1
|
Sharma AD, Chhabra R, Rani J, Chauhan A, Kaur I, Kapoor G. Oil/water (O/W) nanoemulsions developed from essential oil extracted from wildly growing Calotropis gigantea (Linn.) Aiton F.: synthesis, characterization, stability and evaluation of anti-cancerous, anti-oxidant, anti-inflammatory and anti-diabetic activities. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2506-2527. [PMID: 39137303 DOI: 10.1080/09205063.2024.2384801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Calotropis gigantea essential oil is utilized in outmoded medicine, therapeutics, and the cosmetic industries. However, the extreme volatility, oxidation susceptibility, and instability of this oil restricts its application. Thus, encapsulation is a more effective method of shielding this oil from unfavorable circumstances. The creation of oil/water (O/W) nanoemulsions based on Calotropis gigantea essential oil (CEO), known as CNE (Calotropis gigantea essential oil nanoemulsions), and an assessment of its biological potential were the goals of this work. UV, fluorescence, and FT-IR methods were used for physiological characterization. Biological activities, including anti-inflammatory, anti-diabetic, and anti-cancer effects. Studies on the pharmacokinetics of CNE were conducted. CNEs encapsulation efficiency was found to be 92%. The CNE nanoemulsions had a spherical shape with polydispersity index of 0.531, size of 200 nm, and a zeta potential of -35.9 mV. Even after being stored at various temperatures for 50 days, CNE nanoemulsions remained stable. Numerous tests were used to determine the antioxidant capacity of CNE, and the following IC50 values (µl/mL) were found: iron chelating assay: 18, hydroxyl radical scavenging: 37, and nitric oxide radical scavenging activity: 58. The percentage of HeLa cells that remained viable after being treated with CNE was 41% at a higher dose of 1 µl. CNE inhibited α-amylase in a dose-dependent manner, with 72% inhibition at its higher dose of 250 µL. Research on the kinetics of drugs showed that nanoemulsions showed Higuchi pattern. This research showed potential use of Calotropis gigantea oil-based nanoemulsions in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Jyoti Rani
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Amrita Chauhan
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| | - Inderjeet Kaur
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| | - Gaurika Kapoor
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| |
Collapse
|
2
|
Shah M, Shahab M, Ullah S, Bibi S, Rahman NU, Jamil J, Arafat Y, Al-Harrasi A, Murad W, Shao H. Exploring the aroma profile and biomedical applications of Scutellaria nuristanica Rech. F.: A new insight as a natural remedy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155928. [PMID: 39126924 DOI: 10.1016/j.phymed.2024.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; Department of Botany, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan; Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Muhammad Shahab
- Department of Botany, University of Malakand Chakdara, Chakdara 18800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan; Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Najeeb Ur Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Johar Jamil
- Department of Microbiology, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan
| | - Yasir Arafat
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Habeeb A, Ramesh S, Shanmugam R. Calotropis procera and the Pharmacological Properties of Its Aqueous Leaf Extract: A Review. Cureus 2024; 16:e60354. [PMID: 38883127 PMCID: PMC11178124 DOI: 10.7759/cureus.60354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Calotropis procera (C. procera) is a versatile plant often used for fuel, fodder, wood, fiber, phytoremediation, medicine, and synthesis of nanoparticles. Its ability to tolerate abiotic stresses and its morphophysiological adaptation have made it popular worldwide. Currently, it is identified as an environmental weed across the world. C. procera owes its therapeutic qualities to the secondary metabolites like tannins, alkaloids, and phenols present in it. New synthetic drugs are being formulated by using these secondary metabolites as a prototype. This review aimed to provide a summary of the chemometric profile, toxicity, and pharmacological activities of the aqueous leaf extract of C. procera based on the current literature.
Collapse
Affiliation(s)
- Aisha Habeeb
- Conservative Dentistry and Endodontics, Sri Sai College of Dental Surgery, Hyderabad, IND
- Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Sindhu Ramesh
- Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| |
Collapse
|
4
|
Salaria P, Reddy M A. Network Pharmacology Approach to Identify the Calotropis Phytoconstituents' Potential Epileptic Targets and Evaluation of Molecular Docking, MD Simulation, and MM-PBSA Performance. Chem Biodivers 2024; 21:e202400255. [PMID: 38533537 DOI: 10.1002/cbdv.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy originates from unusual electrical rhythm within brain cells, causes seizures. Calotropis species have been utilized to treat a wide spectrum of ailments since antiquity. Despite chemical and biological investigations, there have been minimal studies on their anticonvulsant activity, and the molecular targets of this plant constituents are unexplored. This study aimed to investigate the plausible epileptic targets of Calotropis phytoconstituents through network pharmacology, and to evaluate their binding strength and stability with the identified targets. In detail, 125 phytoconstituents of the Calotropis plant (C. procera and C. gigantea) were assessed for their drug-likeness (DL), blood-brain-barrier (BBB) permeability and oral bioavailability (OB). Network analysis revealed that targets PTGS2 and PPAR-γ were ranked first and fourth, respectively, among the top ten hub genes significantly linked with antiepileptic drug targets. Additionally, docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) were employed to validate the compound-gene interactions. Docking studies suggested ergost-5-en-3-ol, stigmasterol and β-sitosterol exhibit stronger binding affinity and favorable interactions than co-crystallized ligands with both the targets. Furthermore, both MD simulations and MM-PBSA calculations substantiated the docking results. Combined data revealed that Calotropis phytoconstituents ergost-5-en-3-ol, stigmasterol, and β-sitosterol might be the best inhibitors of both PTGS2 and PPAR-γ.
Collapse
Affiliation(s)
- Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Amarendar Reddy M
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| |
Collapse
|
5
|
Bachhar V, Joshi V, Gangal A, Duseja M, Shukla RK. Identification of Bioactive Phytoconstituents, Nutritional Composition and Antioxidant Activity of Calyptocarpus vialis. Appl Biochem Biotechnol 2024; 196:1921-1947. [PMID: 37450214 DOI: 10.1007/s12010-023-04640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
This study is focused to highlight the phytochemical, nutrient content and in vitro antioxidant capacity of the wildly growing plant Calyptocarpus vialis (CV) of the Asteraceae family collected from the Garhwal region of India. Phytochemical and nutritional analysis of CV is done by qualitative and quantitative methods. Fourier-transform infrared spectroscopy (FT-IR) analysis confirmed the presence of phenols, alkanes, aliphatic primary amines, carboxylic acids, nitrile, aromatics and alcohols. Gas chromatography and mass spectroscopy (GC-MS) revealed the presence of terpenoids, plant sterols and phenols such as phytol (14.9%), stigmasterol (10.02%), viridiflorol (4.19%), squalene (2.54%) and various other phytochemicals. The plant's study reveals the existence of numerous nutritious elements, including proteins, vitamins, carbohydrates and amino acids. It also revealed the presence of the huge amount of phenolic content ⁓13.49 g in a 100-g dried CV plant sample. The antioxidant potential of methanolic extract of CV was estimated using DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging assay, phosphomolybdate assay and reducing power assay. The highest percentage of antioxidant activity determined from three assays is 74 to 87% for 1 mg of dry extract. It is observed that the CV extract act as a good antioxidant when compared to other plants of the Asteraceae family even at very low concentration of the sample. Hence, CV found in the foothills of Himalayas can be further explored as a source of potent bioactive compounds and natural and economical antioxidant for biomedical and immunity-boosting applications.
Collapse
Affiliation(s)
- Vishwajeet Bachhar
- Analytical Chemistry Lab, School of Physical Sciences, Department of Chemistry, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vibha Joshi
- Analytical Chemistry Lab, School of Physical Sciences, Department of Chemistry, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Avinash Gangal
- Analytical Chemistry Lab, School of Physical Sciences, Department of Chemistry, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Manisha Duseja
- Analytical Chemistry Lab, School of Physical Sciences, Department of Chemistry, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Ravi K Shukla
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India
| |
Collapse
|
6
|
Tegegn G, Melaku Y, Aliye M, Abebe A, Abdissa N, Meresa A, Degu S, Hunsen M, Hussein AA, Endale M. In vitro antimicrobial and antioxidant activities, essential oil composition, and in silico molecular modeling analysis of secondary metabolites from roots of Verbascum sinaiticum. Z NATURFORSCH C 2024; 79:25-39. [PMID: 38414256 DOI: 10.1515/znc-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024]
Abstract
Verbascum sinaiticum is locally used to treat wound, stomachache, viral infection, cancer, sunstroke fever, abdominal colic, diarrhea, hemorrhage, anthrax, and hepatitis. The objective of this study was to identify the compounds and to evaluate the antimicrobial and antioxidant activity of the extracts and isolated compounds from V. sinaiticum. The 1H-NMR, 13C-NMR, and DEPT-135 were used to elucidate the structures of isolated compounds. Essential oils were extracted by hydrodistillation method and their chemical analyses were performed by GC-MS. The broth microdilution method was used to evaluate the antimicrobial activity. The radical scavenging activity of the extracts and isolated compounds were evaluated using DPPH method. Silica gel column chromatographic separation of root extracts afforded seven known compounds: 3'-(4''-methoxy phenyl)-3'-oxo-propionyl hexadecanoate (1), harpagoside (2), pulverulentoside I (3), scrophuloside B4 (4), scropolioside A (5), scropolioside-D2 (6), and harpagide 6-O-β-glucoside (7), which are all reported from this species for the first time. The EO extracts from leaves and roots were the most susceptible to Streptococcus agalactiae, with a 2 mg/mL MIC. The EO from roots was effective against Candida albicans and Trichophyton mentagrophytes, with a MIC of 8 mg/mL. The MeOH and CH2Cl2/CH3OH (1:1) root extracts showed the maximum activity against S. epidermidis with MIC values of 0.25 mg/mL. The strongest antibacterial effects were demonstrated against Staphylococcus epidermidis, which exhibited a 0.0625 mg/mL MIC for compound 1. The strongest radical scavenging activity was exhibited by the methanol extract (IC50 = 3.4 μg/mL), and compounds 4, 6, 5, 3, 7, and 2 with IC50 values of 3.2, 3.38, 3.6, 3.8, 4.2, and 4.7 μg/mL, respectively, in comparison with ascorbic acid (IC50 = 1.3 μg/mL). The results of the molecular docking analysis of compounds revealed minimal binding energies range from -38.5 to -43.1 kJ/mol, -33.1 to -42.7 kJ/mol, -34.7 to -39.3.7 kJ/mol, -25.5 to -37.6 kJ/mol against human myeloperoxidase (PDB ID: 1DNU), murA enzyme (PDB ID: 1UAE), human topoisomerase IIβ (PDB ID: 4fm9), S. epidermidis FtsZ (PDB number: 4M8I) proteins, respectively. The docking results and the in vitro antibacterial activity are in good agreement. These findings show that the isolated compounds 2-7 can act as potential antioxidants and strong antibacterials against Staphylococcus aureus and S. epidermidis. As a result, V. sinaiticum root extracts have the potential to be effective in treating diseases caused by bacteria and free radicals, as long as further investigation has been suggested for the ultimate decision of this plant's potential candidate.
Collapse
Affiliation(s)
- Getachew Tegegn
- Department of Applied Chemistry, 125545 School of Applied Natural Science, Adama Science and Technology University , P.O. Box 1888, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, 125545 School of Applied Natural Science, Adama Science and Technology University , P.O. Box 1888, Adama, Ethiopia
| | - Muhdin Aliye
- Department of Applied Chemistry, 125545 School of Applied Natural Science, Adama Science and Technology University , P.O. Box 1888, Adama, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Drug Research and Development Directorate, 70605 Armauer Hansen Research Institute , P.O. Box 1242, Addis Ababa, Ethiopia
| | - Negera Abdissa
- Traditional and Modern Drug Research and Development Directorate, 70605 Armauer Hansen Research Institute , P.O. Box 1242, Addis Ababa, Ethiopia
| | - Asfaw Meresa
- Traditional and Modern Drug Research and Development Directorate, 70605 Armauer Hansen Research Institute , P.O. Box 1242, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Traditional and Modern Drug Research and Development Directorate, 70605 Armauer Hansen Research Institute , P.O. Box 1242, Addis Ababa, Ethiopia
| | - Mo Hunsen
- Department of Chemistry, 3475 Kenyon College , Gambier, OH 43022, USA
| | - Ahmed A Hussein
- Department of Chemistry, 70683 Cape Peninsula University of Technology , Bellville Campus, Bellville 7535, Western Cape, South Africa
| | - Milkyas Endale
- Traditional and Modern Drug Research and Development Directorate, 70605 Armauer Hansen Research Institute , P.O. Box 1242, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Ahmad Nejhad A, Alizadeh Behbahani B, Hojjati M, Vasiee A, Mehrnia MA. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci Rep 2023; 13:14716. [PMID: 37679486 PMCID: PMC10485245 DOI: 10.1038/s41598-023-42086-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Since the dawn of civilization, people have turned to plants as a safe and efficient form of treatment for a variety of diseases. It has long been known that Calotropis procera has the potential to treat a number of diseases. In this study, the C. procera leaf aqueous extract was obtained using the maceration method, and p-coumaric was found to be the main compound. The extract was rich in phenols (174.82 mg gallic acid equivalent/g) and flavonoids (1781.7 µg quercetin equivalent/g). The extract had high antioxidant properties, as indicated by the IC50 values obtained for 2,2-diphenyl-1-picrylhydrazyl (DPPH) (366.33 μg/mL) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (169.04 μg/mL), as well as the ferric ions reducing antioxidant power (FRAP) (1.67 μg ascorbic acid equivalent/g of the extract). The cytotoxicity of the extract was evaluated against the survival of HT 29 cells, and the IC50 was found to be 236.87 μg/mL. The most resistant and sensitive strains to the extract were Escherichia coli and Staphylococcus aureus, respectively. The morphological changes of these strains were demonstrated through scanning electron microscopy and confocal laser scanning microscopy. The C. procera extract could be therefore used as an antioxidant, antimicrobial, and anticancer agent.
Collapse
Affiliation(s)
- Armin Ahmad Nejhad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Alireza Vasiee
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Mehrnia
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
8
|
Bou Malhab LJ, Bajbouj K, Shehab NG, Elayoty SM, Sinoj J, Adra S, Taneera J, Saleh MA, Abdel-Rahman WM, Semreen MH, Alzoubi KH, Bustanji Y, El-Huneidi W, Abu-Gharbieh E. Potential anticancer properties of calotropis procera: An investigation on breast and colon cancer cells. Heliyon 2023; 9:e16706. [PMID: 37332907 PMCID: PMC10272338 DOI: 10.1016/j.heliyon.2023.e16706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Calotropis procera is a perennial flowering plant of the Apocynaceae family, traditionally used in medicine to treat various ailments. Recent investigations have revealed its potential therapeutic activities such as anti-inflammatory, gastroprotective, analgesic, anti-obesity, and anti-diabetic properties. RP-HPLC qualitatively and quantitatively evaluated the phenolic acids and flavonoids in the ethanolic extract at two different wavelengths, 280 and 330 nm. In addition, total phenolic and flavonoid contents were measured via spectrophotometric determination in addition to the antioxidant activity. The antiproliferative effects of C. procera were investigated on two cancer cell lines: human colon (HCT-116) and breast (MCF-7) cancer. Several methods were utilised to analyse the effectiveness of the plant extract on the cytotoxicity, apoptosis, cell cycle progression, genes involved in the cell cycle, and protein expression profiles of HCT-116 and MCF-7 cells. These included the MTT assay, Annexin V-FITC/PI, analysis of the cell cycle, and Western blot. Results indicated that ferulic and caffeic acids were the major compounds at λmax 280 nm (1.374% and 0.561%, respectively), while the major compounds at λmax 325 nm were kaempferol and luteolin (1.036% and 0.512%, respectively). The ethanolic extract had significantly higher antioxidant activity (80 ± 2.3%) compared to ascorbic acid (90 ± 3.1%). C. procera extract exhibited dose-dependent cell growth inhibition, with an estimated IC50 of 50 μg/mL for MCF-7 and 55 μg/mL for HCT-116 cells at 24 h. Annexin V-FITC/PI confirmed the induction of apoptosis. Remarkably, cell cycle arrest occurred at the sub-G1 phase in MCF-7 cells, while in HCT-116 cells, it was observed at the G2-M phase. The sub-G1 arrest was associated with dysregulation of Akt, p-AKT, mTOR, and p-mTOR proteins, as confirmed by the Western blot analysis, while downregulation of CDK1, cyclin B1, and survivin caused G2-M arrest.
Collapse
Affiliation(s)
- Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naglaa G. Shehab
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College, Dubai, 19099, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza; 12613, Egypt
| | - Salma M. Elayoty
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College, Dubai, 19099, United Arab Emirates
| | - Jithna Sinoj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Saryia Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah; 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah; 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M. Abdel-Rahman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Departement of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah; 27272, United Arab Emirates
| |
Collapse
|
9
|
Kato-Noguchi H, Kato M. Evolution of the Secondary Metabolites in Invasive Plant Species Chromolaena odorata for the Defense and Allelopathic Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030521. [PMID: 36771607 PMCID: PMC9919186 DOI: 10.3390/plants12030521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Chromolaena odorata (L.) R.M. King & H. Robinson is native to tropical America, and has naturalized in many other countries in tropical Asia, Austria, and West Africa. The species often forms dense thickets and reduces the native species diversity and population in the invasive ranges. The species is also considered as a noxious weed in agriculture fields, and listed in the 100 of the world's worst invasive alien species. The characteristics of its life-history such as the seed production rate, growth pattern, and adaptative ability to the environmental conditions may contribute to the invasiveness of the species. Possible evidence of the defense capacity against the natural enemy, and the allelopathic potential against the competitive plant species for C. odorata has been accumulated in the literature over three decades. The extracts, residues, and/or rhizosphere soil of C. odorata increased the mortality of various insects and parasitic nematodes, and decreased their population. The extracts, residues, and/or rhizosphere soil of C. odorata also inhibited the germination and growth of several plant species including the indigenous plant species in the invasive ranges of C. odorata. Toxic substances, pyrrolizidine alkaloids were found in the leaves and flowers of C. odorata. These pyrrolizidine alkaloids may work as the defense agents against the natural enemies. Several potential allelochemicals such as flavonoids, phenolic acids, and terpenoids were also found in the plant extracts of C. odorata. Some of these compounds may work as allelopathic agents of C. odorata and inhibit the germination and growth of the competitive plant species. These characteristics of C. odorata for the defense function against their natural enemies such as insects and parasitic nematodes, and allelopathic potential against the competitive native plant species may contribute to the invasiveness and naturalization of C. odorata in the new habitats as invasive plant species. However, it is necessary to determine the concentration of these allelochemicals in the neighboring environment of C. odorata such as the rhizosphere soil since allelochemicals are able to work only when they are released into the neighboring environment. It is the first review article focusing on the defense function and allelopathy of C. odorata.
Collapse
|
10
|
Morad MY, El-Sayed H, El-Khadragy MF, Abdelsalam A, Ahmed EZ, Ibrahim AM. Metabolomic Profiling, Antibacterial, and Molluscicidal Properties of the Medicinal Plants Calotropis procera and Atriplex halimus: In Silico Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:477. [PMID: 36771561 PMCID: PMC9920412 DOI: 10.3390/plants12030477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and Atriplex halimus (A. halimus). In both plants, 118 metabolites were identified using gas chromatography-mass spectrometry. Palmitic acid, stigmasterol, and campesterol were the most prevalent constituents. C. procera extract showed stronger antibacterial activity than A. halimus against Escherichia coli and Proteus mirabilis. Both extracts exhibited molluscicidal activity against Biomphalaria alexandrina, with LC50 values of C. procera (135 mg/L) and A. halimus (223.8 mg/L). Survival rates of snails exposed to sub-lethal concentrations (LC25) of C. procera and A. halimus extracts were 5% and 20%, respectively. The hatchability of snail eggs exposed to both extracts has been dramatically reduced. Both extracts significantly decreased the levels of alkaline phosphatase, acid phosphatase, total protein, and albumin in snails, as well as causing DNA damage and resulting in numerous hermaphrodite and digestive gland damages and distortions. Molecular docking showed palmitic acid binding with acid, alkaline, and alanine aminotransferases in treated digestive gland snails. In conclusion, C. procera and A. halimus have antibacterial and molluscicidal properties.
Collapse
Affiliation(s)
- Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt
| |
Collapse
|
11
|
El-Amier YA, Zaghloul NS, Abd-ElGawad AM. Bioactive Chemical Constituents of Matthiola longipetala Extract Showed Antioxidant, Antibacterial, and Cytotoxic Potency. SEPARATIONS 2023; 10:53. [DOI: 10.3390/separations10010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The exploration of bioactive compounds from natural resources attracts the attention of researchers and scientists worldwide. M. longipetala is an annual aromatic herb that emits a pleasant odor during the night. Regarding the chemical composition and biological characteristics, M. longipetala extracts are poorly studied. The current study aimed to characterize the chemical composition of M. longipetala methanol extract using GC-MS and determine its biological potencies, including its capacity for cytotoxicity and antioxidant and antibacterial activities. In this approach, 37 components were identified, representing 99.98% of the total mass. The major chemical components can be classified as oxygenated hydrocarbons (19.15%), carbohydrates (10.21%), amines (4.85%), terpenoids (12.71%), fatty acids and lipids (50.8%), and steroids (2.26%). The major identified compounds were ascaridole epoxide (monoterpene, 12.71%) and methyl (E)-octadec-11-enoate (ester of fatty acid, 12.21%). The extract of M. longipetala showed substantial antioxidant activity. Based on the DPPH and ABTS scavenging, the antioxidant activity of the extracted components of M. longipetala revealed that leaf extract is the most effective with IC50 values of 31.47 and 28.94 mg/L, respectively. On the other hand, the extracted plant showed low antibacterial activities against diverse bacterial species, viz., Escherichia coli, Klebsiella pneumonia, Staphylococcus epidermidis, S. haemolyticus, and S. aureus. The most potent antibacterial results were documented for leaf and flower extracts against E. coli and S. aureus. Additionally, the extract’s effectiveness against HepG2 cells was evaluated in vitro using the measures of MTT, DNA fragmentation, and cell proliferation cycle, where it showed considerable activity. Therefore, we can conclude that M. longipetala extract displayed improvement in cytocompatibility and cell migration properties. In conclusion, M. longipetala could be considered a potential candidate for various bioactive compounds with promising biological activities. However, further characterization of the identified compounds, particularly the major compounds, is recommended to evaluate their efficacy, modes of action, and safety.
Collapse
|
12
|
Chemical Composition, Antibacterial Test, and Antioxidant Activity of Essential Oils from Fresh and Dried Stropharia rugosoannulata. J CHEM-NY 2023. [DOI: 10.1155/2023/6965755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The essential oils, respectively, from fresh and dried Stropharia rugosoannulata fruiting bodies, an important edible mushroom, have been studied for their chemical composition, antibacterial capacity, and antioxidant activity. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS) combined with Kovats retention index. The oils’ antibacterial test was evaluated by the microdilution method against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and antioxidant activity was determined through DPPH radical scavenging activity and ferric reducing power. Twenty-nine components were identified from the fresh mushroom, and the compositions were mainly dominated by hydrocarbons (54.72%), acids (32.99%), esters (5.07%), and terpenic compounds (0.96%). Thirty-five components were identified from the dried sample, and acids (31.22%), terpenic compounds (28.7%), alcohols (12.7%), and ketones (10.48%) were the major compounds. Strong antibacterial capacity and obvious antioxidant activity were observed for both essential oils from the fresh and dried mushrooms.
Collapse
|
13
|
Rajkovic J, Novakovic R, Grujic-Milanovic J, Ydyrys A, Ablaikhanova N, Calina D, Sharifi-Rad J, Al-Omari B. An updated pharmacological insight into calotropin as a potential therapeutic agent in cancer. Front Pharmacol 2023; 14:1160616. [PMID: 37138852 PMCID: PMC10149670 DOI: 10.3389/fphar.2023.1160616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Calotropin is a pharmacologically active compound isolated from milkweed plants like Calotropis procera, Calotropis gigantea, and Asclepias currasavica that belong to the Asclepiadaceae family. All of these plants are recognised as medical traditional plants used in Asian countries. Calotropin is identified as a highly potent cardenolide that has a similar chemical structure to cardiac glycosides (such as digoxin and digitoxin). During the last few years, cytotoxic and antitumor effects of cardenolides glycosides have been reported more frequently. Among cardenolides, calotropin is identified as the most promising agent. In this updated and comprehensive review, we aimed to analyze and discuss the specific mechanisms and molecular targets of calotropin in cancer treatment to open new perspectives for the adjuvant treatment of different types of cancer. The effects of calotropin on cancer have been extensively studied in preclinical pharmacological studies in vitro using cancer cell lines and in vivo in experimental animal models that have targeted antitumor mechanisms and anticancer signaling pathways. The analyzed information from the specialized literature was obtained from scientific databases until December 2022, mainly from PubMed/MedLine, Google Scholar, Scopus, Web of Science, and Science Direct databases using specific MeSH search terms. The results of our analysis demonstrate that calotropin can be a potential chemotherapeutic/chemopreventive adjunctive agent in cancer pharmacotherapeutic management.
Collapse
Affiliation(s)
- Jovana Rajkovic
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radmila Novakovic
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelica Grujic-Milanovic
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nurzhanat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- *Correspondence: Daniela Calina, ; Javad Sharifi-Rad, ; Basem Al-Omari,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Daniela Calina, ; Javad Sharifi-Rad, ; Basem Al-Omari,
| | - Basem Al-Omari
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Daniela Calina, ; Javad Sharifi-Rad, ; Basem Al-Omari,
| |
Collapse
|
14
|
Nguyen TTT, Nguyen AV, Diep TT, Doan NN, Thi Nguyen TT. Essential oil profiles of seeds, peels, and leaves obtained from Limnocitrus littoralis (Miq.) swingle species, in the Southcentral coast of Vietnam. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Thanh-Tu Thi Nguyen
- Department of Organic Chemistry, University of Science at Hochiminh city, Hochiminh city, Vietnam
- Vietnam National University at Hochiminh City, Hochiminh City, Vietnam
| | - Anh Viet Nguyen
- Department of Organic Chemistry, University of Science at Hochiminh city, Hochiminh city, Vietnam
- Vietnam National University at Hochiminh City, Hochiminh City, Vietnam
| | - Tai The Diep
- Department of Microbiology and Immunology, Pasteur Institute in Ho Chi Minh City,Hochiminh City, Vietnam
| | - Nhuan Ngoc Doan
- Department of Organic Chemistry, University of Science at Hochiminh city, Hochiminh city, Vietnam
- Vietnam National University at Hochiminh City, Hochiminh City, Vietnam
| | - Thao-Tran Thi Nguyen
- Department of Organic Chemistry, University of Science at Hochiminh city, Hochiminh city, Vietnam
- Vietnam National University at Hochiminh City, Hochiminh City, Vietnam
| |
Collapse
|
15
|
Abd-ElGawad AM, Assaeed AM, El Gendy AENG, Dar BA, Elshamy AI. Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium. PLANTS (BASEL, SWITZERLAND) 2022; 12:110. [PMID: 36616238 PMCID: PMC9824887 DOI: 10.3390/plants12010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Volatile oils (VOs) composition of plants is affected by several exogenous and endogenous factors. Male and female plants of the dioecious species exhibit variation in the bioactive constituents' allocation. The chemical variation in the VOs between male and female plants is not well studied. In the present study, the chemical characterization of the VOs extracted from aerial parts of male and female ecospecies of Ochradenus arabicus was documented. Additionally, the extracted VOs were tested for their allelopathic activity against the weed Dactyloctenium aegyptium. Via GC-MS analysis, a total of 53 compounds were identified in both male and female plants. Among them, 49 compounds were identified from male plants, and 47 compounds were characterized in female plants. Isothiocyanates (47.50% in male and 84.32% in female) and terpenes (48.05% in male and 13.22% in female) were the main components of VOs, in addition to traces of carotenoid-derived compounds and hydrocarbons. The major identified compounds of male and female plants are m-tolyl isothiocyanate, benzyl isothiocyanate, butyl isothiocyanate, isobutyl isothiocyanate, carvone, and α-bisabolol, where they showed variation in the concentration between male and female plants. The O. arabicus VOs of the male plants attained IC50 values of 51.1, 58.1, and 41.9 μL L-1 for the seed germination, seedling shoot growth, and seedling root growth of the weed (D. aegyptium), respectively, while the females showed IC50 values of 56.7, 63.9, and 40.7 μL L-1, respectively. The present data revealed that VOs composition and bioactivity varied significantly with respect to the plant gender, either qualitatively or quantitatively.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdulaziz M. Assaeed
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | - Basharat A. Dar
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
16
|
El Gendy AENG, Essa AF, El-Rashedy AA, Elgamal AM, Khalaf DD, Hassan EM, Abd-ElGawad AM, Elgorban AM, Zaghloul NS, Alamery SF, Elshamy AI. Antiviral Potentialities of Chemical Characterized Essential Oils of Acacia nilotica Bark and Fruits against Hepatitis A and Herpes Simplex Viruses: In Vitro, In Silico, and Molecular Dynamics Studies. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212889. [PMID: 36365342 PMCID: PMC9656187 DOI: 10.3390/plants11212889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/12/2023]
Abstract
Acacia nilotica (synonym: Vachellia nilotica (L.) P.J.H.Hurter and Mabb.) is considered an important plant of the family Fabaceae that is used in traditional medicine in many countries all over the world. In this work, the antiviral potentialities of the chemically characterized essential oils (EOs) obtained from the bark and fruits of A. nilotica were assessed in vitro against HAV, HSV1, and HSV2. Additionally, the in silico evaluation of the main compounds in both EOs was carried out against the two proteins, 3C protease of HAV and thymidine kinase (TK) of HSV. The chemical profiling of the bark EOs revealed the identification of 32 compounds with an abundance of di- (54.60%) and sesquiterpenes (39.81%). Stachene (48.34%), caryophyllene oxide (19.11%), and spathulenol (4.74%) represented the main identified constituents of bark EO. However, 26 components from fruit EO were assigned, with the majority of mono- (63.32%) and sesquiterpenes (34.91%), where trans-caryophyllene (36.95%), Z-anethole (22.87%), and γ-terpinene (7.35%) represented the majors. The maximum non-toxic concentration (MNTC) of the bark and fruits EOs was found at 500 and 1000 µg/mL, respectively. Using the MTT assay, the bark EO exhibited moderate antiviral activity with effects of 47.26% and 35.98% and a selectivity index (SI) of 2.3 and 1.6 against HAV and HSV1, respectively. However, weak activity was observed via the fruits EO with respective SI values of 3.8, 5.7, and 1.6 against HAV, HSV1, and HSV2. The in silico results exhibited that caryophyllene oxide and spathulenol (the main bark EO constituents) showed the best affinities (ΔG = -5.62, -5.33, -6.90, and -6.76 kcal/mol) for 3C protease and TK, respectively. While caryophyllene (the major fruit EO component) revealed promising binding capabilities against both proteins (ΔG = -5.31, -6.58 kcal/mol, respectively). The molecular dynamics simulation results revealed that caryophyllene oxide has the most positive van der Waals energy interaction with 3C protease and TK with significant binding free energies. Although these findings supported the antiviral potentialities of the EOs, especially bark EO, the in vivo assessment should be tested in the intraoral examination for these EOs and/or their main constituents.
Collapse
Affiliation(s)
- Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed F. Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed A. El-Rashedy
- Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, Dokki, Giza 12622, Egypt
| | - Doaa D. Khalaf
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza 12622, Egypt
| | - Emad M. Hassan
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nouf S. Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1FD, UK
| | - Salman F. Alamery
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
17
|
Essential Oil of Ipomoea carnea: Chemical Profile, Chemometric Analysis, Free Radical Scavenging, and Antibacterial Activities. SUSTAINABILITY 2022. [DOI: 10.3390/su14159504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Essential oils (EOs) have been reported as a promising group of naturally extracted compounds due to their various reported biological activities. Ipomoea carnea is a widely distributed plant with many traditional uses worldwide. However, although the EOs of various Ipomea species have been reported, I. carnea remains poorly studied. Therefore, the present investigation aimed to characterize the chemical profile of the EO of I. carnea growing in Egypt via gas chromatography/mass spectroscopy (GC-MS) and correlate its profile with other reported species via chemometric analysis using agglomerative hierarchical clustering (AHC) and principal component analysis (PCA). In addition, the aim was to determine the antioxidant and antibacterial activities of the extracted EO. Depending on the GC-MS analysis, 31 compounds were identified, mainly terpenes (94.82), with traces of carotenoid and apocarotenoid-derived compounds. The major compounds were tau-cadinol (35.68%), α-cadinol (26.76%), spathulenol (8.11%), and caryophyllene oxide (6.56%), which were assigned as major compounds. The chemometric studies showed that the Egyptian ecospecies of I. carnea differs in chemical profile from those growing in Brazil, as well as those reported for other Ipomea species. The EO showed significant DPPH and ABTS radical scavenging abilities, with IC50 values of 33.69 and 40.86 mg L−1, respectively. Additionally, the I. carnea EO displayed significant inhibition against the growth of all tested bacterial strains, where it showed an MIC range of 82–1442 mg mL−1. Based on the current results, the I. carnea EO, particularly the major identified compounds, could be used as a potential eco-friendly green resource for antioxidant and antimicrobial activities. Therefore, further study is recommended to evaluate the biological significance of the main compounds, either individually or in combination, as well as assess their modes of action and safety.
Collapse
|
18
|
Mohan A, Shaji S, Padmanabhan S, Naisam S, Sreekumar N. The potentials of Calotropis procera against filarial elephantiasis: an in-silico approach. J Parasit Dis 2022; 46:384-394. [PMID: 35692472 PMCID: PMC9177934 DOI: 10.1007/s12639-021-01456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Lymphatic filariasis is one of the major diseases that belong to the category of neglected tropical illness. Filarial nematodes are the cause of the disease and are transmitted to humans via blood-feeding arthropod vectors. Drugs such as Albendazole, Ivermectin and diethylcarbamazine are administered either individually or in combination to overcome the progress of the lymphatic filariasis. These drugs have some minor side effects like temporary hair loss, dizziness, nausea etc. The filarial parasites have multifunctional proteins including the Glutathione-s-transferase (GST) enzyme. This study aims at the identification of a natural molecule that has the potential to bind with the GST enzyme, which plays a major role in detoxification of endogenous electrophilic compounds. Thus the binding interrupts the detoxification process within the filarial parasite, Brugia malayi. A medicinal plant Calotropis procera, owing to its anthelmintic properties was searched for the presence of potential phytocompounds. The phytocompounds were docked against the homology modeled GST enzyme using the MOE software. The results were screened and analyzed based on the Lipinski rule of 5. N-octanoate was the phytocompound obtained based on molecular docking, subjected to molecular dynamics. These results require further in vitro and in vivo validation to consider n-octanoate as a potential drug candidate for lymphatic filariasis treatment.
Collapse
Affiliation(s)
- Aswin Mohan
- Dept. of Computational Biology and Bioinformatics, Kariavattom Campus, University of Kerala, Trivandrum, Kerala India
| | - Shanitha Shaji
- Dept. of Computational Biology and Bioinformatics, Kariavattom Campus, University of Kerala, Trivandrum, Kerala India
| | - Sunitha Padmanabhan
- Dept. of Computational Biology and Bioinformatics, Kariavattom Campus, University of Kerala, Trivandrum, Kerala India
| | - Shahanas Naisam
- Accubits Invent Pvt. Ltd, The Pirates Square, Trivandrum, Kerala India
| | - Nidhin Sreekumar
- Accubits Invent Pvt. Ltd, The Pirates Square, Trivandrum, Kerala India
| |
Collapse
|
19
|
Cai J, Wang S, Gao Y, Wang Q. Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods 2022; 11:foods11111585. [PMID: 35681334 PMCID: PMC9180537 DOI: 10.3390/foods11111585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infected by Pectobacterium carotovorum subsp. carotovorum (Pcc), the quality of Chinese cabbage could severely decline. Using chemical bactericides to control Pcc could cause food safety problems. Thus, we investigated the optimum extraction conditions, antibacterial activity, chemical compounds and antibacterial mechanism of Polygonum orientale L. essential oil (POEO) against Pcc in order to search a new way to control Pcc. The optimum extraction conditions of POEO (soaking time 2.6 h, extraction time 7.7 h and ratio of liquid to solid 10.3 mL/g) were optimized by response surface methodology. The minimum inhibitory concentration (MIC) of POEO against Pcc was 0.625 mg/mL. The control efficiency of protective activity of POEO against Pcc was 74.67~92.67%, and its curative activity was 76.00~93.00%. Then, 29 compounds were obtained by GC-MS; the prime compounds of POEO were phytol, phytone, n-pentacosane, 1-octen-3-ol and β-ionone. It was verified that, compared with control samples, POEO destroyed cell morphology. It increased surface potential, increased hydrophobicity, damaged cell walls, destroyed the integrity and permeability of cell membrane, reduced membrane potential (MP), and changed membrane protein conformation. It inhibited the activities of pyruvate kinase (PK), succinate dehydrogenase (SDH) and adenosine triphosphatase (ATPase). Briefly, the results of this study demonstrate that POEO showed effective inhibitory activity against Pcc, thus POEO could have potential application in controlling Pcc.
Collapse
Affiliation(s)
- Jin Cai
- Institute of Applied Chemistry, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
- Correspondence:
| | - Shiqin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Yichen Gao
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| | - Qi Wang
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| |
Collapse
|
20
|
Antimicrobial, Antigenotoxicity, and Characterization of Calotropis procera and Its Rhizosphere-Inhabiting Actinobacteria: In Vitro and In Vivo Studies. Molecules 2022; 27:molecules27103123. [PMID: 35630600 PMCID: PMC9146570 DOI: 10.3390/molecules27103123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch–casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC–MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract’s antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60–1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.
Collapse
|
21
|
Abd-ElGawad AM, El-Amier YA, Bonanomi G, Gendy AENGE, Elgorban AM, Alamery SF, Elshamy AI. Chemical Composition of Kickxia aegyptiaca Essential Oil and Its Potential Antioxidant and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050594. [PMID: 35270064 PMCID: PMC8912309 DOI: 10.3390/plants11050594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
The exploration of new bioactive compounds from natural resources as alternatives to synthetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge, the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was designed to explore the EO chemical profile of K. aegyptiaca for the first time, as well as evaluate its antioxidant and antibacterial activities, particularly the extracts of this plant that have been reported to possess various biological activities. The EO was extracted from the aerial parts via hydrodistillation and then characterized by gas chromatography-mass spectrometry (GC-MS). The extracted EO was tested for its antioxidant activity via the reduction in the free radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In addition, the EO was tested as an antibacterial mediator against eight Gram-negative and Gram-positive bacterial isolates. Forty-three compounds were identified in the EO of K. aegyptiaca, with a predominance of terpenoids (75.46%). Oxygenated compounds were the main class, with oxygenated sesquiterpenes attaining 40.42% of the EO total mass, while the oxygenated monoterpenes comprised 29.82%. The major compounds were cuminic aldehyde (21.99%), caryophyllene oxide (17.34%), hexahydrofarnesyl acetone (11.74%), ar-turmerone (8.51%), aromadendrene oxide (3.74%), and humulene epoxide (2.70%). According to the IC50 data, the K. aegyptiaca EO revealed considerable antioxidant activity, with IC50 values of 30.48 mg L-1 and 35.01 mg L-1 for DPPH and ABTS, respectively. In addition, the EO of K. aegyptiaca showed more substantial antibacterial activity against Gram-positive bacterial isolates compared to Gram-negative. Based on the minimum inhibitory concentration (MIC), the EO showed the highest activity against Escherichia coli and Bacillus cereus, with an MIC value of 0.031 mg mL-1. The present study showed, for the first time, that the EO of K. aegyptiaca has more oxygenated compounds with substantial antioxidant and antibacterial activities. This activity could be attributed to the effect of the main compounds, either singular or synergistic. Thus, further studies are recommended to characterize the major compounds, either alone or in combination as antioxidants or antimicrobial agents, and evaluate their biosafety.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Correspondence: ; Tel.: +20-1003438980
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Giuliano Bonanomi
- Department of Agriculture, University of Naples Federico II, 80055 Naples, Italy;
| | | | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salman F. Alamery
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
22
|
Abd-ELGawad AM, Al-Rowaily SL, Assaeed AM, EI-Amier YA, El Gendy AENG, Omer E, Al-Dosari DH, Bonanomi G, Kassem HS, Elshamy AI. Comparative Chemical Profiles and Phytotoxic Activity of Essential Oils of Two Ecospecies of Pulicaria undulata (L.) C.A.Mey. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112366. [PMID: 34834729 PMCID: PMC8624369 DOI: 10.3390/plants10112366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/20/2023]
Abstract
The Asteraceae (Compositae) family is one of the largest angiosperm families that has a large number of aromatic species. Pulicaria undulata is a well-known medicinal plant that is used in the treatment of various diseases due to its essential oil (EO). The EO of both Saudi and Egyptian ecospecies were extracted via hydrodistillation, and the chemical compounds were identified by GC-MS analysis. The composition of the EOs of Saudi and Egyptian ecospecies, as well as other reported ecospecies, were chemometrically analyzed. Additionally, the phytotoxic activity of the extracted EOs was tested against the weeds Dactyloctenium aegyptium and Bidens pilosa. In total, 80 compounds were identified from both ecospecies, of which 61 were Saudi ecospecies, with a preponderance of β-pinene, isoshyobunone, 6-epi-shyobunol, α-pinene, and α-terpinolene. However, the Egyptian ecospecies attained a lower number (34 compounds), with spathulenol, hexahydrofarnesyl acetone, α-bisabolol, and τ--cadinol as the main compounds. The chemometric analysis revealed that the studied ecospecies and other reported species were different in their composition. This variation could be attributed to the difference in the environmental and climatic conditions. The EO of the Egyptian ecospecies showed more phytotoxic activity against D. aegyptium and B. pilosa than the Saudi ecospecies. This variation might be ascribed to the difference in their major constituents. Therefore, further study is recommended for the characterization of authentic materials of these compounds as allelochemicals against various weeds, either singular or in combination.
Collapse
Affiliation(s)
- Ahmed M. Abd-ELGawad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (D.H.A.-D.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Correspondence: ; Tel.: +966-562-680-864
| | - Saud L. Al-Rowaily
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (D.H.A.-D.)
| | - Abdulaziz M. Assaeed
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (D.H.A.-D.)
| | - Yasser A. EI-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (A.E.-N.G.E.G.); (E.O.)
| | - Elsayed Omer
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (A.E.-N.G.E.G.); (E.O.)
| | - Dakhil H. Al-Dosari
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (D.H.A.-D.)
| | - Giuliano Bonanomi
- Department of Agriculture, University of Naples Federico II, Portici, 80055 Naples, Italy;
| | - Hazem S. Kassem
- Department of Agricultural Extension and Rural Society, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
23
|
Shahin SM, Jaleel A, Alyafei MAM. The Essential Oil-Bearing Plants in the United Arab Emirates (UAE): An Overview. Molecules 2021; 26:6486. [PMID: 34770890 PMCID: PMC8587291 DOI: 10.3390/molecules26216486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Essential Oils (EOs) are expensive hydrocarbons produced exclusively by specific species in the plant kingdom. Their applications have deep roots in traditional herbal medicine, which lacks scientific evidence. Nowadays, more than ever, there is a growing global interest in research-based discoveries that maintain and promote health conditions. Consequently, EOs became a much attractive topic for both research and industry, with revenues reaching billions of dollars annually. In this work, we provide key guidance to all essential oil-bearing plants growing in the United Arab Emirates (UAE). The comprehensive data were collected following an extensive, up-to-date literature review. The results identified 137 plant species, including indigenous and naturalized ones, in the UAE, citing over 180 published research articles. The general overview included plant botanical names, synonyms, common names (Arabic and English), families and taxonomic authority. The study acts as a baseline and accelerator for research, industry and discoveries in multiple disciplines relying on essential oil-bearing plants.
Collapse
Affiliation(s)
- Suzan Marwan Shahin
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.M.S.); (A.J.)
- Research and Development Head, Umm Al Quwain University, Umm Al Quwain 536, United Arab Emirates
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.M.S.); (A.J.)
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.M.S.); (A.J.)
| |
Collapse
|
24
|
Oral and Topical Anti-Inflammatory and Antipyretic Potentialities of Araucaria bidiwillii Shoot Essential Oil and Its Nanoemulsion in Relation to Chemical Composition. Molecules 2021; 26:molecules26195833. [PMID: 34641376 PMCID: PMC8510361 DOI: 10.3390/molecules26195833] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Different parts of Araucaria bidiwillii (bunya pin) trees, such as nuts, seeds, bark, and shoots, are widely used in cooking, tea, and traditional medicines around the world. The shoots essential oil (EO) has not yet been studied. Herein, the chemical profile of A. bidiwillii shoots EO (ABSEO) was created by GC–MS analysis. Additionally, the in vivo oral and topical anti-inflammatory effect against carrageenan-induced models, as well as antipyretic potentiality of ABSEO and its nanoemulsion were evaluated. Forty-three terpenoid components were identified and categorized as mono- (42.94%), sesqui- (31.66%), and diterpenes (23.74%). The main compounds of the ABSEO were beyerene (20.81%), α-pinene (16.21%), D-limonene (14.22%), germacrene D (6.69%), β-humulene (4.14%), and sabinene (4.12%). The ABSEO and its nanoemulsion exhibited significant inflammation suppression in carrageenan-induced rat paw edema model, in both oral (50 and 100 mg/kg) and topical (5% in soyabean oil) routes, compared to the control and reference drugs groups. All the results demonstrated the significant inflammation reduction via the inflammatory cytokines (IL-1β and IL8), nitrosative (NO), and prostaglandin E2 (PGE2) supported by the histopathological studies and immunohistochemical assessment of MMP-9 and NF-κβ levels in paw tissues. Moreover, the oral administration of ABSEO and its nanoemulsion (50 and 100 mg/kg) exhibited antipyretic activity in rats, demonstrated by the inhibition of hyperthermia induced by intramuscular injection of brewer’s yeast. These findings advised that the use of ABSEO and its nanoemulsion against numerous inflammatory and hyperthermia ailments that could be attributed to its active constituents.
Collapse
|
25
|
Abd-ElGawad AM, Bonanomi G, Al-Rashed SA, Elshamy AI. Persicaria lapathifolia Essential Oil: Chemical Constituents, Antioxidant Activity, and Allelopathic Effect on the Weed Echinochloa colona. PLANTS 2021; 10:plants10091798. [PMID: 34579331 PMCID: PMC8466483 DOI: 10.3390/plants10091798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
The exploration of new green, ecofriendly bioactive compounds has attracted the attention of researchers and scientists worldwide to avoid the harmful effects of chemically synthesized compounds. Persicaria lapathifolia has been reported to have various bioactive compounds, while its essential oil (EO) has not been determined yet. The current work dealt with the first description of the chemical composition of the EO from the aerial parts of P. lapathifolia, along with studying its free radical scavenging activity and herbicidal effect on the weed Echinochloa colona. Twenty-one volatile compounds were identified via GC–MS analysis. Nonterpenoids were the main components, with a relative concentration of 58.69%, in addition to terpenoids (37.86%) and carotenoid-derived compounds (1.75%). n-dodecanal (22.61%), α-humulene (11.29%), 2,4-dimethylicosane (8.97%), 2E-hexenoic acid (8.04%), γ-nonalactone (3.51%), and limonene (3.09%) were characterized as main compounds. The extracted EO exhibited substantial allelopathic activity against the germination, seedling root, and shoot growth of the weed E. colona in a dose-dependent manner, showing IC50 values of 77.27, 60.84, and 33.80 mg L−1, respectively. In addition, the P. lapathifolia EO showed substantial antioxidant activity compared to ascorbic acid as a standard antioxidant. The EO attained IC50 values of 159.69 and 230.43 mg L−1, for DPPH and ABTS, respectively, while ascorbic acid exhibited IC50 values 47.49 and 56.68 mg L−1, respectively. The present results showed that the emergent leafy stems of aquatic plants such as P. lapathifolia have considerably low content of the EO, which exhibited substantial activities such as antioxidant and allelopathic activities. Further study is recommended to evaluate the effects of various environmental and climatic conditions on the production and composition of the EOs of P. lapathifolia.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +966-562680864
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah A. Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
26
|
Abd-ElGawad AM, Elgamal AM, EI-Amier YA, Mohamed TA, El Gendy AENG, I. Elshamy A. Chemical Composition, Allelopathic, Antioxidant, and Anti-Inflammatory Activities of Sesquiterpenes Rich Essential Oil of Cleome amblyocarpa Barratte & Murb. PLANTS 2021; 10:plants10071294. [PMID: 34202270 PMCID: PMC8308966 DOI: 10.3390/plants10071294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed to characterize the chemical composition of the C. amblyocarpa, collected from Egypt, and assess the allelopathic, antioxidant, and anti-inflammatory activities of its EO. The EO of C. amblyocarpa was extracted by hydrodistillation and characterized via gas chromatography–mass spectrometry (GC-MS). The chemometric analysis of the EO composition of the present studied ecospecies and the other reported ecospecies was studied. The allelopathic activity of the EO was evaluated against the weed Dactyloctenium aegyptium. Additionally, antioxidant and anti-inflammatory activities were determined. Forty-eight compounds, with a prespondence of sesquiterpenes, were recorded. The major compounds were caryophyllene oxide (36.01%), hexahydrofarnesyl acetone (7.92%), alloaromadendrene epoxide (6.17%), myrtenyl acetate (5.73%), isoshyobunone (4.52%), shyobunol (4.19%), and trans-caryophyllene (3.45%). The chemometric analysis revealed inconsistency in the EO composition among various studied ecospecies, where it could be ascribed to the environmental and climatic conditions. The EO showed substantial allelopathic inhibitory activity against the germination, seedling root, and shoot growth of D. aegyptium, with IC50 values of 54.78, 57.10, and 74.07 mg L−1. Additionally, the EO showed strong antioxidant potentiality based on the IC50 values of 4.52 mg mL−1 compared to 2.11 mg mL−1 of the ascorbic acid as standard. Moreover, this oil showed significant anti-inflammation via the suppression of lipoxygenase (LOX) and cyclooxygenases (COX1, and COX2), along with membrane stabilization. Further study is recommended for analysis of the activity of pure authentic materials of the major compounds either singularly or in combination, as well as for evaluation of their mechanism(s) and modes of action as antioxidants or allelochemicals.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Correspondence: (A.M.A.-E.); (A.I.E.); Tel.: +00966562680864 (A.M.A.-E.); +201005525108 (A.I.E.)
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Yasser A. EI-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence: (A.M.A.-E.); (A.I.E.); Tel.: +00966562680864 (A.M.A.-E.); +201005525108 (A.I.E.)
| |
Collapse
|
27
|
Elgamal AM, Ahmed RF, Abd-ElGawad AM, El Gendy AENG, Elshamy AI, Nassar MI. Chemical Profiles, Anticancer, and Anti-Aging Activities of Essential Oils of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis L. PLANTS 2021; 10:plants10040667. [PMID: 33807147 PMCID: PMC8066341 DOI: 10.3390/plants10040667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 01/17/2023]
Abstract
Plants belonging to the Asteraceae family are widely used as traditional medicinal herbs around the world for the treatment of numerous diseases. In this work, the chemical profiles of essential oils (EOs) of the above-ground parts of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis (L.) were studied in addition to their cytotoxic and anti-aging activities. The extracted EOs from the two plants via hydrodistillation were analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS of EO of P. dioscoridis revealed the identification of 29 compounds representing 96.91% of the total oil. While 35 compounds were characterized from EO of E. bonariensis representing 98.21%. The terpenoids were found the main constituents of both plants with a relative concentration of 93.59% and 97.66%, respectively, including mainly sesquiterpenes (93.40% and 81.06%). α-Maaliene (18.84%), berkheyaradulen (13.99%), dehydro-cyclolongifolene oxide (10.35%), aromadendrene oxide-2 (8.81%), β-muurolene (8.09%), and α-eudesmol (6.79%), represented the preponderance compounds of EO of P. dioscoridis. While, trans-α-farnesene (25.03%), O-ocimene (12.58%), isolongifolene-5-ol (5.53%), α-maaliene (6.64%), berkheyaradulen (4.82%), and α-muurolene (3.99%), represented the major compounds EO of E. bonariensis. A comparative study of our results with the previously described data was constructed based upon principal component analysis (PCA) and agglomerative hierarchical clustering (AHC), where the results revealed a substantial variation of the present studied species than other reported ecospecies. EO of P. dioscoridis exhibited significant cytotoxicity against the two cancer cells, MCF-7 and A-549 with IC50 of 37.3 and 22.3 μM, respectively. While the EO of the E. bonariensis showed strong cytotoxicity against HepG2 with IC50 of 25.6 μM. The EOs of P. dioscoridis, E. bonariensis, and their mixture (1:1) exhibited significant inhibitory activity of the collagenase, elastase, hyaluronidase, and tyrosinase comparing with epigallocatechin gallate (EGCG) as a reference. The results of anti-aging showed that the activity of mixture (1:1) > P. dioscoridis > E. bonariensis against the four enzymes.
Collapse
Affiliation(s)
- Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence: (A.M.E.); (A.I.E.); Tel.: +20-100-155-8689 (A.M.E.); +20-100-552-5108 (A.I.E.)
| | - Rania F. Ahmed
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (R.F.A.); (M.I.N.)
| | - Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (R.F.A.); (M.I.N.)
- Correspondence: (A.M.E.); (A.I.E.); Tel.: +20-100-155-8689 (A.M.E.); +20-100-552-5108 (A.I.E.)
| | - Mahmoud I. Nassar
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (R.F.A.); (M.I.N.)
| |
Collapse
|
28
|
Fayed EM, Abd-EIGawad AM, Elshamy AI, El-Halawany ESF, Ei-Amier YA. Essential Oil of Deverra tortuosa Aerial Parts: Detailed Chemical Profile, Allelopathic, Antimicrobial, and Antioxidant Activities. Chem Biodivers 2021; 18:e2000914. [PMID: 33606911 DOI: 10.1002/cbdv.202000914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Essential oils (EOs) are a promising group of natural products of the aromatic plants due to their various biological effects such as allelopathic, antioxidant, antimicrobial activities. The present study aimed to construct the detailed chemical profile of the EO derived from Deverra tortuosa aerial parts along with assessing its allelopathic, antimicrobial, and antioxidant potentialities. The EO was extracted by hydrodistillation and analyzed via gas chromatography-mass spectrometry (GC/MS). The allelopathic activity of the EO was assessed against the germination and seedling growth of the weed Chenopodium murale. Also, the EO was tested against five microbes. The antioxidant activity was determined using the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The GC/MS analysis of EO revealed the presence of 86 compounds with a preponderance of oxygenated sesquiterpenes and monoterpene hydrocarbons. Widdrol, β-phellandrene, piperitol, cubedol, α-terpinene, (E)-10-heptadecen-8-ynoic acid methyl ester, citronellyl tiglate, and m-cymene were the major compounds. A comparative profile was established between the EOs constituents of our study with the documented EOs of D. tortuosa and the other Deverra species around the world via agglomerative hierarchical clustering (AHC) and principal components analysis (PCA). The EO showed a substantial allelopathic activity against C. murale, as well as it showed considerable antimicrobial and antioxidant activities. Thereby, the EO of D. tortuosa could be considered as a promising environmental-friendly bioherbicide against weeds. Also, it could be integrated into food preservation due to its potent antimicrobial and antioxidant activities. However, further study is recommended for more characterization of the major compounds and evaluation of their activities, either singular or synergistic, and assess their efficiency and biosafety.
Collapse
Affiliation(s)
- Eman M Fayed
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed M Abd-EIGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.,Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box, 2460, Riyadh 11451, Saudi Arabia
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - El-Sayed F El-Halawany
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box, 2460, Riyadh 11451, Saudi Arabia
| | - Yasser A Ei-Amier
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box, 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Kaur A, Batish DR, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:690806. [PMID: 34220914 PMCID: PMC8248367 DOI: 10.3389/fpls.2021.690806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope, and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation, and synthesis of nanoparticles. It has been widely used in traditional medicinal systems across North Africa, Middle East Asia, and South-East Asia. At present, it is being extensively explored for its potential pharmacological applications. Several reports also suggest its prospects in the food, textile, and paper industries. Besides, C. procera has also been acknowledged as an ornamental species. High pharmacological potential and socio-economic value have led to the pantropical introduction of the plant. Morpho-physiological adaptations and the ability to tolerate various abiotic stresses enabled its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious environmental weed in several parts of the world. Its unnatural expansion has been witnessed in the regions of South America, the Caribbean Islands, Australia, the Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly 3.7 million hectares of drier areas, including rangelands and Savannahs, have been invaded by the plant. In this review, multiple aspects of C. procera have been discussed including its general characteristics, current and potential uses, and invasive tendencies. The objectives of this review are a) to compile the information available in the literature on C. procera, to make it accessible for future research, b) to enlist together its potential applications being investigated in different fields, and c) to acknowledge C. procera as an emerging invasive species of arid and semi-arid regions.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Bhagirath S. Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, QLD, Australia
- *Correspondence: Bhagirath S. Chauhan,
| |
Collapse
|
30
|
Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L. Molecules 2020; 26:molecules26010119. [PMID: 33383905 PMCID: PMC7795193 DOI: 10.3390/molecules26010119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, β-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
Collapse
|