevenagel condensation between aromatic aldehydes and cyanothioacetamide, react with sodium nitrite in acetic acid to form (2E,2′E)-2,2′-(1,2,4-thiadiazole-3,5-diyl)bis[3-arylacrylonitriles]. A possible mechanism and limitations of the reaction are discussed. Molecular docking was carried out in order to search for possible protein targets for the obtained 1,2,4-thiadiazoles. One of the compounds showed a pronounced antidote effect against the herbicide 2,4-D in a laboratory experiment on sunflower seedlings and under field conditions.
Collapse
|
18
|
Lungu L, Cucicova C, Blaja S, Ciocarlan A, Dragalin I, Barba A, Vornicu N, Geana EI, Mangalagiu II, Aricu A. Synthesis of Homodrimane Sesquiterpenoids Bearing 1,3-Benzothiazole Unit and Their Antimicrobial Activity Evaluation. Molecules 2022; 27:molecules27165082. [PMID: 36014322 PMCID: PMC9414590 DOI: 10.3390/molecules27165082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Based on some homodrimane carboxylic acids and their acyl chlorides, a series of fourteen 2-homodrimenyl-1,3-benzothiazoles, N-homodrimenoyl-2-amino-1,3-benzothiazoles, 4′-methyl-homodrimenoyl anilides and 4′-methyl-homodrimenthioyl anilides were synthesized and their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). The synthesis involved the decarboxylative cyclization, condensation and thionation of the said acids, anhydrides or their derivatives with 2-aminothiophenol, 2-aminobenzothiazole, p-toluidine and Lawesson’s reagent. As a result, together with the desired compounds, some unexpected products 8, 25, and 27 were obtained, and the structures and mechanisms for their formation have been proposed. Compounds 4, 9, and 25 showed higher antifungal and antibacterial activity compared to the standards caspofungin (MIC = 1.5 μg/mL) and kanamycin (MIC = 3.0 μg/mL), while compound 8 had comparable activities. In addition, compounds 6, 17, and 27 showed selective antifungal activity at MIC = 2.0, 0.25, and 1.0 μg/mL, respectively.
Collapse
Affiliation(s)
- Lidia Lungu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Caleria Cucicova
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Svetlana Blaja
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Alexandru Ciocarlan
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Ion Dragalin
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Alic Barba
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Nicoleta Vornicu
- Metropolitan Center of Research T.A.B.O.R., 9 Closca Str., RO-700066 Iasi, Romania
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 4th Uzinei Str., P.O. Box 7, 240050 Ramnicu Valcea, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, ‘‘Alexandru Ioan Cuza’’ University of Iasi, 11 Carol Bd., RO-700506 Iasi, Romania
| | - Aculina Aricu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
- Correspondence: or
| |
Collapse
|
19
|
Cuc DT, Hien NT, Doan VN, Thuan TD, Anh DTT, Thanh NH, Ha TT, Nga NT, Tuyet NTK, Kiem PV. Design and Synthesis of New 2-Aminobenzamide Derivatives Containing Benzothiazole and Phenylamine Moiety and Their Cytotoxicity. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twelve new compounds including 2-aminobenzamide derivatives bearing benzothiazole and phenylamine moiety were designed and synthesized. The synthesized compounds were tested their cytotoxic activity against A549 and SW480 tumor cell lines. Compounds 3a and 3c exhibited cytotoxicity toward A549 cell line with IC50 values of 24.59 and 29.59 µM, respectively.
Collapse
Affiliation(s)
- Dinh Thi Cuc
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Hien
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Vu Ngoc Doan
- Le Quy Don Technical University, Cau Giay, Hanoi, Vietnam
| | - Tran Dang Thuan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Dang Thi Tuyet Anh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Nguyen Ha Thanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Trinh Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | | | | | - Phan Van Kiem
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, VAST, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
20
|
Ragno D, De Risi C, Massi A, Di Carmine G, Toldo S, Leonardi C, Bortolini O. Regiodivergent Synthesis of Benzothiazole‐based Isosorbide Imidates by Oxidative N‐Heterocyclic Carbene Catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Ragno
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Carmela De Risi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Alessandro Massi
- University of Ferrara: Universita degli Studi di Ferrara DepartmentEnvironmental and Prevention Sciences ITALY
| | - Graziano Di Carmine
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Sofia Toldo
- University of Ferrara: Universita degli Studi di Ferrara Environmental and Prevention Sciences ITALY
| | - Costanza Leonardi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Olga Bortolini
- Universita of Ferrara DepartmentEnvironmental and Prevention Sciences Via Borsari 46 44121 Ferrara ITALY
| |
Collapse
|
21
|
An efficient low melting mixture mediated green approach for the synthesis of 2-substituted benzothiazoles and benzimidazoles. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
23
|
Synthesis of novel 1,2,3-triazole based acridine and benzothiazole scaffold N-glycosides with anti-proliferative activity, docking studies, and comparative computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
The ultrasound-assisted synthesis of some novel fused-ring heterocyclic systems bearing structurally diverse benzazoles via a copper-catalyzed cross-coupling reaction. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02895-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Gupta K, Sirbaiya AK, Kumar V, Rahman MA. Current Perspective of Synthesis of Medicinally Relevant Benzothiazole Based Molecules: Potential for Antimicrobial and Anti-Inflammatory Activities. Mini Rev Med Chem 2022; 22:1895-1935. [PMID: 35176977 DOI: 10.2174/1389557522666220217101805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
The therapeutic potential of the majority of the marketed drugs is due to the presence of a heterocyclic nucleus, which constitutes a huge role in the field of medicinal chemistry. These heterocyclic scaffolds could act as a template in order to design potential therapeutic agents against several diseases. Benzothiazole scaffold is one of the influential heteroaromatic rings in the field of medicinal chemistry owing to its extensive pharmacological features. Herein, we have focused on the synthesis of benzothiazole based medicinal molecules, which possess antimicrobial and anti-inflammatory activities. This review covers a systematic description of synthetic routes for biologically relevant benzothiazole derivatives in the last five years. The main aim of this study is to show the diversification of benzothiazole based molecules into their pharmacologically more active derivatives. This review's synthetic protocols include metal-free, metal-catalyzed, and metal precursor azo dyes strategies for the development of benzothiazole derived bioactive compounds. The discussion under the various headings covers synthetic schemes and biological activities of the most potent molecules in the form of minimum inhibitory concentration.
Collapse
Affiliation(s)
- Kamini Gupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Anup Kumar Sirbaiya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Azizur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
26
|
Lemir ID, Oksdath-Mansilla G, Castro-Godoy WD, Schmidt LC, Argüello JE. Photochemical C sp2-H bond thiocyanation and selenocyanation of activated arenes, batch and continuous-flow approaches. Photochem Photobiol Sci 2022; 21:849-861. [PMID: 35113403 DOI: 10.1007/s43630-021-00167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
Herein, we report an eco-friendly photochemical oxidative Csp2-H thiocyanation and selenocyanation of activated arenes. The reaction proceeds under Violet LED irradiation in the presence of K2S2O8, which quickly oxidizes KSCN and KSeCN, finally producing arylthio/selenocyanates. Using this benign, atom-economic protocol, the desired chalcogenide products were obtained regioselectively, with isolated yields that range from very good to excellent. Although, mechanistic study indicates that it is difficult to distinguish between a radical to a SEAr reaction mechanism between the photo-induced formed •SCN, for the former, or NCSSCN, for the latter, to the aromatic heterocycles. The inhibition experiment together with the observed reactivity and regioselectivity, would be in agreement with the latter. The synthetic methodology designed could be successfully adapted to continuous-flow systems in a segmented-flow regime, employing the organic phase as the product reservoir. Using this setup, the advantage of the latter can be demonstrated by reducing the reaction time and improving the product yields. Similarly, the scaling up of the reaction to gram scale resulted in favorable outcomes by the flow setup, which installs the photo-flow chemistry as a powerful tool to be included into routine reaction procedures, which have great relevance for the pharmaceutical industry.
Collapse
Affiliation(s)
- Ignacio D Lemir
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Willber D Castro-Godoy
- CENSALUD-UES, Dpto. de Química, Física y Matemática, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador, 1101, El Salvador
| | - Luciana C Schmidt
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
27
|
|
28
|
Laha JK, Hunjan MK. Diversity in Heterocycle Synthesis Using α-Iminocarboxylic Acids: Decarboxylation Dichotomy. J Org Chem 2022; 87:2315-2323. [DOI: 10.1021/acs.joc.1c02110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Mandeep Kaur Hunjan
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
29
|
Nkole IU, Idris SO, Abdulkadir I, Onu AD. Effect of surfactant micellization on the oxidation of mercaptobenzothiazole by bioinorganic molybdenum complex. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
31
|
Li X, Zhang J, Yang Y, Hong H, Han L, Zhu N. Reductive cyclization of o-phenylenediamine with CO2 and BH3NH3 to synthesize 1H-benzoimidazole derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Huang J, Chen W, Liang J, Yang Q, Fan Y, Chen MW, Peng Y. α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. J Org Chem 2021; 86:14866-14882. [PMID: 34624963 DOI: 10.1021/acs.joc.1c01497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general and efficient method for the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles from the reactions of α-keto acids with 2-aminobenzamides, benzene-1,2-diamines, 2-aminophenols, and 2-aminobenzenethiols, respectively, is described. The reactions were conducted under catalyst-free conditions, using water as the sole solvent with no additive required, and successfully applied to the synthesis of sildenafil. More importantly, these reactions can be conducted on a mass scale, and the products can be easily purified through filtration and washing with ethanol (or crystallized).
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Wei Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jiazhi Liang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yan Fan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Mu-Wang Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
33
|
Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules 2021; 26:molecules26216518. [PMID: 34770926 PMCID: PMC8587170 DOI: 10.3390/molecules26216518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/27/2023] Open
Abstract
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.
Collapse
|
34
|
Singh R, Sindhu J, Devi M, Kumar A, Kumar R, Hussain K, Kumar P. Solid‐Supported Materials‐Based Synthesis of 2‐Substituted Benzothiazoles: Recent Developments and Sanguine Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202101368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rahul Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Jayant Sindhu
- Department of Chemistry COBS&H CCS Haryana Agricultural University Hisar 125004 INDIA
| | - Meena Devi
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science and Technology Hisar 125001 INDIA
| | - Ramesh Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Khalid Hussain
- Department of Applied Sciences and Humanities Mewat Engineering College Nuh 122107 INDIA
| | - Parvin Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| |
Collapse
|
35
|
Mahesha N, Yathirajan HS, Nagma Banu HA, Kalluraya B, Foro S, Glidewell C. Different patterns of supra-molecular aggregation in three amides containing N-(benzo[ d]thia-zol-yl) substituents. Acta Crystallogr E Crystallogr Commun 2021; 77:504-511. [PMID: 34026254 PMCID: PMC8100275 DOI: 10.1107/s2056989021003637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/10/2022]
Abstract
Crystal structures are reported for three amides containing N-benzo[d]thia-zole substituents. In N-(benzo[d]thia-zol-6-yl)-3-bromo-benzamide, C14H9BrN2OS, where the two ring systems are nearly parallel to one another [dihedral angle = 5.8 (2)°], the mol-ecules are linked by N-H⋯O and C-H⋯N hydrogen bonds to form ribbons of R 3 3(19) rings, which are linked into sheets by short Br⋯Br inter-actions [3.5812 (6) Å]. N-(6-Meth-oxy-benzo[d]thia-zol-2-yl)-2-nitro-benzamide, C15H11N3O4S, crystallizes with Z' = 2 in space group Pna21: the dihedral angles between the ring systems [46.43 (15) and 66.35 (13)°] are significantly different in the independent mol-ecules and a combination of two N-H⋯N and five C-H⋯O hydrogen bonds links the mol-ecules into a three-dimensional network. The mol-ecules of 5-cyclo-propyl-N-(6-meth-oxy-ben-zo[d]thia-zol-2-yl)-isoxazole-3-carboxamide, C15H13N3O3S, exhibit two forms of disorder, in the meth-oxy group and in the cyclo-propyl-isoxazole unit; symmetry-related pairs of mol-ecules are linked into dimers by pairwise N-H⋯N hydrogen bonds. Comparisons are made with the structures of some related compounds.
Collapse
Affiliation(s)
- Ninganayaka Mahesha
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India
| | - Hemmige S. Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India
| | - Holalagudu A. Nagma Banu
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India
| | - Balakrishna Kalluraya
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India
| | - Sabine Foro
- Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany
| | | |
Collapse
|
36
|
Sethiya A, Sahiba N, Teli P, Soni J, Agarwal S. Current advances in the synthetic strategies of 2-arylbenzothiazole. Mol Divers 2020; 26:513-553. [PMID: 33180241 DOI: 10.1007/s11030-020-10149-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Benzothiazole is a privileged scaffold in the field of synthetic and medicinal chemistry. Its derivatives and metal complexes possess a gamut of pharmacological properties and high degree of structural diversity that has proven it vital for the investigation for novel therapeutics. The 2nd position of benzothiazole is the most active site that makes 2-arylbenzothiazole as felicitous scaffolds in pharmaceutical chemistry. The extensive significance of benzo-fused heterocyclic moieties formation has led to broad and valuable different approaches for their synthesis. This review deals with the synthetic approaches developed so far for the synthesis of 2-arylbenzothiazoles. Moreover, this article abridges the publications devoted to the synthesis of this moiety over the last 6 years. This study gives a current precis of research on the fabrication of 2-arylbenzothiazoles through different synthetic pathways and shall be helpful for researchers and scientists who are working in this field to make more potent biologically active benzothiazole-based drugs.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India.
| |
Collapse
|
37
|
Gagarin AA, Suntsova PO, Minin AS, Pozdina VA, Slepukhin PA, Benassi E, Belskaya NP. Two Approaches for the Synthesis of Fused Dihydropyridines via a 1,6-Electrocyclic Reaction: Fluorescent Properties and Prospects for Application. J Org Chem 2020; 85:13837-13852. [PMID: 33107738 DOI: 10.1021/acs.joc.0c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of penta-2,4-dienethioamides with acetylenedicarboxylic acid, methyl and ethyl esters, and methyl propiolate were systematically studied, and a number of new 2,3-dihydro-5H-thiazolo[3,2-a]pyridines (DTPs) and 4H,6H-pyrido[2,1-b][1,3]thiazines (PTZs) were prepared. A possible mechanism for a multistep domino transformation is suggested, and the key step is the 1,6-electrocyclic reaction. An additional alternative method for the synthesis of new heterocyclic systems was achieved. Evidence of the electrocyclic mechanism of a key step was collected from the analysis of the spatial structure of the synthesized bicyclic nonaromatic pyridines by X-ray diffraction and quantum chemical calculations, as well as from the thermodynamic quantities. DTPs exhibited yellow fluorescence in solution and yellow to red emissions in the solid state. Biological investigations demonstrated the ability of DTPs to penetrate living and fixed cells and presumably accumulate in lysosomes.
Collapse
Affiliation(s)
- Aleksey A Gagarin
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Polina O Suntsova
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Artem S Minin
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation.,M. N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18 South Kovalevskaya Street, Yekaterinburg 620219, Russian Federation
| | - Varvara A Pozdina
- Institute of Immunology and Physiology, Pervomayskaya Str. 106, Ekaterinburg 620049, Russian Federation
| | - Pavel A Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Science, 22 South Kovalevskaya Street, Yekaterinburg 620219, Russian Federation
| | - Enrico Benassi
- Shihezi University, 280 North Fourth Road, Shihezi, Xinjiang 832000, China
| | - Nataliya P Belskaya
- Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation.,Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Science, 22 South Kovalevskaya Street, Yekaterinburg 620219, Russian Federation
| |
Collapse
|
38
|
Mamane V, Peluso P, Aubert E, Weiss R, Wenger E, Cossu S, Pale P. Disubstituted Ferrocenyl Iodo- and Chalcogenoalkynes as Chiral Halogen and Chalcogen Bond Donors. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Emmanuel Aubert
- , Université de Lorraine, CNRS, CRM2, Bd des Aiguillettes, F-54000 Nancy, France
| | - Robin Weiss
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Emmanuel Wenger
- , Université de Lorraine, CNRS, CRM2, Bd des Aiguillettes, F-54000 Nancy, France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre Venezia, Italy
| | - Patrick Pale
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| |
Collapse
|
39
|
Ly NH, Lee C, Jang S, Lee JI, Joo S. Vibrational Spectroscopic Estimation of
Semivolatile
Organic Compound Evaporation From Glass Surfaces. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry Soongsil University Seoul 06978 Republic of Korea
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering Seokyeong University Seoul 02713 Republic of Korea
| | - Soonmin Jang
- Department of Chemistry Sejong University Seoul 143‐747 Republic of Korea
| | - Jung Il Lee
- Korea Testing & Research Institute Gwacheon 13810 Republic of Korea
| | - Sang‐Woo Joo
- Department of Chemistry Soongsil University Seoul 06978 Republic of Korea
| |
Collapse
|
40
|
Matiichuk YE, Horak YI, Chaban TI, Horishny VY, Tymoshuk OS, Matiychuk VS. 5-(1,3-Benzothiazol-2-yl)furan-2-carbaldehyde in the Design of Antitumor Agents. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Ammazzalorso A, Carradori S, Amoroso R, Fernández IF. 2-substituted benzothiazoles as antiproliferative agents: Novel insights on structure-activity relationships. Eur J Med Chem 2020; 207:112762. [PMID: 32898763 DOI: 10.1016/j.ejmech.2020.112762] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
Given the wide spectrum of biological activities, benzothiazoles represent privileged scaffolds in medicinal chemistry, useful in drug discovery programs to modulate biological activities of lead compounds. A large body of knowledge about benzothiazoles has been reported in scientific literature, describing their antimicrobial, anticonvulsant, neuroprotective, anti-inflammatory, and antiproliferative effects. This review summarizes the results obtained in the structure-activity relationship studies on antiproliferative benzothiazoles, focusing on 2-substituted derivatives and on mechanism of action responsible for the antitumor effects of this class of compounds.
Collapse
Affiliation(s)
- Alessandra Ammazzalorso
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Inmaculada Fernández Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| |
Collapse
|