1
|
Kubheka MX, Ndlovu SI, Mkhwanazi NP. Anti-HIV Activity and Immunomodulatory Properties of Fractionated Crude Extracts of Alternaria alternata. Microorganisms 2024; 12:1150. [PMID: 38930532 PMCID: PMC11205553 DOI: 10.3390/microorganisms12061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Developing new anti-human immunodeficiency virus (HIV) drug candidates that target different sites in HIV-1 replication, with better resistance profiles and lower drug toxicity, is essential to eradicating HIV. This study investigated the potential of fractionated crude extracts of Alternaria alternata as immunomodulatory or anti-HIV drug candidates. Solid-phase extraction (SPE) was used to fractionate A. alternata PO4PR2 using three different columns: MAX (Mixed-mode, strong Anion-eXchange), MCX (Mixed-mode, strong Cation-eXchange), and HLB (Hydrophilic-Lipophilic Balance) with methanol gradient methods (5%, 45%, and 95%). An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to assess the cell viability and cytotoxicity of the fractionated crude extract A. alternata PO4PR2 in the TZM-bl cell lines. This was followed by a luciferase-based antiviral assay to assess the antiviral activity of A. alternata PO4PR2. A time of addition (TOA) assay was performed to ascertain the mechanism of inhibition employed by the fractionated crude extract of A. alternata PO4PR2 in the HIV life cycle. The p24 titer was determined using an ELISA, while a luciferase-based antiviral assay was used to evaluate the HIV percentage inhibition for different HIV-1 replication cycles. The TOA assay was established using antiviral drugs that target different sites in the HIV replication cycle. These included maraviroc, azidothymidine, raltegravir, and amprenavir. The immunomodulatory effect of the fractionated crude extracts on CD4+ T cells was measured by a flow cytometric analysis, for which fluorochrome-labelled monoclonal antibodies were used as markers for activation (CD38 and HLA-DR) and exhaustion (PD-1). The MCX fraction demonstrated a more significant anti-HIV inhibition than that of the fractions generated in other columns, with an IC50 of 0.3619 µg/mL, an HIV inhibition of 77%, 5% HLB (IC50: 0.7232 µg/mL; HIV inhibition of 64%), and 5% MAX (IC50: 5.240 µg/mL; HIV inhibition of 67%). It was evident from the time of addition data that the crude extract and the 5% MCX fraction inhibited viral binding (68%), reverse transcription (75%), integration (98%), and proteolysis (77%). It was shown that A. alternata (the MCX fraction) have a significant inhibitory effect on reverse transcription (75% HIV inhibition) and integration (100% HIV inhibition). The 5% MCX (p = 0.0062), 5% HLB (p = 0.0269), and 5% MAX (p = 0.0117) fractionated A. alternata crude extracts had low levels of CD4+ T cell (CD38 + HLA-DR+) activation compared to those of the AZT treatment, while CD4+ T cell activation was insignificant. The 5% MAX and HLB A. alternata fractions may possess immunomodulatory compounds with less anti-HIV-1 activity. A. alternata could be a key source of innovative anti-HIV drugs with immunomodulatory characteristics.
Collapse
Affiliation(s)
- Mbali X. Kubheka
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Sizwe I. Ndlovu
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg 2092, South Africa;
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
2
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
3
|
Mokhtar N, Karunakaran T, Santhanam R, Abu Bakar MH, Jong VYM. Phenolics and triterpenoids from stem bark of Calophyllum lanigerum var. austrocoriaceum (Whitmore) P. F. Stevens and their cytotoxic activities. Nat Prod Res 2024; 38:873-878. [PMID: 37005001 DOI: 10.1080/14786419.2023.2196075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Genus Calophyllum is well-known for its phenolic constituents, especially coumarins, which have shown to have a wide range of significant biological activities. In this study, four known phenolic constituents and two triterpenoids have been isolated from the stem bark of Calophyllum lanigerum. The compounds were two pyranochromanone acids are known as caloteysmannic acid (1), isocalolongic acid (2), a simple dihydroxyxanthone, namely euxanthone (3), one coumarin named calanone (4), and two common triterpenoids, friedelin (5), and stigmasterol (6). Chromanone acids were reported for the first time in this Calophyllum species. Cytotoxic evaluations were carried out on n-hexane extract (87.14 ± 2.04 µg/mL; 81.46 ± 2.42 µg/mL) followed by the chromanone acids (1 [79.96 ± 2.39 µM; 83.41 ± 3.39 µM] & 2 [57.88 ± 2.34; 53.04 ± 3.18 µM]) against two cancerous cell lines, MDA-MB-231 and MG-63 cell lines, respectively. The results showed that all tested samples exhibited moderate cytotoxicity.
Collapse
Affiliation(s)
- Norisha Mokhtar
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rameshkumar Santhanam
- Faculty of Science and Marine Enviroment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Vivien Yi Mian Jong
- Centre for Applied Science Studies, Universiti Teknologi Mara, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
4
|
Khalymbadzha IA, Fatykhov RF, Butorin II, Sharapov AD, Potapova AP, Muthipeedika NJ, Zyryanov GV, Melekhin VV, Tokhtueva MD, Deev SL, Kukhanova MK, Mochulskaya NN, Tsurkan MV. Bioinspired Pyrano[2,3- f]chromen-8-ones: Ring C-Opened Analogues of Calanolide A: Synthesis and Anti-HIV-1 Evaluation. Biomimetics (Basel) 2024; 9:44. [PMID: 38248618 PMCID: PMC10813249 DOI: 10.3390/biomimetics9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
We have designed and synthesized a series of bioinspired pyrano[2,3-f]coumarin-based Calanolide A analogs with anti-HIV activity. The design of these new calanolide analogs involved incorporating nitrogen heterocycles or aromatic groups in lieu of ring C, effectively mimicking and preserving their bioactive properties. Three directions for the synthesis were explored: reaction of 5-hydroxy-2,2-dimethyl-10-propyl-2H,8H-pyrano[2,3-f]chromen-8-one with (i) 1,2,4-triazines, (ii) sulfonylation followed by Suzuki cross-coupling with (het)aryl boronic acids, and (iii) aminomethylation by Mannich reaction. Antiviral assay of the synthesized compounds showed that compound 4 has moderate activity against HIV-1 on enzymes and poor activity on the cell model. A molecular docking study demonstrates a good correlation between in silico and in vitro HIV-1 reverse transcriptase (RT) activity of the compounds when docked to the nonnucleoside RT inhibitor binding site, and alternative binding modes of the considered analogs of Calanolide A were established.
Collapse
Affiliation(s)
- Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ilya I. Butorin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Anastasia P. Potapova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Nibin Joy Muthipeedika
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Vsevolod V. Melekhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
- Department of Medical Biology and Genetics, Ural State Medical University, 620028 Yekaterinburg, Russia
| | - Maria D. Tokhtueva
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Sergey L. Deev
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | | | - Nataliya N. Mochulskaya
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | | |
Collapse
|
5
|
Anywar G, Muhumuza E. Bioactivity and toxicity of coumarins from African medicinal plants. Front Pharmacol 2024; 14:1231006. [PMID: 38273831 PMCID: PMC10809390 DOI: 10.3389/fphar.2023.1231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Coumarins are naturally occuring metabolites from plants and a few micro-organisms. They have been widely used in the food and drug industry in their natural or synthetic forms. Numerous coumarins possess several biological activities such as anti-inflammatory, anti-ulcers, anti-tumour, anti-microbial, anti-coagulant. The aim of this study was to assess the bioactivity, and toxicity of coumarins from African medicinal plants. Methods: We searched online databases and search engines such as PubMed, Google Scholar and Web of Science for key terms such as coumarins, toxicity, bioavailability, bioactivity with appropriate Boolean operators. Only full-length research articles published in English between 1956 to 2023 were reviewed. Results: We recorded 22 coumarins from 15 plant species from Africa. Most of the plant species (33%) were from North Africa. These were followed by East Africa at 21%, then West, and Central Africa at 18.2% each. Most of the coumarins (21.3%) were isolated from the entire plant and the leaves (19.1%) and most of them (46.7%) had some antimicrobial activity. Five coumarins viz osthole, pseudocordatolide C & calanolide, chartreusin and esculetin had either antitumor or anticancer activity. Six coumarins had varying levels and types of toxicity ranging from inhibiting blood clotting as anticoagulants, to cytotoxic effects, causing hyperventilation, tremor, & photophobia, pulmonary haemorrhage, carcinogenic activity, severe neurotoxicity, hepato- and phototoxicity. Conclusion: Several African medicinal plants are sources of various coumarins that possess several biological activities as well as toxicities. This calls for more research into their safety and efficacy because of their wide spread applications as therapeutic agents.
Collapse
Affiliation(s)
- Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
6
|
Mazzotta S, Rositano V, Senaldi L, Bernardi A, Allegrini P, Appendino G. Scalemic natural products. Nat Prod Rep 2023; 40:1647-1671. [PMID: 37439042 DOI: 10.1039/d3np00014a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: up to the end of 2022The area of scalemic natural products is often enigmatic from a mechanistic standpoint, since low optical purity is observed in compounds having multiple contiguous stereogenic centers resulting from mechanistically distinct biogenetic steps. A scalemic state is rarely the result of a sloppy enzymatic activity, rather resulting from the expression of antipodal enzymes/directing proteins or from the erosion of optical purity by enzymatic or spontaneous reactions. Evidence for these processes is critically reviewed, identifying the mechanisms most often associated to the enzymatic generation of scalemic natural products and also discussing analytical exploitations of natural products' scalemicity.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Vincenzo Rositano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Indena SpA, Via Don Minzoni 6, 20049 Settala, MI, Italy
| | - Luca Senaldi
- Indena SpA, Via Don Minzoni 6, 20049 Settala, MI, Italy
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
7
|
Ressler AJ, Frate M, Hontoria A, Ream A, Timms E, Li H, Stettler LD, Bollinger A, Poor JE, Parra MA, Ma H, Seeram NP, Meschwitz SM, Henry GE. Synthesis, anti-ferroptosis, anti-quorum sensing, antibacterial and DNA interaction studies of chromene-hydrazone derivatives. Bioorg Med Chem 2023; 90:117369. [PMID: 37320993 DOI: 10.1016/j.bmc.2023.117369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Nineteen chromene-hydrazone derivatives containing a variety of structural modifications on the hydrazone moiety were synthesized. Structure-activity correlations were investigated to determine the influence of structural variations on anti-ferroptosis, anti-quorum sensing, antibacterial, DNA cleavage and DNA binding properties. Ferroptosis inhibitory activity was determined by measuring the ability of the derivatives to reverse erastin-induced ferroptosis. Several of the derivatives were more effective than fisetin at inhibiting ferroptosis, with the thiosemicarbazone derivative being the most effective. Quorum sensing inhibition was evaluated using Vibrio harveyi, and both V. harveyi and Staphylococcus aureus were used to determine antibacterial activity. The semicarbazone and benzensulfonyl hydrazone derivatives showed moderate quorum sensing inhibition with IC50 values of 27 μM and 22 μM, respectively, while a few aryl hydrazone and pyridyl hydrazone derivatives showed bacterial growth inhibition, with MIC values ranging from 3.9 to 125 μM. In addition, the interaction of the hydrazone derivatives with DNA was investigated by gel electrophoresis, UV-Vis spectroscopy and molecular docking. All of the derivatives cleaved plasmid DNA and showed favorable interaction with B-DNA through minor groove binding. Overall, this work highlights a broad range of pharmacological applications for chromene-hydrazone derivatives.
Collapse
Affiliation(s)
- Andrew J Ressler
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Marissa Frate
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA
| | - Ana Hontoria
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA
| | - Anna Ream
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Eliza Timms
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren D Stettler
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Bollinger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Jenna E Poor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Michael A Parra
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Susan M Meschwitz
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA.
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
8
|
Wang M, Xu R, Liu Y, Wang J, Xu Q, Dai L, Xu H, Zhu Q, Zeng X. Iridium-Catalyzed Asymmetric Allylic Substitution Reaction of 4-Hydroxypyran-2-one. J Org Chem 2023. [PMID: 37133412 DOI: 10.1021/acs.joc.2c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pyranones have raised great concerns owing to their considerable applications in a variety of sectors. However, the development of direct asymmetric allylation of 4-hydroxypyran-2-ones is still restricted. Herein, we present an effective iridium-catalyzed asymmetric functionalization technique for the synthesis of 4-hydroxypyran-2-one derivatives over direct and efficient catalytic asymmetric Friedel-Crafts-type allylation by using allyl alcohols. The allylation products could be obtained with good to high yields (up to 96%) and excellent enantioselectivities (>99% ee). Therefore, the disclosed technique provides a new asymmetric synthetic strategy to explore pyranone derivatives in depth, thus providing an interesting approach for global application and further utilization in organic synthesis and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Meifang Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Ruigang Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Jiaqi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Qing Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Linlong Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Haonan Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
9
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
10
|
Popoola TD, Segun PA, Ekuadzi E, Dickson RA, Awotona OR, Nahar L, Sarker SD, Fatokun AA. West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19. Daru 2022; 30:191-210. [PMID: 35476297 PMCID: PMC9043090 DOI: 10.1007/s40199-022-00437-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The recent emergence of the COVID-19 pandemic (caused by SARS-CoV-2) and the experience of its unprecedented alarming toll on humanity have shone a fresh spotlight on the weakness of global preparedness for pandemics, significant health inequalities, and the fragility of healthcare systems in certain regions of the world. It is imperative to identify effective drug treatments for COVID-19. Therefore, the objective of this review is to present a unique and contextualised collection of antiviral natural plants or remedies from the West African sub-region as existing or potential treatments for viral infections, including COVID-19, with emphasis on their mechanisms of action. EVIDENCE ACQUISITION Evidence was synthesised from the literature using appropriate keywords as search terms within scientific databases such as Scopus, PubMed, Web of Science and Google Scholar. RESULTS While some vaccines and small-molecule drugs are now available to combat COVID-19, access to these therapeutic entities in many countries is still quite limited. In addition, significant aspects of the symptomatology, pathophysiology and long-term prognosis of the infection yet remain unknown. The existing therapeutic armamentarium, therefore, requires significant expansion. There is evidence that natural products with antiviral effects have been used in successfully managing COVID-19 symptoms and could be developed as anti-COVID-19 agents which act through host- and virus-based molecular targets. CONCLUSION Natural products could be successfully exploited for treating viral infections/diseases, including COVID-19. Strengthening natural products research capacity in developing countries is, therefore, a key strategy for reducing health inequalities, improving global health, and enhancing preparedness for future pandemics.
Collapse
Affiliation(s)
- Temidayo D Popoola
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Peter A Segun
- Department of Pharmacognosy, Faculty of Pharmacy, Olabisi Onabanjo University, Ogun State, Sagamu Campus, Nigeria
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita A Dickson
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Olanrewaju R Awotona
- Department of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Legacy University, No. 55, Kairaba Avenue, Fajara, Banjul, The Gambia
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany, ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Amos A Fatokun
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|
11
|
Benalia A, Abdeldjebar H, Badji TE. Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2022. [DOI: 10.17721/fujcv10i1p48-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the nationwide effort provided to combat the COVID-19 pandemic, we have yet to approve a specific antiviral treatment against the SARS-CoV-2. We have studied the molecular interactions between two anti-HIV-1 natural drugs, +(-) calanolide A and -(-) calanolide B, and the active site of 3CLpro through a computational docking method. Our promising results show that the two compounds of this study are potential inhibitors of the SARS-CoV-2 3CLpro through strong binding to its catalytic dyad. Considering its progress in clinical trials as an anti-HIV-1 treatment, we suggest that +(-) calanolide A is a good candidate for the treatment of COVID-19.
Collapse
|
12
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Kutateladze DA, Jacobsen EN. Cooperative Hydrogen-Bond-Donor Catalysis with Hydrogen Chloride Enables Highly Enantioselective Prins Cyclization Reactions. J Am Chem Soc 2021; 143:20077-20083. [PMID: 34812618 PMCID: PMC8717859 DOI: 10.1021/jacs.1c10890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cooperative asymmetric catalysis with hydrogen chloride (HCl) and chiral dual-hydrogen-bond donors (HBDs) is applied successfully to highly enantioselective Prins cyclization reactions of a wide variety of simple alkenyl aldehydes. The optimal chiral catalysts were designed to withstand the strongly acidic reaction conditions and were found to induce rate accelerations of 2 orders of magnitude over reactions catalyzed by HCl alone. We propose that the combination of strong mineral acids and chiral hydrogen-bond-donor catalysts may represent a general strategy for inducing enantioselectivity in reactions that require highly acidic conditions.
Collapse
Affiliation(s)
- Dennis A. Kutateladze
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Thanh NH, Phuong HT, Giang LNT, Giang NTQ, Ha NTT, Anh DTT, Cuong VD, Van Tuyen N, Van Kiem P. 4-(Dimethylamino)pyridine as an Efficient Catalyst for One-Pot Synthesis of 1,4-Pyranonaphthoquinone Derivatives viaMicrowave-Assisted Sequential Three Component Reaction in Green Solvent. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211053951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Novel 1,4-pyranonaphthoquinone derivatives were successfully synthesized via the microwave-assisted three-component reaction of 1,4-naphthoquinone, malononitrile, and various arylaldehydes in ethanol in the presence of 4-(dimethylamino)pyridine (DMAP) as a catalyst, and subsequently evaluated in terms of their antimicrobial and antifungal activities. This synthetic procedure has the notable advantages of environmental friendliness, short reaction time, good yield, and convenient operation.
Collapse
Affiliation(s)
- Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Hoang Thi Phuong
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Le Nhat Thuy Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Quynh Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Dang Thi Tuyet Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Vu Duc Cuong
- Viet Tri University of Industry, Viet Tri, Phu Tho, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
15
|
Comparative Antiseizure Analysis of Diverse Natural Coumarin Derivatives in Zebrafish. Int J Mol Sci 2021; 22:ijms222111420. [PMID: 34768849 PMCID: PMC8584229 DOI: 10.3390/ijms222111420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Coumarins are a well-known group of plant secondary metabolites with various pharmacological activities, including antiseizure activity. In the search for new antiseizure drugs (ASDs) to treat epilepsy, it is yet unclear which types of coumarins are particularly interesting as a systematic analysis has not been reported. The current study performed behavioral antiseizure activity screening of 18 different coumarin derivatives in the larval zebrafish pentylenetetrazole (PTZ) model using locomotor measurements. Activity was confirmed for seven compounds, which lowered seizure-like behavior as follows: oxypeucedanin 38%, oxypeucedanin hydrate 74%, notopterol 54%, nodakenetin 29%, hyuganin C 35%, daphnoretin 65%, and pimpinellin 60%. These coumarins, together with nodakenin, underwent further antiepileptiform analysis by local field potential recordings from the zebrafish opticum tectum (midbrain). All of them, except for nodakenetin, showed pronounced antiepileptiform activity, decreasing PTZ-induced elevation in power spectral density (PSD) by 83-89% for oxypeucedanin, oxypeucedanin hydrate, and notopterol, 77% for nodakenin, 26% for nodakenetin, 65% for hyuganin C, 88% for daphnoretin, and 81% for pimpinellin. These data demonstrate the potential of diverse coumarin scaffolds for ASD discovery. Finally, the structural differences between active and inactive coumarins were investigated in silico for oxypeucedanin hydrate and byacangelicin for their interaction with GABA-transaminase, a hypothetical target.
Collapse
|
16
|
Coumarin and Its Derivatives-Editorial. Molecules 2021; 26:molecules26206320. [PMID: 34684900 PMCID: PMC8538651 DOI: 10.3390/molecules26206320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
|
17
|
Abdelmohsen UR, Albohy A, Abdulrazik BS, Bayoumi SAL, Malak LG, Khallaf ISA, Bringmann G, Farag SF. Natural coumarins as potential anti-SARS-CoV-2 agents supported by docking analysis. RSC Adv 2021; 11:16970-16979. [PMID: 35479715 PMCID: PMC9032274 DOI: 10.1039/d1ra01989a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
COVID-19 is a global pandemic first identified in China, causing severe acute respiratory syndrome. One of the therapeutic strategies for combating viral infections is the search for viral spike proteins as attachment inhibitors among natural compounds using molecular docking. This review aims at shedding light on the antiviral potential of natural products belonging to the natural-products class of coumarins up to 2020. Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and the best 74 compounds were selected. Using virtual-screening methods, the selected compounds were investigated for potential inhibition of viral main protease (Mpro), viral methyltransferase (nsp16/10 complex), viral recognition binding domain (RBD) of S-protein, and human angiotensin-converting enzyme 2 (ACE2), which is the human receptor for viral S-protein targets, using molecular-docking studies. Promising potential results against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone 61111 New Minia City Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE) Suez Desert Road El-Sherouk City Cairo 11837 Egypt
| | - Basma S Abdulrazik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE) Suez Desert Road El-Sherouk City Cairo 11837 Egypt
| | - Soad A L Bayoumi
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Lourin G Malak
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Iman S A Khallaf
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Salwa F Farag
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmacognosy Department, College of Pharmacy, Taif University Taif Saudi Arabia
| |
Collapse
|