1
|
Virtanen A, Spinelli FR, Telliez JB, O'Shea JJ, Silvennoinen O, Gadina M. JAK inhibitor selectivity: new opportunities, better drugs? Nat Rev Rheumatol 2024; 20:649-665. [PMID: 39251770 DOI: 10.1038/s41584-024-01153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Cytokines function as communication tools of the immune system, serving critical functions in many biological responses and shaping the immune response. When cytokine production or their biological activity goes awry, the homeostatic balance of the immune response is altered, leading to the development of several pathologies such as autoimmune and inflammatory disorders. Cytokines bind to specific receptors on cells, triggering the activation of intracellular enzymes known as Janus kinases (JAKs). The JAK family comprises four members, JAK1, JAK2, JAK3 and tyrosine kinase 2, which are critical for intracellular cytokine signalling. Since the mid-2010s multiple JAK inhibitors have been approved for inflammatory and haematological indications. Currently, approved JAK inhibitors have demonstrated clinical efficacy; however, improved selectivity for specific JAKs is likely to enhance safety profiles, and different strategies have been used to accomplish enhanced JAK selectivity. In this update, we discuss the background of JAK inhibitors, current approved indications and adverse effects, along with new developments in this field. We address the issue of JAK selectivity and its relevance in terms of efficacy, and describe new modalities of JAK targeting, as well as new aspects of JAK inhibitor action.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Francesca Romana Spinelli
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza Universitá di Roma, Rome, Italy
| | | | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Fimlab laboratories, Tampere, Finland
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Faris A, Ibrahim IM, Hadni H, Elhallaoui M. High-throughput virtual screening of phenylpyrimidine derivatives as selective JAK3 antagonists using computational methods. J Biomol Struct Dyn 2024; 42:7574-7599. [PMID: 37539779 DOI: 10.1080/07391102.2023.2240413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
In this study, we used phenylpyrimidine derivatives with known biological activity against JAK3, a critical tyrosine kinase enzyme involved in signaling pathways, to find similar compounds as potential treatments for rheumatoid arthritis. These inhibitors inhibited JAK3 activity by forming a covalent bond with the Cys909 residue, which resulted in a strong inhibitory effect. Phenylpyrimidine is considered a promising therapeutic target. For pharmacophore modeling, 39 phenylpyrimidine derivatives with high pIC50 (Exp) values were chosen. The best pharmacophore model produced 28 molecules, and the five-point common pharmacophore hypothesis from P HASE (DHRRR_1) revealed the requirement for a hydrogen bond donor feature, a hydrophobic group feature, and three aromatic ring features for further design. The validation of the pharmacophore model phase was performed through 3D-QSAR using partial least squares (P LS). The 3D-QSAR study produced two successful models, an atom-based model (R2 = 0.95; Q2 = 0.67) and a field-based model (R2 = 0.93; Q2 = 0.76), which were used to predict the biological activity of new compounds. The pharmacophore model successfully distinguished between active and inactive medications, discovered potential JAK3 inhibitors, and demonstrated validity with a ROC of 0. 77. ADME-Tox was used to eliminate compounds that might have adverse effects. The best pharmacokinetics and affinity derivatives were selected for covalent docking. A molecular dynamics simulation of the selected molecules and the protein complex was performed to confirm the stability of the interaction with JAK3, whereas MM/GBSA simulations further confirmed their binding affinity. By using the principle of retrosynthesis, we were able to map out a pathway for synthesizing these potential drug candidates. This study has the potential to offer valuable and practical insights for optimizing novel derivatives of phenylpyrimidine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Surgenor RR, Lee H. Synthesis of (Hetero)biaryls via Nickel Catalyzed Reductive Cross-Electrophile Coupling Between (Hetero)aryl Iodides and Bromides. Chemistry 2024; 30:e202401552. [PMID: 38723102 DOI: 10.1002/chem.202401552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/19/2024]
Abstract
(Hetero)biaryls are fundamental building blocks in the pharmaceutical industry and rapid access to these scaffolds is imperative for the success of numerous medicinal chemistry campaigns. Herein, a highly general, mild, and chemoselective reductive cross-electrophile coupling between (hetero)aryl iodides and heteroaryl bromides is reported. By employing more reactive (hetero)aryl halides, a broad range of successful substrates (45 examples) were identified. The reaction was also found to be chemoselective for C(sp2)-C(sp2) bond formation between (hetero)aryl iodides and bromides over (hetero)aryl chlorides, which were generally inert under the described reaction conditions. The efficiency of the procedure is also further demonstrated in parallel synthesis library format, on gram scale, as well as in the formal synthesis of Ruxolitinib, a potent JAK inhibitor. As such, we anticipate this method will find widespread utility in the assembly of (hetero)biaryls for medicinal chemistry efforts.
Collapse
Affiliation(s)
| | - Hyelee Lee
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Rodman EPB, Emch MJ, Hou X, Bajaj A, Pearson NA, John AJ, Ortiz Y, Bass AD, Singh S, Baldassarre G, Kaufmann SH, Weroha SJ, Hawse JR. Lestaurtinib's antineoplastic activity converges on JAK/STAT signaling to inhibit advanced forms of therapy resistant ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597753. [PMID: 38895264 PMCID: PMC11185641 DOI: 10.1101/2024.06.06.597753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ovarian cancer is the deadliest gynecological malignancy, owing to its late-stage diagnosis and high rates of recurrence and resistance following standard-of-care treatment, highlighting the need for novel treatment approaches. Through an unbiased drug screen, we identified the kinase inhibitor, lestaurtinib, as a potent antineoplastic agent for chemotherapy- and PARP-inhibitor (PARPi)-sensitive and -resistant ovarian cancer cells and patient derived xenografts (PDXs). RNA-sequencing revealed that lestaurtinib potently suppressed JAK/STAT signaling and lestaurtinib efficacy was shown to be directly related to JAK/STAT pathway activity in cell lines and PDX models. Most ovarian cancer cells exhibited constitutive JAK/STAT pathway activation and genetic loss of STAT1 and STAT3 resulted in growth inhibition. Lestaurtinib also displayed synergy when combined with cisplatin and olaparib, including in a model of PARPi resistance. In contrast, the most well-known JAK/STAT inhibitor, ruxolitinib, lacked antineoplastic activity against all ovarian cancer cell lines and PDX models tested. This divergent behavior was reflected in the ability of lestaurtinib to block both Y701/705 and S727 phosphorylation of STAT1 and STAT3, whereas ruxolitinib failed to block S727. Consistent with these findings, lestaurtinib additionally inhibited JNK and ERK activity, leading to more complete suppression of STAT phosphorylation. Concordantly, combinatorial treatment with ruxolitinib and a JNK or ERK inhibitor resulted in synergistic antineoplastic effects at dose levels where single agents were ineffective. Taken together, these findings indicate that lestaurtinib, and other treatments that converge on JAK/STAT signaling, are worthy of further pre-clinical and clinical exploration for the treatment of highly aggressive and advanced forms of ovarian cancer. Statement of significance Lestaurtinib is a novel inhibitor of ovarian cancer, including chemotherapy- and PARPi-resistant models, that acts through robust inhibition of the JAK/STAT pathway and synergizes with standard-of-care agents at clinically relevant concentrations.
Collapse
|
5
|
Yang P, He S, Ye L, Weng H. Transcription Factor ETV4 Activates AURKA to Promote PD-L1 Expression and Mediate Immune Escape in Lung Adenocarcinoma. Int Arch Allergy Immunol 2024; 185:910-920. [PMID: 38781935 DOI: 10.1159/000537754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| | - Shangxiang He
- Department of Medical Oncology, Shanghai Artemed Hospital, Shanghai, China
| | - Ling Ye
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| | - Heng Weng
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| |
Collapse
|
6
|
Potlabathini T, Pothacamuri MA, Bandi VV, Anjum M, Shah P, Molina M, Dutta N, Adzhymuratov O, Mathew M, Sadu V, Zahid SA, Lingamgunta H, Sahotra M, Nasiri SMZJ, Daguipa CDM. FDA-Approved Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) Inhibitors for Managing Rheumatoid Arthritis: A Narrative Review of the Literature. Cureus 2024; 16:e59978. [PMID: 38854342 PMCID: PMC11162266 DOI: 10.7759/cureus.59978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease causing chronic joint inflammation and, in more serious cases, organ involvement. RA typically affects people between the ages of 35 and 60; however, it can also afflict children younger than the age of 16 years and can also demonstrate a pattern of remission later in the disease course. Non-steroidal anti-inflammatory drugs, glucocorticoids, exercise, and patient education are all used in the management of RA, which is divided into symptomatic management and disease-modifying management (disease-modifying antirheumatic drugs) to reduce pain and inflammation, thereby preserving joint function. Janus kinase inhibitors (JAKis) have led to a substantial improvement in the management of RA. By specifically targeting the JAK-signal transducer and activator of transcription pathway, which is essential for immunological modulation, these inhibitors also demonstrate promise in treating various autoimmune illnesses, including inflammatory bowel diseases, giant cell arteritis, ankylosing spondylitis, and psoriatic arthritis. Tofacitinib, baricitinib, upadacitinib, peficitinib, delgocitinib, and filgotinib are examples of FDA-approved JAKis that have distinct properties and indications for treating a range of autoimmune illnesses. JAKis demonstrate a promising treatment approach for managing RA and other autoimmune diseases while enhancing patient outcomes and quality of life. However, due to major safety concerns and the need for long-term success, meticulous patient monitoring is essential.
Collapse
Affiliation(s)
| | | | | | - Mahnoor Anjum
- Medicine, King Edward Medical University, Lahore, PAK
| | | | - M Molina
- Internal Medicine, International Medical Graduates (IMG) Helping Hands, Newark, USA
| | - Nilashis Dutta
- General Medicine, North Bengal Medical College and Hospital, Siliguri, IND
| | | | - Midhun Mathew
- Internal Medicine, Pennsylvania Hospital, Philadelphia, USA
| | - Vatsalya Sadu
- Medicine and Surgery, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND
| | - Shiza A Zahid
- Medicine and Surgery, Jinnah Sindh Medical University, Karachi, PAK
| | - Harini Lingamgunta
- Medicine, All Saints University School of Medicine Dominica, Chicago, USA
| | - Monika Sahotra
- Internal Medicine, International Medical Graduates (IMG) Helping Hands, San Pablo, USA
| | | | | |
Collapse
|
7
|
Tariq S, Rahim F, Ullah H, Sarfraz M, Hussain R, Khan S, Khan MU, Rehman W, Hussain A, Bhat MA, Farooqi MK, Shah SAA, Iqbal N. Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents. Pharmaceuticals (Basel) 2024; 17:410. [PMID: 38675373 PMCID: PMC11053857 DOI: 10.3390/ph17040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.
Collapse
Affiliation(s)
- Sundas Tariq
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Hayat Ullah
- Institute of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Toba Tek Singh 36080, Pakistan;
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan;
| | - Misbah Ullah Khan
- Center for Nanosciences, University of Okara, Okara 56130, Pakistan;
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Kamran Farooqi
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China;
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia;
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot 12350, Pakistan;
| |
Collapse
|
8
|
Maji L, Sengupta S, Purawarga Matada GS, Teli G, Biswas G, Das PK, Panduranga Mudgal M. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers 2024:10.1007/s11030-023-10794-5. [PMID: 38236444 DOI: 10.1007/s11030-023-10794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Gourab Biswas
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
9
|
Wei XH, Liu YY. Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy. Front Pharmacol 2024; 14:1326281. [PMID: 38235120 PMCID: PMC10792058 DOI: 10.3389/fphar.2023.1326281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Disturbances in immunoregulation may lead to both cancer and autoimmune diseases. Many therapeutic drugs for autoimmune diseases also display anti-tumor efficacy. The Janus kinase/signal transducer and activator of transcription signaling pathways are involved in the secretion of more than 50 distinct cytokines, which have critical roles in inducing autoimmune diseases and tumorigenesis. Thus, Janus kinases have become classical immunotherapeutic targets for immune disease. More than 70 Janus kinase inhibitors have been approved as immunomodulatory drugs for clinical use, of which 12 are used in the treatment of autoimmune diseases. This systematic review aims to elucidate the anti-tumor role of clinically approved Janus kinase inhibitors that were primarily designed for the treatment of autoimmune diseases and their potential for clinical translation as cancer treatments.
Collapse
Affiliation(s)
- Xiao-Huan Wei
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Oncology Department, People’s Hospital of Peixian, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Liu
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
12
|
Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. Top Selling (2026) Small Molecule Orphan Drugs: A Journey into Their Chemistry. Int J Mol Sci 2023; 24:ijms24020930. [PMID: 36674441 PMCID: PMC9864910 DOI: 10.3390/ijms24020930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
This review describes, from a chemical point of view, the top "blockbuster" small molecule orphan drugs according to their forecasted sales in 2026. Orphan drugs are intended for the treatment, prevention, or diagnosis of a rare disease or condition. These molecules are mostly addressed to the treatment of rare forms of cancer. The respiratory and central nervous systems represent other common therapeutic subcategories. This work will show how the orphan drugs market has significantly grown and will account for a consistent part of prescriptions by 2026.
Collapse
|
13
|
Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front Pharmacol 2023; 14:1135145. [PMID: 37021053 PMCID: PMC10067607 DOI: 10.3389/fphar.2023.1135145] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India
| | - Anandhalakshmi Subramanian
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Santosh Kumar
- School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Palani Selvam
- School of Medicine, College of Medicine and Health Sciences, Jijiga University, Jijiga, Ethiopia
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| |
Collapse
|
14
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
15
|
Kwon S. Molecular dissection of Janus kinases as drug targets for inflammatory diseases. Front Immunol 2022; 13:1075192. [PMID: 36569926 PMCID: PMC9773558 DOI: 10.3389/fimmu.2022.1075192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The Janus kinase (JAK) family enzymes are non-receptor tyrosine kinases that phosphorylate cytokine receptors and signal transducer and activator of transcription (STAT) proteins in the JAK-STAT signaling pathway. Considering that JAK-STAT signal transduction is initiated by the binding of ligands, such as cytokines to their receptors, dysfunctional JAKs in the JAK-STAT pathway can lead to severe immune system-related diseases, including autoimmune disorders. Therefore, JAKs are attractive drug targets to develop therapies that block abnormal JAK-STAT signaling. To date, various JAK inhibitors have been developed to block cytokine-triggered signaling pathways. However, kinase inhibitors have intrinsic limitations to drug selectivity. Moreover, resistance to the developed JAK inhibitors constitutes a recently emerging issue owing to the occurrence of drug-resistant mutations. In this review, we discuss the role of JAKs in the JAK-STAT signaling pathway and analyze the structures of JAKs, along with their conformational changes for catalysis. In addition, the entire structure of the murine JAK1 elucidated recently provides information on an interaction mode for dimerization. Based on updated structural information on JAKs, we also discuss strategies for disrupting the dimerization of JAKs to develop novel JAK inhibitors.
Collapse
Affiliation(s)
- Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk, Republic of Korea
| |
Collapse
|
16
|
Roskoski R. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 2022; 183:106362. [PMID: 35878738 DOI: 10.1016/j.phrs.2022.106362] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742, United States.
| |
Collapse
|
17
|
Siriwaseree J, Sanachai K, Aiebchun T, Tabtimmai L, Kuaprasert B, Choowongkomon K. Synchrotron Fourier Transform Infrared Microscopy Spectra in Cellular Effects of Janus Kinase Inhibitors on Myelofibrosis Cancer Cells. ACS OMEGA 2022; 7:22797-22803. [PMID: 35811912 PMCID: PMC9260937 DOI: 10.1021/acsomega.2c02404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Janus kinase (JAK) deregulation of the JAK/signal transducers and activators of transcription pathway leads to myelofibrosis that can be treated by JAK inhibitors including Ruxolitinib and Tofacitinib. Even though both inhibitors are effective against myelofibrosis, each of them has a different mode of action in the cells. Ruxolitinib is an inhibitor for selective JAK1/2, and Tofacitinib is an inhibitor for JAK3. This study evaluated the chemical fingerprints of TF-1 cells after JAK inhibitor treatments by the synchrotron Fourier transform infrared microspectroscopy (S-FTIR) spectrum. Tofacitinib and Ruxolitinib treatments in TF-1 cells were applied with a chemical fingerprint approach in S-FTIR spectroscopy and in vitro cytotoxicity in a cell-based assay. Principal component analysis or PCA was utilized to classify three cell treatments with three biochemical alteration absorbances of lipid vibration by the C-H stretching, protein amide I that appeared from the C=O stretching, and a P=O phosphodiester bond from nucleic acids. The results showed that the inhibition effect of Ruxolitinib on the TF-1 cell lines was two-fold higher than Tofacitinib. PCA distinguishes untreated and drug-treated cells by detecting cellular biochemical alteration. The loading plots identify that proteins and nucleic acids were the different main components in disparate cell treatments. Tofacitinib was distinct from the others in lipid and nucleic acid. The second derivative spectra of the three molecular components had decreased lipid production and accumulation, changes in secondary structures in proteins, and a high level of RNA overexpression in cell treatment. The JAK inhibitors caused different spectroscopic biomarkers of the modifications of secondary protein conformation, stimulated cell lipid accumulation, and phosphorylation from untreated cells. The alteration of cellular biochemical components suggests that FTIR is a potential tool to analyze specific patterns of drug cellular responses at the molecular level.
Collapse
Affiliation(s)
- Jeeraprapa Siriwaseree
- Faculty
of Science, Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand
| | - Kamonpan Sanachai
- Faculty
of Science, Department of Biochemistry, Structural and Computational
Biology Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitinan Aiebchun
- Faculty
of Science, Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand
| | - Lueacha Tabtimmai
- Faculty
of Applied Science, Department of Biotechnology, King Mongkut’s University of Technology of North Bangkok, Bangkok 10800, Thailand
| | - Buabarn Kuaprasert
- Synchrotron
Light Research Institute (Public Organization), Nakhon Ratchasrima 30000, Thailand
| | - Kiattawee Choowongkomon
- Faculty
of Science, Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Zhan Z, Xu Z, Yu S, Feng J, Liu F, Yao P, Wu Q, Zhu D. Stereocomplementary Synthesis of a Key Intermediate for Tofacitinib via Enzymatic Dynamic Kinetic Resolution‐Reductive Amination. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhuangzhuang Zhan
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| |
Collapse
|
19
|
Werth VP, Fleischmann R, Robern M, Touma Z, Tiamiyu I, Gurtovaya O, Pechonkina A, Mozaffarian A, Downie B, Matzkies F, Wallace D. Filgotinib or lanraplenib in moderate to severe cutaneous lupus erythematosus: a phase 2, randomized, double-blind, placebo-controlled study. Rheumatology (Oxford) 2022; 61:2413-2423. [PMID: 34498056 PMCID: PMC9157055 DOI: 10.1093/rheumatology/keab685] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To explore the safety and efficacy of filgotinib (FIL), a Janus kinase 1 inhibitor, and lanraplenib (LANRA), a spleen kinase inhibitor, in cutaneous lupus erythematosus (CLE). METHODS This was a phase 2, randomized, double-blind, placebo-controlled, exploratory, proof-of-concept study of LANRA (30 mg), FIL (200 mg) or placebo (PBO) once daily for 12 weeks in patients with active CLE. At week 12, PBO patients were rerandomized 1:1 to receive LANRA or FIL for up to 36 additional weeks. RESULTS Of 47 randomized patients, 45 were treated (PBO, n = 9; LANRA, n = 19; FIL, n = 17). The primary endpoint [change from baseline in Cutaneous Lupus Erythematosus Disease Area and Severity Index Activity (CLASI-A) score at week 12] was not met. The least squares mean CLASI-A score change from baseline was -5.5 (s.e. 2.56) with PBO, -4.5 (1.91) with LANRA and -8.7 (1.85) with FIL. Numerical differences between FIL and PBO were greater in select subgroups. A ≥5-point improvement in the CLASI-A score at week 12 was achieved by 50.0%, 56.3% and 68.8% in the PBO, LANRA and FIL arms, respectively. A numerically greater proportion of patients in the FIL arm (50%) also achieved ≥50% improvement in the CLASI-A score at week 12 (37.5% PBO, 31.3% LANRA). Most adverse events (AEs) were mild or moderate in severity. Two serious AEs were reported with LANRA and one with FIL. CONCLUSION The primary endpoint was not met. Select subgroups displayed a numerically greater treatment response to FIL relative to PBO. LANRA and FIL were generally well tolerated. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT03134222.
Collapse
Affiliation(s)
- Victoria P Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Roy Fleischmann
- Department of Internal Medicine, Metroplex Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Zahi Touma
- Division of Rheumatology, Department of Medicine, Toronto Western Hospital; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | - Daniel Wallace
- Rheumatology, Cedars-Sinai/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14051001. [PMID: 35631587 PMCID: PMC9146299 DOI: 10.3390/pharmaceutics14051001] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Janus kinase (JAK) is a family of cytoplasmic non-receptor tyrosine kinases that includes four members, namely JAK1, JAK2, JAK3, and TYK2. The JAKs transduce cytokine signaling through the JAK-STAT pathway, which regulates the transcription of several genes involved in inflammatory, immune, and cancer conditions. Targeting the JAK family kinases with small-molecule inhibitors has proved to be effective in the treatment of different types of diseases. In the current review, eleven of the JAK inhibitors that received approval for clinical use have been discussed. These drugs are abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib, oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and upadacitinib. The aim of the current review was to provide an integrated overview of the chemical and pharmacological data of the globally approved JAK inhibitors. The synthetic routes of the eleven drugs were described. In addition, their inhibitory activities against different kinases and their pharmacological uses have also been explained. Moreover, their crystal structures with different kinases were summarized, with a primary focus on their binding modes and interactions. The proposed metabolic pathways and metabolites of these drugs were also illustrated. To sum up, the data in the current review could help in the design of new JAK inhibitors with potential therapeutic benefits in inflammatory and autoimmune diseases.
Collapse
|
21
|
Luo Y, Yang X, Basourakos SP, Zuo X, Wei D, Zhao J, Li M, Li Q, Feng T, Guo P, Jiang Y. Enzalutamide-Resistant Progression of Castration-Resistant Prostate Cancer Is Driven via the JAK2/STAT1-Dependent Pathway. Front Mol Biosci 2021; 8:652443. [PMID: 34746227 PMCID: PMC8570343 DOI: 10.3389/fmolb.2021.652443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/15/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies showed that CXCR7 expression was upregulated after enzalutamide (ENZ) treatment, and an increased level of CXCR7 could increase the invasion, migration, and angiogenesis of castration-resistant prostate cancer (CRPC) cells. This study demonstrated that the levels of p-JAK2, p-STAT1, C-Myc, and VEGFR2 were significantly reduced after CCX771, a specific CXCR7 inhibitor, treatment. This effect further increased after the combination treatment of ENZ and CCX771. Then, we verified that targeting the inhibition of JAK2 or STAT1 could remarkably increase apoptosis and DNA damage and decrease the migration of CRPC cells. More importantly, the combination treatment of ENZ + JAK2/STAT1 led to much greater suppression than the single-agent treatment of JAK2 or STAT1. Subcutaneous CRPC xenograft tumor growth was also reduced by single-agent ENZ treatment and single-agent FLUD, a specific STAT1 antagonist, treatment; but much superior effect was elicited by the combination treatment of ENZ + FLUD. The proliferative indices significantly decreased following combination treatment in tumor tissues compared with control-treatment tissues and single-agent-treatment tissues. Our results demonstrated that CXCR7, which signifies an androgen receptor (AR)-independent signaling pathway, caused CRPC progression via the downstream JAK2/STAT1 signal transduction cascade. Combined inhibition targeting both the AR and JAK2/STAT1 resulted in substantial tumor suppression due to the reduction in DNA damage repair ability and increment in apoptosis.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaobing Yang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Spyridon P Basourakos
- Department of Genitourinary, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xuemei Zuo
- Department of Genitourinary, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dechao Wei
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiankun Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pengju Guo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Advances on Greener Asymmetric Synthesis of Antiviral Drugs via Organocatalysis. Pharmaceuticals (Basel) 2021; 14:ph14111125. [PMID: 34832907 PMCID: PMC8625736 DOI: 10.3390/ph14111125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause many severe human diseases, being responsible for remarkably high mortality rates. In this sense, both the academy and the pharmaceutical industry are continuously searching for new compounds with antiviral activity, and in addition, face the challenge of developing greener and more efficient methods to synthesize these compounds. This becomes even more important with drugs possessing stereogenic centers as highly enantioselective processes are required. In this minireview, the advances achieved to improve synthetic routes efficiency and sustainability of important commercially antiviral chiral drugs are discussed, highlighting the use of organocatalytic methods.
Collapse
|
23
|
Wang ST, Tseng CW, Hsu CW, Tung CH, Huang KY, Lu MC, Lai NS. Reactivation of hepatitis B virus infection in patients with rheumatoid arthritis receiving tofacitinib. Int J Rheum Dis 2021; 24:1362-1369. [PMID: 34506078 DOI: 10.1111/1756-185x.14217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study was to investigate hepatitis B virus (HBV) reactivation in patients with rheumatoid arthritis (RA) receiving tofacitinib. METHOD This was a retrospective study performed in a regional teaching hospital in southern Taiwan. During January 2017 and December 2020, patients with a clinician-confirmed diagnosis of RA using tofacitinib for at least 3 months were enrolled. Serum HBV DNA levels and serum alanine aminotransferase were followed up around every 3 to 6 months to assess HBV reactivation. RESULTS A total of 98 patients with RA were enrolled, and eight were hepatitis B surface antigen positive (HBsAg+) (8.1%), 64 were HBsAg-negative (HBsAg-)/hepatitis B core antibody positive (HBcAb+) (65.3%). In the HBsAg+ patients, two patients received antiviral prophylaxis, and none of them had HBV reactivation or hepatitis flare-up. The HBV reactivation rate was 33.3% (2/6) in the HBsAg+ RA patient without antiviral prophylaxis. Among the HBsAg-/HBcAb+ patients, the HBV reactivation rate was 3.1% (2/64). The incidence rate of HBV reactivation was 153.8 per 1000 person-years for overall HBsAg+ patients and 250 per 1000 person-years after excluding patients receiving antiviral prophylaxis. The incidence rate was 11.2 per 1000 person-years for HBsAg-/HBcAb+ patients with RA receiving tofacitinib. CONCLUSION Tofacitinib could induce HBV reactivation in both HBsAg+ and HBsAg-/HBcAb+ RA patients. HBsAg+ patients receiving tofacitinib have a high incidence rate of HBV reactivation, which could be prevented by antiviral prophylaxis. Although the risk of reactivation is low in HBsAg-/HBcAb+ patients, closely monitoring HBV DNA and alanine aminotransferase should be suggested.
Collapse
Affiliation(s)
- Sz-Tsan Wang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chih-Wei Tseng
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chia-Wen Hsu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
24
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
25
|
Recent Trends in Enzyme Inhibition and Activation in Drug Design. Molecules 2020; 26:molecules26010017. [PMID: 33375159 PMCID: PMC7792938 DOI: 10.3390/molecules26010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
It is known that enzymes are involved in many pathological conditions, such as inflammation, diabetes, microbial infections, HIV, neoplastic, neglected diseases and others [...]
Collapse
|