1
|
Tan Z, Song J, Zhang T. Virtual screening, molecular docking, and molecular dynamics simulation studies on the hypoglycemic function of oat peptides. J Mol Graph Model 2024; 133:108869. [PMID: 39317004 DOI: 10.1016/j.jmgm.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Oat contains a large amount of polysaccharides and peptides, among which oat peptides have the function of reducing blood sugar levels in the body. This paper reviewed the peptides obtained from oat extraction and identification from literature and constructed the corresponding oat peptide database. Based on the DPP4 protein, a virtual screening of the peptide database was performed. One hundred nanosecond molecular dynamics simulations were performed for the six peptides obtained from the screening. The interaction information between different peptide molecules and DPP4 was analyzed from the stable binding conformations after the simulation, and the binding free energy between different peptide molecules and DPP4 was calculated. The results show that the peptide molecules obtained from the virtual screening can all stably bind to the DPP4 protein, among which two peptide molecules have relatively strong affinity with DPP4 and can be used as lead molecules for the subsequent design and modification of DPP4 inhibitors. The simulation results are informative for a deeper understanding of the structural characteristics of DPP4 and the molecular recognition mechanism between DPP4 and oat peptides.
Collapse
Affiliation(s)
- Zhongfu Tan
- Department of Pharmacy, Cangxi People's Hospital, Guangyuan, 628499, PR China.
| | - Jiayang Song
- Department of Pharmacy, Cangxi People's Hospital, Guangyuan, 628499, PR China
| | - Ting Zhang
- Department of Pharmacy, Cangxi People's Hospital, Guangyuan, 628499, PR China
| |
Collapse
|
2
|
Kurimoto M, Yuda N, Tanaka M, Tanaka M, Okochi M. Peptide array screening with anti-GLP-1 monoclonal antibody: Discovery of cysteine-containing DPP-IV inhibitory peptides. J Biosci Bioeng 2024; 138:351-359. [PMID: 39085020 DOI: 10.1016/j.jbiosc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Inhibition of dipeptidyl peptidase IV (DPP-IV) is an effective pharmacotherapy for the management of type 2 diabetes. Recent findings have suggested that various dietary proteins can serve as precursors to peptides that inhibit DPP-IV. Although several DPP-IV inhibitory peptides derived from food materials have been reported, more effective inhibitory peptides remain to be discovered. This study aimed to identify potent DPP-IV inhibitory peptides that earlier approaches had overlooked by employing a screening method that combined peptide arrays and neutralizing antibodies. Octa-peptides covering the complete amino acid sequences of four casein proteins and two whey proteins were synthesized on arrays via a solid-phase method. These peptides were then reacted with a monoclonal antibody specifically engineered to recognize glucagon-like peptide 1 (GLP-1), a substrate of DPP-IV. The variable region of the anti-GLP-1 monoclonal antibody is utilized to mimic the substrate-binding region of DPP-IV, enabling the antibody to bind to peptides that interact with DPP-IV. Based on this feature, 26 peptides were selected as DPP-IV inhibitory peptide candidates, 11 of which showed strong DPP-IV inhibitory activity. Five of these peptides consistently contained cysteines positioned two to four residues from the N-terminus. Treatment with disulfide formation decreased the DPP-IV inhibitory activity of these cysteine-containing peptides, while the inhibitory activity of α-lactalbumin hydrolysates increased with reducing treatment. These results revealed that the thiol group is important for DPP-IV inhibitory activity. This study provides a useful screen for DPP-IV inhibitory peptides and indicates the importance of reductive cysteine residues within DPP-IV inhibitory peptides.
Collapse
Affiliation(s)
- Masaki Kurimoto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan; Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naoki Yuda
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
3
|
Yue J, Xu J, Li T, Li Y, Chen Z, Liang S, Liu Z, Wang Y. Discovery of potential antidiabetic peptides using deep learning. Comput Biol Med 2024; 180:109013. [PMID: 39137670 DOI: 10.1016/j.compbiomed.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
4
|
Dhar H, Verma S, Dogra S, Katoch S, Vij R, Singh G, Sharma M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit Rev Food Sci Nutr 2024; 64:9432-9454. [PMID: 37218679 DOI: 10.1080/10408398.2023.2212803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine milk peptides are the protein fragments with diverse bioactive properties having antioxidant, anticarcinogenic, other therapeutic and nutraceutical potentials. These peptides are formed in milk by enzymatic hydrolysis, gastrointestinal digestion and fermentation processes. They have significant health impact with high potency and low toxicity making them a suitable natural alternative for preventing and managing diseases. Antibiotic resistance has increased the quest for better peptide candidates with antimicrobial effects. This article presents a comprehensive review on well documented antimicrobial, immunological, opioid, and anti-hypertensive activities of bovine milk peptides. It also covers the usage of computational biology tools and databases for prediction and analysis of the food-derived bioactive peptides. In silico analysis of amino acid sequences of Bos taurus milk proteins have been predicted to generate peptides with dipeptidyl peptidase IV inhibitory and ACE inhibitory properties, making them favorable candidates for developing blood sugar lowering drugs and anti-hypertensives. In addition to the prediction of new bioactive peptides, application of bioinformatics tools to predict novel functions of already known peptides is also discussed. Overall, this review focuses on the reported as well as predicted biologically active peptide of casein and whey proteins of bovine milk that can be utilized to develop therapeutic agents.
Collapse
Affiliation(s)
- Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Sarita Dogra
- PGIMR, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shailja Katoch
- Department of Veterinary Microbiology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, India
| | - Rishika Vij
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Geetanjali Singh
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
5
|
Samad N, Ejaz U, Kousar S, Al-Mutairi AA, Khalid A, Amin ZS, Bashir S, Al-Hussain SA, Irfan A, Zaki MEA. A novel approach to assessing the antioxidant and anti-diabetic potential of synthesized calcium carbonate nanoparticles using various extracts of Ailanthus altissima. Front Chem 2024; 12:1345950. [PMID: 38887700 PMCID: PMC11182424 DOI: 10.3389/fchem.2024.1345950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Calcium carbonate nanoparticles (CaCO3) have been found to exhibit unique properties that show their potential to be used in various therapies. Green synthesis of CaCO3 has been progressively gaining ac-ceptance due to its cost-effectiveness and energy-efficient nature. In the current study, different extracts of Ailanthus altissima were used to synthesize the calcium carbonate nanoparticles the synthesis and characterization of CCNPs were confirmed by using Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy, and Scanning Electron Microscopy (SEM). The antioxidant activities (hydrogen peroxide, phosphomolydbenum, and ferric reducing) of calcium carbonate nanoparticles were affirmed by a good range of percentages of inhibition against free radical scavenging. The antidebate assays of CCNPs were observed by in-vitro and in silico approaches in a range at various concentrations while maximum inhibition occurred. In conclusion, the current study depicted that conjugated CaCO3 with A. altissima has a good potential to cure oxidative stress and Type II diabetes and could be used in the future as biogenic nanomedicine for the treatment of other metabolic diseases.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Umer Ejaz
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Saba Kousar
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Aamal A. Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arslan Khalid
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeemal Seemab Amin
- Department of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, Pakistan
| | - Shahzad Bashir
- Department of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Thongtak A, Yutisayanuwat K, Harnkit N, Noikaew T, Chumnanpuen P. Computational Screening for the Dipeptidyl Peptidase-IV Inhibitory Peptides from Putative Hemp Seed Hydrolyzed Peptidome as a Potential Antidiabetic Agent. Int J Mol Sci 2024; 25:5730. [PMID: 38891918 PMCID: PMC11171819 DOI: 10.3390/ijms25115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors.
Collapse
Affiliation(s)
- Arisa Thongtak
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand; (A.T.); (K.Y.)
| | - Kulpariya Yutisayanuwat
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand; (A.T.); (K.Y.)
| | - Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Tipanart Noikaew
- Department of Biology and Health Science, Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
7
|
Zhou F, Li D, Hou Y, Cong Z, Li K, Gu X, Xiao G. Exploration of hypoglycemic peptides from porcine collagen based on network pharmacology and molecular docking. PLoS One 2024; 19:e0298674. [PMID: 38470866 DOI: 10.1371/journal.pone.0298674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, the extraction of hypoglycemic peptides from food proteins has gained increasing attention. Neuropeptides, hormone peptides, antimicrobial peptides, immune peptides, antioxidant peptides, hypoglycemic peptides and antihypertensive peptides have become research hotspots. In this study, bioinformatic methods were used to screen and predict the properties of pig collagen-derived hypoglycemic peptides, and their inhibitory effects on α-glucosidase were determined in vitro. Two peptides (RL and NWYR) were found to exhibit good water solubility, adequate ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties, potentially high biological activity, and non-toxic. After synthesizing these peptides, NWYR showed the best inhibitory effect on α-glucosidase with IC50 = 0.200±0.040 mg/mL, and it can regulate a variety of biological processes, play a variety of molecular functions in different cellular components, and play a hypoglycemic role by participating in diabetic cardiomyopathy and IL-17 signaling pathway. Molecular docking results showed that NWYR had the best binding effect with the core target DPP4 (4n8d), with binding energy of -8.8 kcal/mol. NWYR mainly bonded with the target protein through hydrogen bonding, and bound with various amino acid residues such as Asp-729, Gln-731, Leu-765, etc., thus affecting the role of the target in each pathway. It is the best core target for adjuvant treatment of T2DM. In short, NWYR has the potential to reduce type 2 diabetes, providing a basis for further research or food applications as well as improved utilization of pig by-products. However, in subsequent studies, it is necessary to further verify the hypoglycemic ability of porcine collagen active peptide (NWYR), and explore the hypoglycemic mechanism of NWYR from multiple perspectives such as key target genes, protein expression levels and differences in metabolites in animal models of hyperglycemia, which will provide further theoretical support for its improvement in the treatment of T2DM.
Collapse
Affiliation(s)
- Fating Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Di Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihui Cong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Kaifeng Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xin Gu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
8
|
Arai S, Kurimoto M, Nakada H, Tanaka M, Ochi H, Tanaka M, Okochi M. Screening of novel DPP-IV inhibitory peptides derived from bovine milk proteins using a peptide array platform. J Biosci Bioeng 2024; 137:94-100. [PMID: 38092600 DOI: 10.1016/j.jbiosc.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 02/10/2024]
Abstract
Dipeptidyl peptidase IV (DPP-IV) has become an important target in the prevention and treatment of diabetes. Although many DPP-IV inhibitory peptides have been identified by a general approach involving the repeated fractionation of food protein hydrolysates, the obtained results have been dependent on the content of each peptide and fractionation conditions. In the present study, a peptide array that provides comprehensive assays of peptide sequences was used to identify novel DPP-IV inhibitory peptides derived from bovine milk proteins; these peptides were then compared with those identified using the general approach. While the general approach identified only known peptides that were abundant in the hydrolysate, the peptide array-based approach identified 10 novel DPP-IV inhibitory peptides, all of which had proline at the second residue from the N-terminus. The proper or combined use of these two approaches, which have different advantages, will enable the efficient development of novel bioactive foods and drugs.
Collapse
Affiliation(s)
- Sayuri Arai
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masaki Kurimoto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Hajime Nakada
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Ochi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
9
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Liu E, Yang M, Li Q, Cheng Q, Wang Y, Ye L, Tian F, Ding H, Ling Y, Xia M, Ji ZS, Li W. Antitumor activity of a whey peptide-based enteral diet in C26 colon tumor-bearing mice. J Food Sci 2023; 88:4275-4288. [PMID: 37615996 DOI: 10.1111/1750-3841.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
The antitumor effects of a whey peptide-based enteral diet, whose main components are whey peptides and yogurt fermented by Lactobacillus delbureckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, were investigated in mice. Our results indicated that the tumor weight in C26 carcinoma-transplanted mice was significantly smaller at day 16 post-implantation in the whey peptide-based enteral diet group (1.36 ± 0.54 g) than in the control group (1.83 ± 0.89 g) (p < 0.05). The whey peptide-based enteral diet group exhibited higher tumor cell apoptosis, lower cell proliferation, and inactive angiogenesis indicating by higher degree of TUNEL, lower positive rates of Ki-67, VEGF, and CD34 than control group. It also attenuated inflammatory cell infiltration of spleen and liver as indicated by the decreased spleen index (10.89 ± 2.06 vs. 12.85 ± 2.92, p < 0.05) and increased liver index (58.09 ± 11.37 vs. 53.19 ± 6.67, p < 0.05) in the whey peptide-based enteral diet group than the control diet group. These results proved the inhibitory effect of the whey peptide-based enteral diet on tumor growth, which might be attributed to the whey peptides component. PRACTICAL APPLICATION: A whey peptide-based enteral diet (MEIN® ), containing cheese whey and multiple nutrients, was selected to verify the anti-tumor effect by animal experiments. The tumor weight growth, tumor cell proliferation, inflammatory cell infiltration of spleen and liver in tumor model mice was significantly attenuated by the whey peptide-based enteral diet, that might be attributed to its whey peptides component. These results provided an additive direction for cancer therapy and need a further study including clinical trials.
Collapse
Affiliation(s)
- Enuo Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qilin Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qianqian Cheng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Luyi Ye
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Hao Ding
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Yiqun Ling
- Department of Nutrition, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zai-Si Ji
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| |
Collapse
|
11
|
Li A, Han X, Liu L, Zhang G, Du P, Zhang C, Li C, Chen B. Dairy products and constituents: a review of their effects on obesity and related metabolic diseases. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37724572 DOI: 10.1080/10408398.2023.2257782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Obesity has become a global public health problem that seriously affects the quality of life. As an important part of human diet, dairy products contain a large number of nutrients that are essential for maintaining human health, such as proteins, peptides, lipids, vitamins, and minerals. A growing number of epidemiological investigations provide strong evidence on dairy interventions for weight loss in overweight/obese populations. Therefore, this paper outlines the relationship between the consumption of different dairy products and obesity and related metabolic diseases. In addition, we dive into the mechanisms related to the regulation of glucose and lipid metabolism by functional components in dairy products and the interaction with gut microbes. Lastly, the role of dairy products on obesity of children and adolescents is revisited. We conclude that whole dairy products exert more beneficial effect than single milk constituent on alleviating obesity and that dairy matrix has important implications for metabolic health.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
12
|
Mora-Melgem JA, Arámburo-Gálvez JG, Cárdenas-Torres FI, Gonzalez-Santamaria J, Ramírez-Torres GI, Arvizu-Flores AA, Figueroa-Salcido OG, Ontiveros N. Dipeptidyl Peptidase IV Inhibitory Peptides from Chickpea Proteins ( Cicer arietinum L.): Pharmacokinetics, Molecular Interactions, and Multi-Bioactivities. Pharmaceuticals (Basel) 2023; 16:1109. [PMID: 37631024 PMCID: PMC10459228 DOI: 10.3390/ph16081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Chickpea (Cicer arietinum L.) peptides can inhibit dipeptidyl peptidase IV (DPP-IV), an important type 2 diabetes mellitus therapeutic target. The molecular interactions between the inhibitory peptides and the active site of DPP-IV have not been thoroughly examined, nor have their pharmacokinetic properties. Therefore, the predictions of legumin- and provicilin-derived DPP-IV inhibitory peptides, their molecular interactions with the active site of DPP-IV, and their pharmacokinetic properties were carried out. Ninety-two unique DPP-IV inhibitory peptides were identified. Papain and trypsin were the enzymes with the highest AE (0.0927) and lowest BE (6.8625 × 10-7) values, respectively. Peptide binding energy values ranged from -5.2 to -7.9 kcal/mol. HIS-PHE was the most potent DPP-IV inhibitory peptide and interacts with residues of the active sites S1 (TYR662) and S2 (GLU205/ARG125 (hydrogen bonds: <3.0 Å)), S2 (GLU205/GLU206 (electrostatic interactions: <3.0 Å)), and S2' pocket (PHE357 (hydrophobic interaction: 4.36 Å)). Most peptides showed optimal absorption (76.09%), bioavailability (89.13%), and were non-toxic (97.8%) stable for gastrointestinal digestion (73.9%). Some peptides (60.86%) could also inhibit ACE-I. Chickpea is a source of non-toxic and bioavailable DPP-IV-inhibitory peptides with dual bioactivity. Studies addressing the potential of chickpea peptides as therapeutic or adjunct agents for treating type 2 diabetes are warranted.
Collapse
Affiliation(s)
- José Antonio Mora-Melgem
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico; (J.A.M.-M.); (J.G.A.-G.); (F.I.C.-T.); (J.G.-S.); (G.I.R.-T.)
| | - Jesús Gilberto Arámburo-Gálvez
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico; (J.A.M.-M.); (J.G.A.-G.); (F.I.C.-T.); (J.G.-S.); (G.I.R.-T.)
| | - Feliznando Isidro Cárdenas-Torres
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico; (J.A.M.-M.); (J.G.A.-G.); (F.I.C.-T.); (J.G.-S.); (G.I.R.-T.)
| | - Jhonatan Gonzalez-Santamaria
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico; (J.A.M.-M.); (J.G.A.-G.); (F.I.C.-T.); (J.G.-S.); (G.I.R.-T.)
- Faculty of Health and Sports Sciences, University Foundation of the Andean Area, Pereira 66001, Colombia
| | - Giovanni Isaí Ramírez-Torres
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico; (J.A.M.-M.); (J.G.A.-G.); (F.I.C.-T.); (J.G.-S.); (G.I.R.-T.)
- Faculty of Physical Education and Sports, Autonomous University of Sinaloa, Culiacan 80013, Mexico
| | - Aldo Alejandro Arvizu-Flores
- Postgraduate Program in Health Sciences, Faculty of Biological and Health Sciences, University of Sonora, Hermosillo 83000, Mexico;
| | - Oscar Gerardo Figueroa-Salcido
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico; (J.A.M.-M.); (J.G.A.-G.); (F.I.C.-T.); (J.G.-S.); (G.I.R.-T.)
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
| | - Noé Ontiveros
- Clinical and Research Laboratory (LACIUS, CN), Department of Chemical, Biological, and Agricultural Sciences (DCQBA), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Mexico
| |
Collapse
|
13
|
Liang Z, Li H, Lu X, Lin G, Li Y, Zhang R. 3D-QSAR, in vitro assay and MD simulations studies on the design, bioactivities and different inhibitory modes of the novel DPP-IV inhibitory peptides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Canet F, Christensen JJ, Victor VM, Hustad KS, Ottestad I, Rundblad A, Sæther T, Dalen KT, Ulven SM, Holven KB, Telle-Hansen VH. Glycated Proteins, Glycine, Acetate, and Monounsaturated Fatty Acids May Act as New Biomarkers to Predict the Progression of Type 2 Diabetes: Secondary Analyses of a Randomized Controlled Trial. Nutrients 2022; 14:nu14235165. [PMID: 36501195 PMCID: PMC9738624 DOI: 10.3390/nu14235165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.
Collapse
Affiliation(s)
- Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
| | - Jacob J. Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Victor M. Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
- Department of Physiology, School of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Kristin S. Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Correspondence:
| |
Collapse
|
15
|
Suwanangul S, Aluko RE, Sangsawad P, Kreungngernd D, Ruttarattanamongkol K. Antioxidant and enzyme inhibitory properties of sacha inchi (Plukenetia volubilis) protein hydrolysate and its peptide fractions. J Food Biochem 2022; 46:e14464. [PMID: 36190151 DOI: 10.1111/jfbc.14464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
The objective of this study was to determine the in vitro activities such as antioxidant and inhibitions of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase of sacha inchi protein hydrolysate (SPH) and its membrane ultrafiltration peptide fractions. SPH was prepared after hydrolysis of sacha inchi protein using papain followed by separation into peptide fractions (F1: <1 kDa, F2: 1-3 kDa, F3: 3-5 kDa, and F4: 5-10 kDa) via ultrafiltration membranes. SPH and the peptide fractions were tested for multifunctional properties, specifically functional ability as antioxidants and enzyme inhibitors. Surface hydrophobicity was an important contributing factor to the activity of antioxidative peptides. The DPPH inhibitory activity of F4 was significantly higher (p < .05) than activities of the SPH and other fractions. The smaller peptides with <1 kDa size (F1) showed the most potent (p < .05) antioxidant properties based on the stronger scavenging of ABTS, DPPH, and superoxide radicals in addition to better attenuation of linoleic acid peroxidation. Moreover, the F1 was also the strongest inhibitor of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase based on the lower IC50 values. It was concluded that the smaller size of the F1 peptides was the main determinant of its strong antioxidant and enzyme inhibition potency, which could be taken as an advantage to formulate functional foods and nutraceuticals with potential activities in ameliorating some of the chronic human diseases. PRACTICAL APPLICATIONS: The results of present study indicate that SPH and its ultrafiltration fractions are potential sources of antihypertensive, antidiabetic, inhibition of POP, reduced cholesterol, and strong antioxidant peptides. The strong angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme inhibitory efficiency of the F1 peptides (MW < 1 kDa) suggest potential utility as an antihypertensive, antidiabetic agent, reduce cholesterol and brain plasticity and memory formation because the small peptide size could enhance absorption from the gastrointestinal tract. Overall, results from this study indicate that SPH, especially the F1 peptides may have applications as ingredients for the formulation of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai, Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Danchai Kreungngernd
- Division of Food Science and Technology, Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet, Thailand
| | - Khanitta Ruttarattanamongkol
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
16
|
Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022; 14:nu14204275. [PMID: 36296965 PMCID: PMC9607871 DOI: 10.3390/nu14204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The current bibliometric review evaluated recent papers that researched dietary protein sources to generate antidiabetic bioactive peptides/hydrolysates for the management of diabetes. Scopus and PubMed databases were searched to extract bibliometric data and, after a systematic four-step process was performed to select the articles, 75 papers were included in this review. The countries of origin of the authors who published the most were China (67%); Ireland (59%); and Spain (37%). The journals that published most articles on the subject were Food Chemistry (n = 12); Food & Function (n = 8); and Food Research International (n = 6). The most used keywords were ‘bioactive peptides’ (occurrence 28) and ‘antidiabetic’ (occurrence 10). The most used enzymes were Alcalase® (17%), Trypsin (17%), Pepsin, and Flavourzyme® (15% each). It was found that different sources of protein have been used to generate dipeptidyl peptidase IV (DPP-IV), α-amylase, and α-glucosidase inhibitory peptides. In addition to antidiabetic properties, some articles (n = 30) carried out studies on multifunctional bioactive peptides, and the most cited were reported to have antioxidant and antihypertensive activities (n = 19 and 17, respectively). The present review intended to offer bibliometric data on the most recent research on the production of antidiabetic peptides from dietary proteins to those interested in their obtention to act as hypoglycemic functional ingredients. The studies available in this period, compiled, are not yet enough to point out the best strategies for the production of antidiabetic peptides from food proteins and a more systematic effort in this direction is necessary to allow a future scale-up for the production of these possible functional ingredients.
Collapse
|
17
|
Munawaroh HSH, Gumilar GG, Berliana JD, Aisyah S, Nuraini VA, Ningrum A, Susanto E, Martha L, Kurniawan I, Hidayati NA, Koyande AK, Show PL. In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation. ENVIRONMENTAL RESEARCH 2022; 212:113002. [PMID: 35305983 DOI: 10.1016/j.envres.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Jerlita Dea Berliana
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Vidia Afina Nuraini
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
| | - Larasati Martha
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi City, Gunma, 371-8514, Japan
| | - Isman Kurniawan
- School of Computing, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Nur Akmalia Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia.
| |
Collapse
|
18
|
Identification of two novel dipeptidyl peptidase-IV inhibitory peptides from sheep whey protein and inhibition mechanism revealed by molecular docking. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Kumar A, Kumar M H S, C S R, Sabikhi L, Naik N L. Dipeptidyl peptidase‐IV inhibitory potential of alpha‐lactalbumin extracted from milk of
Gir
cows: A
Bos indicus
species. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ashok Kumar
- Rajasthan Cooperative Dairy Federation Jaipur Rajasthan 302 015India
| | - Sathish Kumar M H
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560 030India
| | - Rajani C S
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560 030India
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001India
| | - Laxmana Naik N
- Dairy Chemistry Section SRS‐ICAR‐NDRI Bengaluru Karnataka 560 030 India
| |
Collapse
|
20
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
21
|
Xie D, Du L, Lin H, Su E, Shen Y, Xie J, Wei D. In vitro-in silico screening strategy and mechanism of angiotensin I-converting enzyme inhibitory peptides from α-lactalbumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Generation, characterization and molecular binding mechanism of novel dipeptidyl peptidase-4 inhibitory peptides from sorghum bicolor seed protein. Food Chem 2022; 369:130888. [PMID: 34474286 DOI: 10.1016/j.foodchem.2021.130888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022]
Abstract
Food proteins and their constituent peptides impart huge health benefits besides their nutritional attributes. Sorghum bicolor protein hydrolysates (SPH) and derived bioactive peptides generated by simulated gastrointestinal digestion were studied for DPP-4 inhibitory properties using in vitro and in situ assays. Identified peptides, LSICGEESFGTGSDHIR (PEP1), SLGESLLQEDVEAHK (PEP2) and QLRDIVDK (PEP4) displayed potent DPP-4 inhibition with IC50 values of 73.5, 82.5 and 8.55 µM respectively. DPP-4 inhibition mechanism by the peptides was investigated by DPP4-peptide inhibition kinetics, molecular docking and microscale thermophoresis binding studies. The peptides bound to DPP-4 with micromolar affinities and PEP4 showed significantly increased affinity. The mixed type enzyme inhibition by peptides suggested that the peptides either block the active site of DPP-4 or changes the enzyme conformation via a secondary binding site. Overall, the results demonstrate that sorghum seeds are an adequate source of peptides with DPP-4 inhibitory properties that could be used in functional food formulations.
Collapse
|
23
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|