1
|
Wei F, Cai J, Mao Y, Wang R, Li H, Mao Z, Liao X, Li A, Deng X, Li F, Yuan Q, Ma H. Unveiling Metabolic Engineering Strategies by Quantitative Heterologous Pathway Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404632. [PMID: 39413026 PMCID: PMC11615770 DOI: 10.1002/advs.202404632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Indexed: 10/18/2024]
Abstract
Constructing efficient cell factories requires the rational design of metabolic pathways, yet quantitatively predicting the potential pathway for breaking stoichiometric yield limit in hosts remains challenging. This leaves it uncertain whether the pathway yield of various products can be enhanced to surpass the stoichiometric yield limit and whether common strategies exist. Here, a high-quality cross-species metabolic network model (CSMN) and a quantitative heterologous pathway design algorithm (QHEPath) are developed to address this challenge. Through systematic calculations using CSMN and QHEPath, 12,000 biosynthetic scenarios are evaluated across 300 products and 4 substrates in 5 industrial organisms, revealing that over 70% of product pathway yields can be improved by introducing appropriate heterologous reactions. Thirteen engineering strategies, categorized as carbon-conserving and energy-conserving, are identified, with 5 strategies effective for over 100 products. A user-friendly web server is developed to quantitatively calculate and visualize the product yields and pathways, which successfully predicts biologically plausible strategies validated in literature for multiple products.
Collapse
Affiliation(s)
- Fan Wei
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jingyi Cai
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Yufeng Mao
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Ruoyu Wang
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Haoran Li
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Zhitao Mao
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Xiaoping Liao
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Aonan Li
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
- School of Biological EngineeringTianjin University of Science and TechnologyTianjin300457China
| | - Xiaogui Deng
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
- School of Biological EngineeringTianjin University of Science and TechnologyTianjin300457China
| | - Feiran Li
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Qianqian Yuan
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| | - Hongwu Ma
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- National Technology Innovation Center for Synthetic BiologyTianjin300308China
| |
Collapse
|
2
|
Kwon SJ, Park CB, Lee PC. Genomic Insights into the Role of cAMP in Carotenoid Biosynthesis: Enhancing β-Carotene Production in Escherichia coli via cyaA Deletion. Int J Mol Sci 2024; 25:12796. [PMID: 39684505 DOI: 10.3390/ijms252312796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The gamma-ray-induced random mutagenesis of an engineered β-carotene-producing Escherichia coli XL1-Blue resulted in the variant Ajou 45, which exhibits significantly enhanced β-carotene production. The whole-genome sequencing of Ajou 45 identified 55 mutations, notably including a reduction in the copy number of cyaA, encoding adenylate cyclase, a key enzyme regulating intracellular cyclic AMP (cAMP) levels. While the parental XL1-Blue strain harbors two copies of cyaA, Ajou 45 retains only one, potentially leading to reduced intracellular cAMP concentrations. This reduction may alleviate catabolite repression and redirect metabolic flux toward the β-carotene biosynthesis pathway. To validate this mechanistic insight, a targeted cyaA knockout was engineered in XL1-Blue, and its β-carotene production and growth phenotypes were compared with those of Ajou 45 and XL1-Blue. The findings demonstrated that a reduced cyaA copy number substantially enhances β-carotene biosynthesis by modulating cAMP-mediated regulatory networks. This study highlights the efficacy of integrating random mutagenesis with integrative genomic analysis for microbial strain engineering and presents a novel strategy for enhancing carotenoid production in E. coli.
Collapse
Affiliation(s)
- Soon-Jae Kwon
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Huang N, Wang Z, Xiao X, Gai T, Zhao D, Liu L, Wu W. Utilizing Microbial Electrochemical Methods to Enhance Lycopene Production in Rhodopseudomonas palustris. Foods 2024; 13:3811. [PMID: 39682883 DOI: 10.3390/foods13233811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Utilizing Rhodopseudomonas palustris (R. pal), this study constructed a dual-chamber microbial electrosynthesis system, based on microbial electrolysis cells, that was capable of producing lycopene. Cultivation within the electrosynthesis chamber yielded a lycopene concentration of 282.3722 mg/L when the optical density (OD) reached 0.6, which was four times greater than that produced by original strains. The mutant strain showed significantly higher levels of extracted riboflavin compared to the wild-type strain, and the riboflavin content of the mutant strain was 61.081 mg/L, which was more than 10 times that of the original strain. Furthermore, sequencing and analyses were performed on the mutant strains observed during the experiment. The results indicated differences in antibiotic resistance genes, carbohydrate metabolism-related genes, and the frequencies of functional genes between the mutant and original strains. The mutant strain displayed potential advantages in specific antibiotic resistance and carbohydrate degradation capabilities, likely attributable to its adaptation to electrogenic growth conditions. Moreover, the mutant strain demonstrated an enrichment of gene frequencies associated with transcriptional regulation, signal transduction, and amino acid metabolism, suggesting a complex genetic adaptation to electrogenic environments. This study presents a novel approach for the efficient and energy-conserving production of lycopene while also providing deeper insights into the genetic basis of electro-resistance genes.
Collapse
Affiliation(s)
- Ningxin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257500, China
| | - Zhengxiao Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257500, China
| | - Xiao Xiao
- Advanced Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Te'er Gai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257500, China
| | - Dongyue Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257500, China
| | - Lu Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257500, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Jiang Y, Ye J, Hu Y, Zhang J, Li W, Zhou X, Yu M, Yu Y, Yang J, Yang W, Jiang J, Cui J, Hu Y. Extraction and Synthesis of Typical Carotenoids: Lycopene, β-Carotene, and Astaxanthin. Molecules 2024; 29:4549. [PMID: 39407479 PMCID: PMC11478001 DOI: 10.3390/molecules29194549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Carotenoids are tetraterpene compounds acting as precursors to vitamin A, with functions that include protecting eyesight, enhancing immunity, promoting cell growth and differentiation, and providing antioxidative benefits. Lycopene, β-carotene, and astaxanthin are particularly critical for health and have diverse applications in food, health products, and medicine. However, natural carotenoids are encased within cell structures, necessitating mechanical methods to disrupt the cell wall for their extraction and purification-a process often influenced by environmental conditions. Thus, improving the efficiency of carotenoid extraction from natural resources is of great interest. This review delves into the research progress made on the extraction processes, structures, and biological functions of carotenoids, focusing on lycopene, β-carotene, and astaxanthin. Traditional extraction methods primarily involve organic solvent-assisted mechanical crushing. With deeper research and technological advancements, more environmentally friendly solvents, advanced machinery, and suitable methods are being employed to enhance the extraction and purification of carotenoids. These improvements have significantly increased extraction efficiency, reduced preparation time, and lowered production costs, laying the groundwork for new carotenoid product developments.
Collapse
Affiliation(s)
- Yuxuan Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jingyi Ye
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Nanjing 210019, China; (Y.H.); (X.Z.)
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Xinghu Zhou
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Nanjing 210019, China; (Y.H.); (X.Z.)
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Jingwei Yang
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Nanjing 210006, China;
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (J.Z.); (W.L.); (M.Y.); (Y.Y.); (J.J.)
| |
Collapse
|
5
|
Qu CL, Jin H, Zhang B, Chen WJ, Zhang Y, Xu YY, Wang R, Lao YM. Haematococcus lacustris Carotenogensis: A Historical Event of Primary to Secondary Adaptations to Earth's Oxygenation. Life (Basel) 2024; 14:576. [PMID: 38792597 PMCID: PMC11121925 DOI: 10.3390/life14050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth's history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth's oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and β-cyclase (LCYB), which leave an important trace in Earth's oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth's oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial β-bicyclases evolved from β-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/β-monocyclase to β-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth's oxygenation.
Collapse
Affiliation(s)
- Cui Lan Qu
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518055, China
| | - Hui Jin
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China;
| | - Bing Zhang
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518055, China
| | - Wei Jian Chen
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518055, China
| | - Yang Zhang
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518055, China
| | - Yuan Yuan Xu
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518055, China
| | - Rui Wang
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518055, China
| | - Yong Min Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
7
|
Li Y, Wang X, Liu Z, Yang Y, Jiang L, Qu X, Pu X, Luo Y. Regioselective O-acetylation of various glucosides catalyzed by Escherichia coli maltose O-acetyltransferase. Appl Microbiol Biotechnol 2023; 107:7031-7042. [PMID: 37728626 DOI: 10.1007/s00253-023-12790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Escherichia coli, a well-known prokaryotic organism, has been widely employed as a versatile host for heterologous overexpression of proteins/biocatalysts and the production of pharmaceutically important intermediates/small molecules. However, some E. coli endogenous enzymes showing substrate promiscuity may disturb the heterologous metabolic flux, which will result in the reduction of substrates, intermediates, and target products. Here we reported an unexpected E. coli-catalyzed regioselective O-acetylation of various glucosides. The regioselectively O-acetylated products, 6'-O-acetyl-loganin and 6'-O-acetyl-loganic acid, were obtained and characterized from the enzymatic reaction in which the supernatants of E. coli expressing either CaCYP72A565 and CaCPR, the key enzymes involved in camptothecin biosynthesis, or empty vector were used as catalyst and loganin and loganic acid as independent substrate. An alkaloidal glucoside strictosamide was converted into the regioselectively O-acetylated product 6'-O-acetyl-strictosamide, implying substrate promiscuity of the E. coli-catalyzed O-acetylation reaction. Furthermore, 8 glucosides, including 5 iridoid glucosides and 3 flavonoid glucosides, were successfully converted into the regioselectively O-acetylated products by E. coli, indicating the wide substrate range for the unexpected E. coli-catalyzed O-acetylation. E. coli maltose O-acetyltransferase was demonstrated to be responsible for the mentioned regioselective O-acetylation at the 6-OH of the glucopyranosyl group of multiple classes of natural product glucosides through candidate acetyltransferase-encoding gene analysis, gene knock-out, gene complementation, and the relevant enzymatic reaction activity assays. The present study not only provides an efficient biocatalyst for regioselective O-acetylation but also notifies cautions for metabolic engineering and synthetic biology applications in E. coli. KEY POINTS: • 6-OH of glucosyl of multiple glucosides was regioselectively O-acetylated by E. coli. • Endogenous EcMAT is responsible for the regioselective O-acetylation reaction.
Collapse
Affiliation(s)
- Yi Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liangzhen Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xixing Qu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiang Pu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yinggang Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
8
|
Dayarathne K, Ishikawa T, Watanabe S, Ishikawa Y, Aikeranmu K, Kitagawaa H, Komatsubara N, Yamaguchi M, Kawai-Yamada M. Heterologous expression of mtf and mtc genes of Pseudanabaena foetida var. intermedia is sufficient to produce 2-methylisoborneol in Escherichia coli. Microbiol Spectr 2023; 11:e0256123. [PMID: 37732762 PMCID: PMC10580876 DOI: 10.1128/spectrum.02561-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Microbial volatile metabolite 2-methylisoborneol (2-MIB) causes odor and taste issues in drinking water, making it unappealing for human consumption. It has been suggested that 2-MIB biosynthesis consists of two main steps, namely, methylation of geranyl diphosphate into 2-methyl geranyl diphosphate by geranyl diphosphate methyl transferase (GPPMT) and subsequent cyclization into 2-MIB by 2-MIB synthase (MIBS). Pseudanabaena foetida var. intermedia is a 2-MIB-producing cyanobacterium whose GPPMT and MIBS enzymes are encoded by adjacent mtf and mtc genes. The present study identified a 2-MIB-related gene cluster composed of cnbA, mtf, mtc, and cnbB genes in P. foetida var. intermedia. The two homologous cyclic nucleotide-binding protein genes, cnbA and cnbB, were detected adjacent to the mtf and mtc genes, respectively. The nucleotide sequence of the cnbA-mtf-mtc-cnbB gene cluster showed 99.55% identity with 2-MIB synthesis-associated gene cluster of Pseudanabaena sp. dqh15. RT-PCR results revealed that mtf and mtc genes are co-expressed, while cnbA and cnbB genes are expressed independently in P. foetida var. intermedia. To investigate whether only mtf and mtc genes are sufficient for 2-MIB synthesis, the two-gene unit (mtf-mtc) was introduced into Escherichia coli strain JM109 via overexpression vector pYS1C. Gas chromatograph-mass spectrometry results showed that the E. coli strain transformed with mtf-mtc was able to produce 2-MIB. The intracellular 2-MIB level in P. foetida var. intermedia was higher than the extracellular 2-MIB level, while the transformed E. coli strain showed an opposite trend. Growth inhibition was observed in the 2-MIB-producing transformed E. coli strain. IMPORTANCE Contamination of drinking water with odiferous microbial metabolite 2-MIB is a worldwide concern. Removal of 2-MIB from drinking water burdens the water purification process. Therefore, it is important to search for alternative methods, such as suppressing the production of 2-MIB by aquatic microorganisms. For that, it is necessary to expand the current knowledge about the mechanism of 2-MIB synthesis at the genetic level. This study revealed that mtf and mtc genes of the 2-MIB-related gene cluster are transcribed as a single unit in P. foetida var. intermedia, and the expression of both mtf and mtc genes is essential and sufficient for 2-MIB synthesis in E. coli heterologous gene expression system.
Collapse
Affiliation(s)
- Kaushalya Dayarathne
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-chōme-1-1 Sakuragaoka, Setagaya-city, Tokyo, Japan
| | - Yuuma Ishikawa
- Institute for Molecular Physiology, Heinrich-Heine-Universität, Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Kadeer Aikeranmu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| | - Hina Kitagawaa
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| | - Natsumi Komatsubara
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, Japan
| |
Collapse
|
9
|
Fordjour E, Bai Z, Li S, Li S, Sackey I, Yang Y, Liu CL. Improved Membrane Permeability via Hypervesiculation for In Situ Recovery of Lycopene in Escherichia coli. ACS Synth Biol 2023; 12:2725-2739. [PMID: 37607052 DOI: 10.1021/acssynbio.3c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene biosynthesis is frequently hampered by downstream processing hugely due to its inability to be secreted out from the producing chassis. Engineering cell factories can resolve this issue by secreting this hydrophobic compound. A highly permeable E. coli strain was developed for a better release rate of lycopene. Specifically, the heterologous mevalonate pathway and crtEBI genes from Corynebacterium glutamicum were overexpressed in Escherichia coli BL21 (DE3) for lycopene synthesis. To ensure in situ lycopene production, murein lipoprotein, lipoprotein NlpI, inner membrane permease protein, and membrane-anchored protein in TolA-TolQ-TolR were deleted for improved membrane permeability. The final strain, LYC-8, produced 438.44 ± 8.11 and 136.94 ± 1.94 mg/L of extracellular and intracellular lycopene in fed-batch fermentation. Both proteomics and lipidomics analyses of secreted outer membrane vesicles were perfect indicators of hypervesiculation. Changes in the ratio of saturated fatty acids, unsaturated fatty acids, and cyclopropane fatty acids coupled with the branching and acyl chain lengths altered the membrane fatty acid composition. This ensured membrane fluidity and permeability for in situ lycopene release. The combinatorial deletion of these genes altered the cellular morphology. The structural and morphological changes in cell shape, size, and length were associated with changes in the mechanical strength of the cell envelope. The enhanced lycopene production and secretion mediated by improved membrane permeability established a cell lysis-free system for an efficient releasing rate and downstream processing, demonstrating the importance of vesicle-associated membrane permeability in efficient lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sihan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shijie Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Isaac Sackey
- Department of Biological Sciences, Faculty of Biosciences, University for Development Studies, P.O. Box TL1350, NT-0272-1946 Tamale, Ghana
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Du B, Sun M, Hui W, Xie C, Xu X. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12927-12942. [PMID: 37609695 DOI: 10.1021/acs.jafc.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene is a common carotenoid found mainly in ripe red fruits and vegetables that is widely used in the food industry due to its characteristic color and health benefits. Microbial synthesis of lycopene is gradually replacing the traditional methods of plant extraction and chemical synthesis as a more economical and productive manufacturing strategy. The biosynthesis of lycopene is a typical multienzyme cascade reaction, and it is important to understand the characteristics of each key enzyme involved and how they are regulated. In this paper, the catalytic characteristics of the key enzymes involved in the lycopene biosynthesis pathway and related studies are first discussed in detail. Then, the strategies applied to the key enzymes of lycopene synthesis, including fusion proteins, enzyme screening, combinatorial engineering, CRISPR/Cas9-based gene editing, DNA assembly, and scaffolding technologies are purposefully illustrated and compared in terms of both traditional and emerging multienzyme regulatory strategies. Finally, future developments and regulatory options for multienzyme synthesis of lycopene and similar secondary metabolites are also discussed.
Collapse
Affiliation(s)
- Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
11
|
Jiang W, Li Y, Peng H. Engineering Biology of Yeast for Advanced Biomanufacturing. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010010. [PMID: 36671581 PMCID: PMC9854945 DOI: 10.3390/bioengineering10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Advanced biomanufacturing has been widely involved in people's daily life, such as the production of molecules used as pharmaceuticals, in foods and beverages, and in bio-fuels [...].
Collapse
Affiliation(s)
- Wei Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huadong Peng
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
12
|
Kapoor B, Gulati M, Rani P, Kochhar RS, Atanasov AG, Gupta R, Sharma D, Kapoor D. Lycopene: Sojourn from kitchen to an effective therapy in Alzheimer's disease. Biofactors 2022; 49:208-227. [PMID: 36318372 DOI: 10.1002/biof.1910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Reports on a significant positive correlation between consumption of carotenoid-rich food and prevention of Alzheimer's disease (AD) led to the investigation of carotenoids for the treatment and prevention of AD. More than 1100 types of carotenoids are found naturally, out of which only around 50 are absorbed and metabolized in human body. Lycopene is one of the most commonly ingested members of fat-soluble carotenoid family that gives vegetables and fruits their red, yellow, or orange color. Lycopene has established itself as a promising therapy for AD owing to its neuroprotective activities, including antioxidant, anti-inflammatory, and antiamyloidogenic properties. In this review, we highlight the various in vitro and preclinical studies demonstrating the neuroprotective effect of lycopene. Also, some epidemiological and interventional studies investigating the protective effect of lycopene in AD have been discussed. Diving deeper, we also discuss various significant mechanisms, through which lycopene exerts its remissive effects in AD. Finally, to overcome the issue of poor chemical stability and bioavailability of lycopene, some of the novel delivery systems developed for lycopene have also been briefly highlighted.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Sharma
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | - Deepak Kapoor
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Punjab State Council for Science & Technology (PSCST), Chandigarh, India
| |
Collapse
|
13
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
14
|
Ramírez Rojas AA, Swidah R, Schindler D. Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges. Front Bioeng Biotechnol 2022; 10:982975. [PMID: 36185425 PMCID: PMC9523148 DOI: 10.3389/fbioe.2022.982975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial diversity is magnificent and essential to almost all life on Earth. Microbes are an essential part of every human, allowing us to utilize otherwise inaccessible resources. It is no surprise that humans started, initially unconsciously, domesticating microbes for food production: one may call this microbial domestication 1.0. Sourdough bread is just one of the miracles performed by microbial fermentation, allowing extraction of more nutrients from flour and at the same time creating a fluffy and delicious loaf. There are a broad range of products the production of which requires fermentation such as chocolate, cheese, coffee and vinegar. Eventually, with the rise of microscopy, humans became aware of microbial life. Today our knowledge and technological advances allow us to genetically engineer microbes - one may call this microbial domestication 2.0. Synthetic biology and microbial chassis adaptation allow us to tackle current and future food challenges. One of the most apparent challenges is the limited space on Earth available for agriculture and its major tolls on the environment through use of pesticides and the replacement of ecosystems with monocultures. Further challenges include transport and packaging, exacerbated by the 24/7 on-demand mentality of many customers. Synthetic biology already tackles multiple food challenges and will be able to tackle many future food challenges. In this perspective article, we highlight recent microbial synthetic biology research to address future food challenges. We further give a perspective on how synthetic biology tools may teach old microbes new tricks, and what standardized microbial domestication could look like.
Collapse
|
15
|
Yeo HC, Reddy VA, Mun BG, Leong SH, Dhandapani S, Rajani S, Jang IC. Comparative Transcriptome Analysis Reveals Coordinated Transcriptional Regulation of Central and Secondary Metabolism in the Trichomes of Cannabis Cultivars. Int J Mol Sci 2022; 23:8310. [PMID: 35955443 PMCID: PMC9368916 DOI: 10.3390/ijms23158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Cannabis is one of the few plant genera capable of producing cannabinoids, the effects of which are synergized by terpene interactions. As the biosynthesis of both metabolite classes requires the same intracellular feedstocks, this work describes the coordinated regulation of global metabolic pathways that allows for their joint copious production in vivo. To this end, a transcriptomics-based approach to characterize the glandular trichomes of five Cannabis cultivars was pursued. Besides revealing metabolic traits that enhanced and proportionated the supply of critical carbon precursors, in-depth analysis showed significantly increased gene expression of two particular enzymes to meet the huge nicotinamide adenine dinucleotide phosphate (NADPH) demand of secondary metabolite production. Furthermore, it led to a hypothesis that the methyl-d-erythritol 4-phosphate pathway might be utilized more than the mevalonic acid pathway in Cannabis trichomes. While both pathways were found to be activated in a modular and calibrated way that reflected their broad participation in physiological processes, the genes for hexanoate, cannabinoid, and terpene biosynthesis were, in contrast, up-regulated in an en bloc and multi-loci manner due to their specific roles in secondary metabolite production. In addition, three new terpene synthases were characterized based on both in silico and experimental assays. Altogether, the study enhances the current understanding of secondary metabolite production in Cannabis cultivars, which may assist in their characterization and development.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
| | - Vaishnavi Amarr Reddy
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
| | - Bong-Gyu Mun
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
| | - Sing Hui Leong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
| | - Savitha Dhandapani
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
| | - Sarojam Rajani
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (H.C.Y.); (V.A.R.); (B.-G.M.); (S.H.L.); (S.D.)
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
16
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
17
|
Mobile CRISPR-Cas9 based anti-phage system in E. coli. Front Chem Sci Eng 2022; 16:1281-1289. [PMID: 35251747 PMCID: PMC8882345 DOI: 10.1007/s11705-022-2141-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 10/26/2022]
|
18
|
Zou D, Ye C, Min Y, Li L, Ruan L, Yang Z, Wei X. Production of a novel lycopene-rich soybean food by fermentation with Bacillus amyloliquefaciens. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Drasar PB, Khripach VA. Terpene Research Is Providing New Inspiration for Scientists. Molecules 2021; 26:molecules26185480. [PMID: 34576951 PMCID: PMC8465594 DOI: 10.3390/molecules26185480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Pavel B. Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
- Correspondence:
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Academician V. F. Kuprevich Street, BY-220141 Minsk, Belarus;
| |
Collapse
|
21
|
Park S, Cho SW, Lee Y, Choi M, Yang J, Lee H, Seo SW. Engineering Vibrio sp. SP1 for the production of carotenoids directly from brown macroalgae. Comput Struct Biotechnol J 2021; 19:1531-1540. [PMID: 33815690 PMCID: PMC7994440 DOI: 10.1016/j.csbj.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Macroalgae is regarded as a promising third-generation marine biomass that can be utilized as a sustainable feedstock for bio-industry due to the high sugar level and absence of lignin. Alginate, composed of 1,4-linked D-mannuronate (M) and L-guluronate (G), is one of the major carbohydrates in brown macroalgae. It is difficult to be assimilated by most industrial microorganisms. Therefore, developing engineered microorganisms that can utilize alginate as a feedstock in order to produce natural products from marine biomass is critical. In this study, we isolated, characterized, and sequenced Vibrio sp. SP1 which rapidly grows using alginate as a sole carbon source. We further engineered this strain by introducing genes encoding enzymes under the control of synthetic expression cassettes to produce lycopene and β-carotene which are attractive phytochemicals owing to the antioxidant property. We confirmed that the engineered Vibrio sp. SP1 could successfully produce 2.13 ± 0.37 mg L-1 of lycopene, 2.98 ± 0.43 mg L-1 of β -carotene, respectively, from 10 g L-1 of alginate as a sole carbon source. Furthermore, our engineered strain could directly convert 60 g L-1 of brown macroalgae Sargassum fusiforme into 1.23 ± 0.21 mg L-1 of lycopene without any pretreatment which had been vitally required for the previous productions. As the first demonstrated strain to produce high-value product from Sargassum, Vibrio sp. SP1 is evaluated to be a desirable platform for the brown macroalgae-based biorefinery.
Collapse
Affiliation(s)
- Sungwoo Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sung Won Cho
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yungyu Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Mincheol Choi
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hojun Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
22
|
Liu TT, Xiao H, Xiao JH, Zhong JJ. Impact of oxygen supply on production of terpenoids by microorganisms: State of the art. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Zhang Y, Chiu TY, Zhang JT, Wang SJ, Wang SW, Liu LY, Ping Z, Wang Y, Chen A, Zhang WW, Chen T, Wang Y, Shen Y. Systematical Engineering of Synthetic Yeast for Enhanced Production of Lycopene. Bioengineering (Basel) 2021; 8:bioengineering8010014. [PMID: 33477926 PMCID: PMC7833358 DOI: 10.3390/bioengineering8010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic biology allows the re-engineering of biological systems and promotes the development of bioengineering to a whole new level, showing great potential in biomanufacturing. Here, in order to make the heterologous lycopene biosynthesis pathway compatible with the host strain YSy 200, we evolved YSy200 using a unique Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system that is built in the Sc2.0 synthetic yeast. By inducing SCRaMbLE, we successfully identified a host strain YSy201 that can be served as a suitable host to maintain the heterologous lycopene biosynthesis pathway. Then, we optimized the lycopene biosynthesis pathway and further integrated into the rDNA arrays of YSy201 to increase its copy number. In combination with culturing condition optimization, we successfully screened out the final yeast strain YSy222, which showed a 129.5-fold increase of lycopene yield in comparison with its parental strain. Our work shows that, the strategy of combining the engineering efforts on both the lycopene biosynthesis pathway and the host strain can improve the compatibility between the heterologous pathway and the host strain, which can further effectively increase the yield of the target product.
Collapse
Affiliation(s)
- Yu Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China;
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Tsan-Yu Chiu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jin-Tao Zhang
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Shu-Jie Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Shu-Wen Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
| | - Long-Ying Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
| | - Zhi Ping
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Yong Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Ao Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Wen-Wei Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Tai Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Yun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
| | - Yue Shen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (T.-Y.C.); (S.-J.W.); (S.-W.W.); (L.-Y.L.); (Z.P.); (Y.W.); (A.C.); (W.-W.Z.); (Y.W.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; (J.-T.Z.); (T.C.)
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|
24
|
Buntru M, Hahnengress N, Croon A, Schillberg S. Plant-Derived Cell-Free Biofactories for the Production of Secondary Metabolites. FRONTIERS IN PLANT SCIENCE 2021; 12:794999. [PMID: 35154185 PMCID: PMC8832058 DOI: 10.3389/fpls.2021.794999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
Cell-free expression systems enable the production of proteins and metabolites within a few hours or days. Removing the cellular context while maintaining the protein biosynthesis apparatus provides an open system that allows metabolic pathways to be installed and optimized by expressing different numbers and combinations of enzymes. This facilitates the synthesis of secondary metabolites that are difficult to produce in cell-based systems because they are toxic to the host cell or immediately converted into downstream products. Recently, we developed a cell-free lysate derived from tobacco BY-2 cell suspension cultures for the production of recombinant proteins. This system is remarkably productive, achieving yields of up to 3 mg/mL in a one-pot in vitro transcription-translation reaction and contains highly active energy and cofactor regeneration pathways. Here, we demonstrate for the first time that the BY-2 cell-free lysate also allows the efficient production of several classes of secondary metabolites. As case studies, we synthesized lycopene, indigoidine, betanin, and betaxanthins, which are useful in the food, cosmetic, textile, and pharmaceutical industries. Production was achieved by the co-expression of up to three metabolic enzymes. For all four products, we achieved medium to high yields. However, the yield of betanin (555 μg/mL) was outstanding, exceeding the level reported in yeast cells by a factor of more than 30. Our results show that the BY-2 cell-free lysate is suitable not only for the verification and optimization of metabolic pathways, but also for the efficient production of small to medium quantities of secondary metabolites.
Collapse
Affiliation(s)
- Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Nils Hahnengress
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Alexander Croon
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Phytopathology, Justus Liebig University, Giessen, Germany
- *Correspondence: Stefan Schillberg,
| |
Collapse
|
25
|
Wang Z, Zhang R, Yang Q, Zhang J, Zhao Y, Zheng Y, Yang J. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:1-35. [PMID: 33934850 DOI: 10.1016/bs.aambs.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jintian Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
26
|
Li L, Liu Z, Jiang H, Mao X. Biotechnological production of lycopene by microorganisms. Appl Microbiol Biotechnol 2020; 104:10307-10324. [PMID: 33097966 DOI: 10.1007/s00253-020-10967-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Lycopene is a dark red carotenoid belonging to C40 terpenoids and is widely found in a variety of plants, especially ripe red fruits and vegetables. Lycopene has been shown to reduce the risk of prostate cancer, other cancers, and cardiovascular disease. It is one of the most widely used carotenoids in the healthcare product market. Currently, commercially available lycopene is mainly extracted from tomatoes. However, production of lycopene from plants is costly and environmentally unfriendly. To date, there have been many reports on the biosynthesis of lycopene by microorganisms, providing another route for lycopene production. This review discusses the lycopene biosynthetic pathway and natural and engineered lycopene-accumulating microorganisms, as well as their production of lycopene. The effects of different metabolic engineering strategies on lycopene accumulation are also considered. Furthermore, this work presents perspectives concerning the microbial production of lycopene, especially trends to construct microbial cell factories for lycopene production. KEY POINTS: • Recent achievements in the lycopene biosynthesis in microorganisms. • Review of lycopene biosynthetic metabolism engineering strategy. • Discuss the current challenges and prospects of using microorganisms to produce lycopene.
Collapse
Affiliation(s)
- Lei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|