1
|
Elbaki BTA, Sameh H, El-Haleem MRA, Abd-Elsattar AA. Possible protective effect of quercetin on lung injury induced by skeletal muscle ischemia reperfusion (IR) injury of adult male albino rats: Histological and biochemical study. J Mol Histol 2024; 56:48. [PMID: 39699779 DOI: 10.1007/s10735-024-10303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/13/2024] [Indexed: 12/20/2024]
Abstract
When a lower limb is injured, the most delicate organs that are at risk of harm are the lungs. Among the flavonoids, quercetin is a significant component that is found in apples and onions in the highest proportions. Numerous biological actions, including as anti-inflammatory, antioxidant, and anti-cancer properties, have been linked to quercetin. To investigate the impact of quercetin on lung injury induced by skeletal muscle ischemia reperfusion (IR) injury. Three equal groups of twenty-four adult rats were used: control, Ischemia-reperfusion (IR) group and IR group treated with quercetin. Rats in (IR) group were exposed to ischemia by ligation of femoral artery for 2h then after removal of the clamp, reperfusion was estabilished for another 24h. IR group treated with quercetin, rats were underwent hind limb IR as described in group II then were given quercetin that was administered at a dose of 20mg/kg intraperitoneally. Measurement of cytokines in serum, MDA in tissue homogenate and VEGF in serum and tissue homogrnate in addition to mRNA expression level and detection of protein level of both sirtuin-1(SIRT1) and NF-κB were assessed at the end of experiment. Histological and immunohistochemical assessment of the lungs were also carried. IR group showed notable rise of inflammatory cytokines such as IL-1β, IL-6 and TNF-α in addition to high level of VEGF and MDA in IR group when compared to the IR group treated with quercetin. Also, gene expression and protein level of SIRT1 were reduced while NF-κB mRNA expression and protein level were significantly upregulated in IR group compared to IR group treated with quercetin. Histologically, IR group indicated marked histological alterations of lung tissue. Also, IR showed strong brownish cytoplasmic immunostaining for iNOS and abundance of Ki67-positive cells. These alterations were significantly reversed in IR group treated with quercetin. Biochemical and immunohistochemical findings of this study demonstrate that quercetin administration have protective effects against lung injury induced by lower limb IR.
Collapse
Affiliation(s)
- Bassant T Abd Elbaki
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hend Sameh
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal R Abd El-Haleem
- Department of Histology and Cell Biology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Alyaa A Abd-Elsattar
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
2
|
Bakr AF, El-Shiekh RA, Mahmoud MY, Khalil HMA, Alyami MH, Alyami HS, Galal O, Mansour DF. Efficacy of Quercetin and Quercetin Loaded Chitosan Nanoparticles Against Cisplatin-Induced Renal and Testicular Toxicity via Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Pharmaceuticals (Basel) 2024; 17:1384. [PMID: 39459023 PMCID: PMC11510010 DOI: 10.3390/ph17101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Flavonoids, including quercetin, have attracted much attention due to their potential health-promoting effects. METHODS The current experiment aims to see whether quercetin (QUE) in nanoparticle form could mitigate testicular and renal toxicity caused by cisplatin (CIS) more effectively than normally formulated QUE. Rats were randomly treated with CIS alone or in combination with QUE or QUE.NPs (Quercetin-loaded chitosan nanoparticles) for 4 weeks. QUE and QUE.NPs were given orally (10 mg/kg, three times a week), while CIS was given intraperitoneally (2 mg/kg, twice a week). RESULTS Compared to QUE- and CIS + QUE.NP-treated rats, CIS exposure induced anxiety and emotional stress as well as promoted oxidative stress in both testicular and renal tissues. Moreover, CIS reduced serum testosterone levels and diminished testicular IL-10, as well as CIS-induced renal failure, as indicated by hypokalemia, and increased levels of creatinine, urea, sodium, IL-18, and KIM-1. Further, severe histological changes were observed in the testis and kidney of CIS-intoxicated rats. Regarding immunohistochemical staining, CIS significantly upregulated Bax, downregulated Bcl-2, and moderately enhanced PCNA expression. CONCLUSIONS Our findings suggest that both QUE and QUE.NPs modulated emotional disturbance and improved testicular and renal functions via modulation of oxidation, inflammation, and apoptosis. However, QUE.NPs performed better than QUE-treated rats.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Mohamed Y. Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Faculty of Veterinary Medicine, King Salman International University, South Sinai, Ras Sudr 43312, Egypt
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Omneya Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt;
| | - Dina F. Mansour
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 12622, Egypt;
- Department of Pharmacy, Faculty of Pharmacy, Galala University, Attaka, Suez 43511, Egypt
| |
Collapse
|
3
|
Sun B, Cai F, Yu L, An R, Wei B, Li M. Quercetin inhibits ferroptosis through the SIRT1/Nrf2/HO-1 signaling pathway and alleviates asthma disease. Transl Pediatr 2024; 13:1747-1759. [PMID: 39524399 PMCID: PMC11543135 DOI: 10.21037/tp-24-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Quercetin (QCT) is a bioflavonoid derived from vegetables and fruits that has anti-inflammatory and anti-ferroptosis effects against various diseases. Previous studies have shown that QCT modulates the production of cellular inflammatory factors in asthma models and delays the development of chronic airway inflammation. However, the regulatory mechanism of QCT, a traditional Chinese medicine, in the treatment of asthma has not been elucidated. The aim of the present study is to investigate whether QCT can inhibit ferroptosis via the SIRT1/Nrf2 pathway and play a therapeutic role in asthma. Methods An ovalbumin-induced mouse asthma model was established, and its function was verified by hematoxylin eosin staining, enzyme linked immunosorbent assay, ferric ion assay, malondialdehyde and superoxide dismutase assays, dihydroethidium staining, immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction. Results Our results indicated that an ovalbumin-induced asthma mouse model had been successfully established and that QCT inhibited inflammation, reduced serum levels of inflammatory factors IL-4, IL-5 and IL-13, increased superoxide dismutase levels in lung tissue homogenates, and reduced malondialdehyde and ferric ion production in asthmatic mice. In addition, we found that QCT was able to reverse the expression of SIRT1, Nrf2 and HO-1 in an in vivo asthma mouse model. Conclusions The data from this study indicate that QCT can alleviate asthma, and its mechanism is related to the regulation of ferroptosis, oxidative stress, and the expression of SIRT1 protein.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
- Post-graduate College, China Medical University, Shenyang, China
| | - Fei Cai
- Post-graduate College, China Medical University, Shenyang, China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ran An
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Bing Wei
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhang XL, Li JP, Wu MZ, Wu JK, He SY, Lu Y, Ding QH, Wen Y, Long LZ, Fu CG, Farman A, Shen AL, Peng J. Quercetin Protects Against Hypertensive Renal Injury by Attenuating Apoptosis: An Integrated Approach Using Network Pharmacology and RNA Sequencing. J Cardiovasc Pharmacol 2024; 84:370-382. [PMID: 39027976 DOI: 10.1097/fjc.0000000000001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
ABSTRACT Quercetin is known for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully elucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cell apoptosis in the renal tissues of angiotensin II (Ang II)-infused mice and Ang II-stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting, were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2, and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts, as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. In addition, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells and by targeting p53 may be one of the potential underlying mechanisms.
Collapse
Affiliation(s)
- Xiu-Li Zhang
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jia-Peng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mei-Zhu Wu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jin-Kong Wu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Shu-Yu He
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Yao Lu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Qi-Hang Ding
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Ying Wen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Lin-Zi Long
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang-Geng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China ; and
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ali Farman
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - A-Ling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China ; and
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Zhou X, Wang H, Huang M, Chen J, Chen J, Cheng H, Ye X, Wang W, Liu D. Role of bitter contributors and bitter taste receptors: a comprehensive review of their sources, functions and future development. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:1806-1824. [DOI: 10.26599/fshw.2022.9250151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Shaker NS, Sahib HB, Tahseen NJ. Anti-cytokine Storm Activity of Fraxin, Quercetin, and their Combination on Lipopolysaccharide-Induced Cytokine Storm in Mice: Implications in COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:322-331. [PMID: 38751871 PMCID: PMC11091274 DOI: 10.30476/ijms.2023.98947.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 05/18/2024]
Abstract
Background Cytokine release syndrome (CRS) is the leading cause of mortality in advanced stages of coronavirus patients. This study examined the prophylactic effects of fraxin, quercetin, and a combination of fraxin+quercetin (FQ) on lipopolysaccharide-induced mice. Methods Sixty mice were divided into six groups (n=10) as follows: control, LPS only, fraxin (120 mg/Kg), quercetin (100 mg/Kg), dexamethasone (5 mg/Kg), and FQ. All treatments were administered intraperitoneally (IP) one hour before induction by LPS (5 mg/Kg) IP injection. Twenty-four hours later, the mice were euthanized. Interleukin one beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were quantified using an enzyme-linked immunosorbent assay (ELISA), and lung and kidney tissues were examined for histopathological alterations. This study was conducted at Al-Nahrain University, Baghdad, Iraq, in 2022. Results FQ reduced IL-1β (P<0.001). All treatments significantly suppressed IL-6, fraxin, quercetin, dexamethasone, and FQ, all with P<0.001. The TNF-α level was reduced more with dexamethasone (P<0.001) and quercetin (P<0.001). Histopathological scores were significantly reduced mainly by quercetin and FQ in the lungs with scores of 12.30±0.20 (P=0.093), and 15.70±0.20 (P=0.531), respectively. The scores were 13±0.26 (P=0.074) and 15±0.26 (P=0.222) for quercetin and FQ in the kidneys, respectively. Conclusion All used treatments reduced proinflammatory cytokine levels and protected against LPS-induced tissue damage.
Collapse
Affiliation(s)
- Nada Sahib Shaker
- Department of Pharmacology and Toxicology, Mustansiriyah University, College of Pharmacy, Baghdad, Iraq
| | - Hayder B Sahib
- Dean of College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
7
|
Liu L, Kapralov M, Ashton M. Plant-derived compounds as potential leads for new drug development targeting COVID-19. Phytother Res 2024; 38:1522-1554. [PMID: 38281731 DOI: 10.1002/ptr.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
COVID-19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some patients infected with COVID-19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID-19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID-19 treatments due to their broad-spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti-SARS-CoV-2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS-CoV-2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS-CoV-2, with a focus on the application of plant-derived compounds in animal models and in human studies.
Collapse
Affiliation(s)
- Lingxiu Liu
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Maxim Kapralov
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mark Ashton
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
8
|
Wu W, Wang W, Liang L, Chen J, Sun S, Wei B, Zhong Y, Huang XR, Liu J, Wang X, Yu X, Lan HY. SARS-CoV-2 N protein induced acute kidney injury in diabetic db/db mice is associated with a Mincle-dependent M1 macrophage activation. Front Immunol 2023; 14:1264447. [PMID: 38022581 PMCID: PMC10655021 DOI: 10.3389/fimmu.2023.1264447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
"Cytokine storm" is common in critically ill COVID-19 patients, however, mechanisms remain largely unknown. Here, we reported that overexpression of SARS-CoV-2 N protein in diabetic db/db mice significantly increased tubular death and the release of HMGB1, one of the damage-associated molecular patterns (DAMPs), to trigger M1 proinflammatory macrophage activation and production of IL-6, TNF-α, and MCP-1 via a Mincle-Syk/NF-κB-dependent mechanism. This was further confirmed in vitro that overexpression of SARS-CoV-2 N protein caused the release of HMGB1 from injured tubular cells under high AGE conditions, which resulted in M1 macrophage activation and production of proinflammatory cytokines via a Mincle-Syk/NF-κB-dependent mechanism. This was further evidenced by specifically silencing macrophage Mincle to block HMGB1-induced M1 macrophage activation and production of IL-6, TNF-α, and MCP-1 in vitro. Importantly, we also uncovered that treatment with quercetin largely improved SARS-CoV-2 N protein-induced AKI in db/db mice. Mechanistically, we found that quercetin treatment significantly inhibited the release of a DAMP molecule HMGB1 and inactivated M1 pro-inflammatory macrophage while promoting reparative M2 macrophage responses by suppressing Mincle-Syk/NF-κB signaling in vivo and in vitro. In conclusion, SARS-CoV-2 N protein-induced AKI in db/db mice is associated with Mincle-dependent M1 macrophage activation. Inhibition of this pathway may be a mechanism through which quercetin inhibits COVID-19-associated AKI.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Wenbiao Wang
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liying Liang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Clinical Pharmacy, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junzhe Chen
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Sifan Sun
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqin Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
10
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
11
|
Zarenezhad E, Abdulabbas HT, Kareem AS, Kouhpayeh SA, Barbaresi S, Najafipour S, Mazarzaei A, Sotoudeh M, Ghasemian A. Protective role of flavonoids quercetin and silymarin in the viral-associated inflammatory bowel disease: an updated review. Arch Microbiol 2023; 205:252. [PMID: 37249707 DOI: 10.1007/s00203-023-03590-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammation of the gastrointestinal tract (GIT). IBD patients are susceptible to various infections such as viral infections due to the long-term consumption of immunosuppressive drugs and biologics. The antiviral and IBD protective traits of flavonoids have not been entirely investigated. This study objective included an overview of the protective role of flavonoids quercetin and silymarin in viral-associated IBD. Several viral agents such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella zoster virus (VZV) and enteric viruses can be reactivated and thus develop or exacerbate the IBD conditions or eventually facilitate the disease remission. Flavonoids such as quercetin and silymarin are non-toxic and safe bioactive compounds with remarkable anti-oxidant, anti-inflammatory and anti-viral effects. Mechanisms of anti-inflammatory and antiviral effects of silymarin and quercetin mainly include immune modulation and inhibition of caspase enzymes, viral binding and replication, RNA synthesis, viral proteases and viral assembly. In the nutraceutical sector, natural flavonoids low bioavailability and solubility necessitate the application of delivery systems to enhance their efficacy. This review study provided an updated understanding of the protective role of quercetin and silymarin against viral-associated IBD.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna, Iraq
| | - Ahmed Shayaa Kareem
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mitra Sotoudeh
- Department of Nutrition, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
12
|
Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Yahya MA. Effects of Antioxidant Combinations on the Renal Toxicity Induced Rats by Gold Nanoparticles. Molecules 2023; 28:molecules28041879. [PMID: 36838869 PMCID: PMC9959587 DOI: 10.3390/molecules28041879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
This study investigated some possible mechanisms underlying the nephrotoxic effect of gold nanoparticles (AuNPs) in rats and compared the protective effects of selected known antioxidants-namely, melanin, quercetin (QUR), and α-lipoic acid (α-LA). Rats were divided into five treatment groups (eight rats per group): control, AuNPs (50 nm), AuNPs + melanin (100 mg/kg), AuNPs + QUR (200 mg/kg), and AuNPs + α-LA (200 mg/kg). All treatments were administered i.p., daily, for 30 days. AuNPs promoted renal glomerular and tubular damage and impaired kidney function, as indicated by the higher serum levels of creatinine (Cr), urinary flow, and urea and albumin/Cr ratio. They also induced oxidative stress by promoting mitochondrial permeability transition pore (mtPTP) opening, the expression of NOX4, increasing levels of malondialdehyde (MDA), and suppressing glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). In addition, AuNPs induced renal inflammation and apoptosis, as evidenced by the increase in the total mRNA and the cytoplasmic and nuclear levels of NF-κB, mRNA levels of Bax and caspase-3, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Treatment with melanin, QUR, and α-lipoic acid (α-LA) prevented the majority of these renal damage effects of AuNPs and improved kidney structure and function, with QUR being the most powerful. In conclusion, in rats, AuNPs impair kidney function by provoking oxidative stress, inflammation, and apoptosis by suppressing antioxidants, promoting mitochondrial uncoupling, activating NF-κB, and upregulating NOX4. However, QUR remains the most powerful drug to alleviate this toxicity by reversing all of these mechanisms.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Lin L, Deng J, Tan W, Li J, Wu Z, Zheng L, Yang J. Pathogenesis and histological changes of nephropathy associated with COVID-19. J Med Virol 2023; 95:e28311. [PMID: 36377540 DOI: 10.1002/jmv.28311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19) can cause damage to multiple organ, not only to the lungs, but also to the kidneys. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute and chronic kidney disease through direct viral infection, indirect injury, and vaccination-related injury. Like lung injury, kidney injury is also an important aspect affecting the severity and prognosis of SARS-CoV-2. This article summarizes the pathogenesis, pathological manifestations, and clinical features of SARS-CoV-2 direct or indirect renal injury. Including direct injury, indirect injury, special comorbidities (receiving kidney transplantation and chronic kidney disease), and vaccine-related renal injury, and exploring the possible therapeutic effect of anti-SARS-CoV-2 therapy on renal injury. The purpose is to provide reference for understanding COVID-19-related renal injury, guiding clinical and pathological diagnosis and treatment, and evaluating prognosis.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Junhui Deng
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Wei Tan
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Jie Li
- Department of Nephrology, Yongchuan People's Hospital of Chongqing, Chongqing, China
| | - Zhifeng Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Luquan Zheng
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
14
|
Nassef NAA, Abd-El Hamid MS, Abusikkien SA, Ahmed AI. Quercetin ameliorates acute lung injury in a rat model of hepatopulmonary syndrome. BMC Complement Med Ther 2022; 22:320. [PMID: 36463144 PMCID: PMC9719635 DOI: 10.1186/s12906-022-03785-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Common bile duct ligation (BDL) is a rat experimental model to induce biliary cirrhosis. Lung fibrosis and pulmonary vascular angiogenesis and congestion are the most common complications of biliary cirrhosis that is known as hepatopulmonary syndrome. The aim of the present work is to investigate the acute lung injury in a BDL model and to investigate the possible protective effect of quercetin on this injury. METHODS Twenty-four adult male albino rats of the Wister strain (weighing 150-250 g). Animals were divided into 3 groups, with 8 rats each: Group I: Sham-operated group (control). Group II: Bile duct ligation group (BDL) sacrificed after 28 days from the surgery. Group III: Quercetin-treated bile duct ligation group (Q-BDL) was given orally by gastric gavage in a dose of 50 mg/kg/day, starting from the 4th day of the operation until the 28th day. At the end of the experiment, at day 28, all rats were sacrificed. Lung specimens were processed to measure Endothelin B receptor gene expression by PCR, lung surfactant by ELISA, "eNO" s by immunohistochemistry. Histological assessment was done using; H&E, Masson's trichrome, PAS, toluidine blue-stained semi-thin sections, transmission electron microscope. Histomorphometric and statistical studies were done. RESULTS BDL group showed significant increase in lung index together with mononuclear cellular infiltration denoting lung inflammatory state. Also, the significant increase in pulmonary endothelial nitric oxide synthase ("eNO" s) area percent and endothelin B receptor (ETB) gene expression indicates enhanced angiogenesis. Pulmonary surfactant concentration was significantly decreased together with thickening of interalveolar septa denoting lung injury and fibrosis. Quercetin led to significant decrease in lung index, pulmonary "eNO" s area percent, ETB gene expression and significant increase in pulmonary surfactant concentration. Quercetin treatment improved histological changes and morphometric measurements, limited mononuclear cellular infiltration and decreased perivascular and perialveolar collagen deposition. CONCLUSION Quercetin ameliorates the hepatopulmonary syndrome-induced lung injury through its anti-inflammatory, antioxidative and antifibrotic effects.
Collapse
Affiliation(s)
- Noha Abdel-Aziz Nassef
- grid.7269.a0000 0004 0621 1570Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal S. Abd-El Hamid
- grid.7269.a0000 0004 0621 1570Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samy A. Abusikkien
- grid.7269.a0000 0004 0621 1570Lecturer of Anatomy, Rabigh Faculty of Medicine, King Abdulaziz University, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Asmaa Ibrahim Ahmed
- grid.7269.a0000 0004 0621 1570Assistant Professor of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Milton-Laskibar I, Trepiana J, Macarulla MT, Gómez-Zorita S, Arellano-García L, Fernández-Quintela A, Portillo MP. Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: a review of the current knowledge. J Physiol Biochem 2022:10.1007/s13105-022-00926-0. [PMID: 36346507 PMCID: PMC9641689 DOI: 10.1007/s13105-022-00926-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
The Mediterranean diet is a dietary pattern typical of the populations living in the Mediterranean basin during the 50s-60s of the last century. This diet has demonstrated beneficial effects in the prevention of several pathologies such as cardiovascular diseases, metabolic syndrome, or several cancer types, at least in part, due to its antioxidant compounds. Since the COVID-19 pandemic started, different authors have been studying the effects of certain dietary habits on the presence of COVID-19 and its severity, and the Mediterranean diet is one of them. This review gathers data from studies supporting the potential usefulness of the main phenolic compounds present in the Mediterranean diet, based on their antioxidant and anti-inflammatory effects, as preventive/therapeutic agents against COVID-19. The current evidence supports the potential benefits that hydroxytyrosol, resveratrol, flavonols such as quercetin, flavanols like catechins, and flavanones on the order of naringenin could have on COVID-19. This is due to the increase in the synthesis and translocations of Nrf-2, which increases the activity of antioxidant enzymes and thus reduces ROS production, the scavenging of free radicals, and the suppression of the activity of MMP-9, which is involved in the cytokine storm, and the inhibition of NF-κB.
Collapse
Affiliation(s)
- Iñaki Milton-Laskibar
- Precision Nutrition and Cardiometabolic Health Program, IMDEA- Food Institute (Madrid Institute for Advanced Studies), Spanish National Research Council, Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain ,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jenifer Trepiana
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Teresa Macarulla
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Saioa Gómez-Zorita
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Laura Arellano-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María P. Portillo
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
16
|
Chen YQ, Chen HY, Tang QQ, Li YF, Liu XS, Lu FH, Gu YY. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front Pharmacol 2022; 13:968226. [PMID: 36120321 PMCID: PMC9478191 DOI: 10.3389/fphar.2022.968226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney injuries may trigger renal fibrosis and lead to chronic kidney disease (CKD), but effective therapeutic strategies are still limited. Quercetin is a natural flavonoid widely distributed in herbal medicines. A large number of studies have demonstrated that quercetin may protect kidneys by alleviating renal toxicity, apoptosis, fibrosis and inflammation in a variety of kidney diseases. Therefore, quercetin could be one of the promising drugs in the treatment of renal disorders. In the present study, we review the latest progress and highlight the beneficial role of quercetin in kidney diseases and its underlying mechanisms. The pharmacokinetics and bioavailability of quercetin and its proportion in herbal medicine will also be discussed.
Collapse
Affiliation(s)
- Yi-Qin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao-Yin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin-Qi Tang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fan Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fu-Hua Lu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| | - Yue-Yu Gu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| |
Collapse
|
17
|
Sánchez-Jaramillo EA, Gasca-Lozano LE, Vera-Cruz JM, Hernández-Ortega LD, Gurrola-Díaz CM, Bastidas-Ramírez BE, Vargas-Guerrero B, Mena-Enríquez M, Martínez-Limón FDJ, Salazar-Montes AM. Nanoparticles Formulation Improves the Antifibrogenic Effect of Quercetin on an Adenine-Induced Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23105392. [PMID: 35628203 PMCID: PMC9140764 DOI: 10.3390/ijms23105392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is the final stage of chronic kidney injury characterized by glomerulosclerosis and tubulointerstitial fibrosis with parenchymal destruction. Quercetin belongs to the most studied flavonoids with antioxidant, anti-inflammatory, antifibrogenic, and antitumor activity. It modifies the TGF-β/Smad signaling pathway, decreasing profibrogenic expression molecules and inducing the expression of antioxidant, anti-inflammatory, and antifibrogenic molecules. However, quercetin exhibits poor water solubility and low absorption and bioavailability. This limitation was solved by developing a nanoparticles formulation that improves the solubility and bioavailability of several bioactive compounds. Therefore, we aimed to investigate the in vivo antifibrogenic effect of a quercetin nanoparticles formulation. Male C57BL/6 mice were induced into chronic renal failure with 50 mg/kg of adenine for four weeks. The animals were randomly grouped and treated with 25, 50, or 100 mg/kg of quercetin, either macroparticles or nanoparticles formulation. We performed biochemical, histological, and molecular analyses to evaluate and compare the effect of macroparticles versus nanoparticles formulation on kidney damage. Here, we demonstrated that smaller doses of nanoparticles exhibited the same beneficial effect as larger doses of macroparticles on preventing kidney damage. This finding translates into less quercetin consumption reaching the desired therapeutic effect.
Collapse
Affiliation(s)
- Esteban Andrés Sánchez-Jaramillo
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Luz Elena Gasca-Lozano
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - José María Vera-Cruz
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Blanca Estela Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Mayra Mena-Enríquez
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | | | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
- Correspondence:
| |
Collapse
|
18
|
The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature. Antioxidants (Basel) 2022; 11:antiox11050876. [PMID: 35624740 PMCID: PMC9137692 DOI: 10.3390/antiox11050876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Quercetin is a phenolic flavonol compound with established antioxidant, anti-inflammatory, and immuno-stimulant properties. Recent studies demonstrate the potential of quercetin against COVID-19. This article highlighted the prophylactic/therapeutic potential of quercetin against COVID-19 in view of its clinical studies, inventions, and patents. The literature for the subject matter was collected utilizing different databases, including PubMed, Sci-Finder, Espacenet, Patentscope, and USPTO. Clinical studies expose the potential of quercetin monotherapy, and also its combination therapy with other compounds, including zinc, vitamin C, curcumin, vitamin D3, masitinib, hydroxychloroquine, azithromycin, and ivermectin. The patent literature also examines claims that quercetin containing nutraceuticals, pharmaceuticals, and dietary supplements, alone or in combination with other drugs/compounds, including favipiravir, remdesivir, molnupiravir, navitoclax, dasatinib, disulfiram, rucaparib, tamarixin, iota-carrageenan, and various herbal extracts (aloe, poria, rosemary, and sphagnum) has potential for use against COVID-19. The literature reveals that quercetin exhibits anti-COVID-19 activity because of its inhibitory effect on the expression of the human ACE2 receptors and the enzymes of SARS-CoV-2 (MPro, PLPro, and RdRp). The USFDA designated quercetin as a “Generally Recognized as Safe” substance for use in the food and beverage industries. It is also an inexpensive and readily available compound. These facts increase the possibility and foreseeability of making novel and economical drug combinations containing quercetin to prevent/treat COVID-19. Quercetin is an acidic compound and shows metabolic interaction with some antivirals, antibiotics, and anti-inflammatory agents. Therefore, the physicochemical and metabolic drug interactions between quercetin and the combined drugs/compounds must be better understood before developing new compositions.
Collapse
|
19
|
Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022; 27:molecules27082498. [PMID: 35458696 PMCID: PMC9032170 DOI: 10.3390/molecules27082498] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are the known group of phytochemicals that essentially consists of phenolic rings. These are the plant product present in varied fruits and vegetables. These secondary metabolites perform a protective function in plants from environmental and biological stress. When consumed as a human diet these are also known to prevent various age-associated diseases. Polyphenols are known to possess antioxidant properties and protect against oxidative stress. The literature survey was carried out using databases such as PubMed, Science direct and Springer. The research articles from last 10–12 years were selected for this review based on its relevancy with the topic. The articles selected was mainly focused on quercetin and its health benefits. The present review highlights the main functions of a flavonoid, quercetin. Quercetin is among the widely occurring polyphenol, found abundantly in nature. It is commonly present in different plant products. Onion is known to have the highest quantity of quercetin. This plant compound is possessed antioxidant properties and is considered to have a protective function against aging. It is known to be present in both free and conjugated forms. Quercetin has anti-oxidative, anti-inflammatory, anti-proliferative, anti-carcinogenic, anti-diabetic, and anti-viral properties. The molecule is lipophilic and can easily cross the BBB (Blood-Brain Barrier) and hence protects from neurodegenerative diseases. Various in vivo and in vitro studies have demonstrated the role of quercetin and here a detailed review of quercetin as a curative agent in neurodegeneration, diabetes, cancer, and inflammation has been carried out. Studies have proved that quercetin plays a crucial role in the prevention of age-related disorders. Quercetin is a potent antioxidant which is currently being used in various pharmaceuticals. Properties of quercetin can be further explored in various other disorders. Nanoformulations and liposomal formulations of quercetin can be made to treat other age associated diseases.
Collapse
|
20
|
Singh RD, Barry MA, Croatt AJ, Ackerman AW, Grande JP, Diaz RM, Vile RG, Agarwal A, Nath KA. The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166322. [PMID: 34920080 PMCID: PMC8669938 DOI: 10.1016/j.bbadis.2021.166322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is both a consequence and determinant of outcomes in COVID-19. The kidney is one of the major organs infected by the causative virus, SARS-CoV-2. Viral entry into cells requires the viral spike protein, and both the virus and its spike protein appear in the urine of COVID-19 patients with AKI. We examined the effects of transfecting the viral spike protein of SARS-CoV-2 in kidney cell lines. METHODS HEK293, HEK293-ACE2+ (stably overexpressing ACE2), and Vero E6 cells having endogenous ACE2 were transfected with SARS-CoV-2 spike or control plasmid. Assessment of gene and protein expression, and syncytia formation was performed, and the effects of quercetin on syncytia formation examined. FINDINGS Spike transfection in HEK293-ACE2+ cells caused syncytia formation, cellular sloughing, and focal denudation of the cell monolayer; transfection in Vero E6 cells also caused syncytia formation. Spike expression upregulated potentially nephrotoxic genes (TNF-α, MCP-1, and ICAM1). Spike upregulated the cytoprotective gene HO-1 and relevant signaling pathways (p-Akt, p-STAT3, and p-p38). Quercetin, an HO-1 inducer, reduced syncytia formation and spike protein expression. INTERPRETATION The major conclusions of the study are: 1) Spike protein expression in kidney cells provides a relevant model for the study of maladaptive and adaptive responses germane to AKI in COVID-19; 2) such spike protein expression upregulates HO-1; and 3) quercetin, an HO-1 inducer, may provide a clinically relevant/feasible protective strategy in AKI occurring in the setting of COVID-19. FUNDING R01-DK119167 (KAN), R01-AI100911 (JPG), P30-DK079337; R01-DK059600 (AA).
Collapse
Affiliation(s)
- Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Michael A. Barry
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Rosa M. Diaz
- Molecular Medicine Program, Mayo Clinic, Rochester, MN, United States of America
| | - Richard G. Vile
- Molecular Medicine Program, Mayo Clinic, Rochester, MN, United States of America
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama, Birmingham, AL, United States of America
| | - Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America,Corresponding author at: Mayo Clinic, Siebens 7, 200 First St., SW, Rochester, MN 55905, United States of America
| |
Collapse
|
21
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
22
|
Morsi AA, Fouad H, Alasmari WA, Faruk EM. The biomechanistic aspects of renal cortical injury induced by diesel exhaust particles in rats and the renoprotective contribution of quercetin pretreatment: Histological and biochemical study. ENVIRONMENTAL TOXICOLOGY 2022; 37:310-321. [PMID: 34751495 DOI: 10.1002/tox.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Although several studies have reported a toxic effect of diesel exhaust particles (DEP) exposure on the kidney tissues, the involvement of autophagy/NF-kB signaling as encountered mechanisms and the protective effects of a natural flavonoid, quercetin on DEP remains unclear. Thirty-two albino rats were divided as control, quercetin-treated (60 mg/kg, oral), DEP-exposed (0.5 mg/kg, intra-tracheal), and quercetin/DEP-exposed groups. Specimens of the renal cortex were subjected to histo-biochemical study and immunohistochemical analysis using anti-NF-kB, and anti-LC3β antibodies followed by morphometric and statistical analyses. The expression level of autophagy genes was quantitatively evaluated using RT-PCR, as well. The DEP-exposed rats showed an elevation in the renal tissue levels of MDA and a decrease in the catalase and superoxide dismutase (p < .05). Histologically, there were cytoplasmic vacuolar changes in the lining cells of the renal tubules, glomerular atrophy, and vascular congestion. In addition, renal inflammation was evident as confirmed by the increased NF-kB immunoexpression. Moreover, the gene expression of Becn1, ATG5, and LC3β increased (p <. 0) due to DEP exposure. Conversely, quercetin pretreatment improved these renal histo-biochemical alterations (p < .05) and regulated autophagy/NF-kB pathways. Overall, the study proved the renal toxicity mediated by DEP exposure via precipitating renal inflammation, autophagy activation, and oxidative stress. Quercetin pretreatment could antagonize such machinery to protect the kidney against DEP.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanan Fouad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Galala University, Faculty of Medicine, Suez Governorate, Egypt
| | | | - Eman Mohamed Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
23
|
Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential. MOLBANK 2022. [DOI: 10.3390/m1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New quercetin-based derivatives are synthesized in an easily accessible one-pot manner. The method is based on the reaction of quercetin with in situ formed electrophilic N-alkoxycarbonylazolium ions. The position of the newly formed C-C bond and structure were spectrally characterized by 1D, 2D 1H, 13C-NMR, IR, and MS analysis. Thus, in all cases, good regioselectivity in the C-8 position for the obtained products was demonstrated. The obtained compounds were evaluated for their DPPH and ABTS free radical scavenging activity and compared to natural compounds—quercetin and rutin.
Collapse
|
24
|
Does Oxidative Stress Management Help Alleviation of COVID-19 Symptoms in Patients Experiencing Diabetes? Nutrients 2022; 14:nu14020321. [PMID: 35057501 PMCID: PMC8780958 DOI: 10.3390/nu14020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.
Collapse
|
25
|
Hu S, Jiang S, Qi X, Bai R, Ye XY, Xie T. Races of small molecule clinical trials for the treatment of COVID-19: An up-to-date comprehensive review. Drug Dev Res 2021; 83:16-54. [PMID: 34762760 PMCID: PMC8653368 DOI: 10.1002/ddr.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease‐19 (COVID‐19) pandemic has become a global threat since its first outbreak at the end of 2019. Several review articles have been published recently, focusing on the aspects of target biology, drug repurposing, and mechanisms of action (MOAs) for potential treatment. This review gathers all small molecules currently in active clinical trials, categorizes them into six sub‐classes, and summarizes their clinical progress. The aim is to provide the researchers from both pharmaceutical industries and academic institutes with the handful information and dataset to accelerate their research programs in searching effective small molecule therapy for treatment of COVID‐19.
Collapse
Affiliation(s)
- Suwen Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China.,Hangzhou Huadong Medicine Group, Pharmaceutical Research Institute Co. Ltd., Hangzhou, China.,Department of Chemistry and Biochemistry Los Angeles, University of California, Los Angeles, California, USA
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal Umiversity, Hangzhou, China
| |
Collapse
|
26
|
Effect of Quercetin on Injury to Indomethacin-Treated Human Embryonic Kidney 293 Cells. Life (Basel) 2021; 11:life11111134. [PMID: 34833010 PMCID: PMC8623736 DOI: 10.3390/life11111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and pain and even to prevent the progression of cardiovascular disease. They have become widely used because of their effectiveness, especially among athletes performing high-intensity training. Indomethacin is used for pain management in sports medicine and is highly effective and versatile. However, several clinical studies have reported that indomethacin induces acute renal damage. In the present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial membrane potential (ΔΨm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293 cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced HEK293 cell apoptosis by regulating abnormal ΔΨm and apoptotic mRNA expression.
Collapse
|
27
|
Li K, Liang Y, Cheng A, Wang Q, Li Y, Wei H, Zhou C, Wan X. Antiviral Properties of Baicalin: a Concise Review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2021; 31:408-419. [PMID: 34642508 PMCID: PMC8493948 DOI: 10.1007/s43450-021-00182-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Baicalin is one of the bioactive flavonoid glycosides isolated from the dried root of Scutellaria baicalensis Georgi, Lamiaceae, with antiviral properties. In recent years, the antiviral activity of baicalin has been widely investigated to explore its molecular mechanism of action. In this mini-review, the molecular mechanisms of action of baicalin as an antiviral agent are evaluated, which included three categories: the inhibition or stimulation of JAK/STAT, TLRs, and NF-κB pathways; up or down modulation of the expression levels of IFN, IL, SOCS1/3, PKR protein, Mx1 protein, and AP-1 protein; and inhibition of cell apoptosis caused by virus infection. In addition, clinical studies of baicalin are also discussed. This literature search suggested that baicalin can serve as a potential candidate for the development of a novel broad-spectrum antiviral drug.
Collapse
Affiliation(s)
- Kunwei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Yiyu Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Ao Cheng
- Qingdao University of Technology, Qingdao, 266033 China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Haocheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Changzheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Xinhuan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| |
Collapse
|
28
|
Gour A, Manhas D, Bag S, Gorain B, Nandi U. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother Res 2021; 35:4258-4283. [PMID: 33786876 PMCID: PMC8250405 DOI: 10.1002/ptr.7092] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
Emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, COVID-19, has become the global panic since December 2019, which urges the global healthcare professionals to identify novel therapeutics to counteract this pandemic. So far, there is no approved treatment available to control this public health issue; however, a few antiviral agents and repurposed drugs support the patients under medical supervision by compromising their adverse effects, especially in emergency conditions. Only a few vaccines have been approved to date. In this context, several plant natural products-based research studies are evidenced to play a crucial role in immunomodulation that can prevent the chances of infection as well as combat the cytokine release storm (CRS) generated during COVID-19 infection. In this present review, we have focused on flavonoids, especially epicatechin, epigallocatechin gallate, hesperidin, naringenin, quercetin, rutin, luteolin, baicalin, diosmin, ge nistein, biochanin A, and silymarin, which can counteract the virus-mediated elevated levels of inflammatory cytokines leading to multiple organ failure. In addition, a comprehensive discussion on available in silico, in vitro, and in vivo findings with critical analysis has also been evaluated, which might pave the way for further development of phytotherapeutics to identify the potential lead candidatetoward effective and safe management of the SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Abhishek Gour
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| | - Diksha Manhas
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| | - Swarnendu Bag
- Proteomics DivisionCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Utpal Nandi
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| |
Collapse
|
29
|
Di Pierro F, Iqtadar S, Khan A, Ullah Mumtaz S, Masud Chaudhry M, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Khan S. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int J Gen Med 2021; 14:2807-2816. [PMID: 34194240 PMCID: PMC8238537 DOI: 10.2147/ijgm.s318949] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing global pandemic known as COVID-19. Based on the potential antiviral role of quercetin, and on its described anti-blood clotting, anti-inflammatory and antioxidant properties, we hypothesize that subjects with mild COVID-19 treated with Quercetin Phytosome® (QP), a novel bioavailable form of quercetin, may have a shorter time to virus clearance, a milder symptomatology, and higher probabilities of a benign earlier resolution of the disease. Methods In our 2-week, randomized, open-label, and controlled clinical study, we have enrolled 42 COVID-19 outpatients. Twenty-one have been treated with the standard of care (SC), and 21 with QP as add-on supplementation to the SC. Our main aims were to check virus clearance and symptoms. Results The interim results reveal that after 1 week of treatment, 16 patients of the QP group were tested negative for SARS-CoV-2 and 12 patients had all their symptoms diminished; in the SC group, 2 patients were tested SARS-CoV-2 negative and 4 patients had their symptoms partially improved. By 2 weeks, the remaining 5 patients of the QP group tested negative for SARS-CoV-2, whereas in the SC group out of 19 remaining patients, 17 tested negatives by week 2, one tested negative by week 3 and one patient, still positive, expired by day 20. Concerning blood parameters, the add on therapy with QP, reduced LDH (−35.5%), Ferritin (−40%), CRP (−54.8%) and D-dimer (−11.9%). Conclusion QP statistically shortens the timing of molecular test conversion from positive to negative, reducing at the same time symptoms severity and negative predictors of COVID-19.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milan, Italy.,Digestive Endoscopy, Fondazione Poliambulanza, Brescia, Italy
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Amjad Khan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.,University of Health Sciences, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | | | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | - Saeed Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
30
|
Biologically Active Compounds in Stizolophus balsamita Inflorescences: Isolation, Phytochemical Characterization and Effects on the Skin Biophysical Parameters. Int J Mol Sci 2021; 22:ijms22094428. [PMID: 33922647 PMCID: PMC8122880 DOI: 10.3390/ijms22094428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Three germacranolides, as well as five flavonoids, natural steroid and simple phenolic compounds, were isolated from the inflorescence of Stizolophus balsamita growing in Iran. The paper presents active compounds found for the first time in the inflorescence of this species. The flavonoids, simple phenolic compounds and natural steroids have been isolated for the first time in the genus Stizolophus. The MTT assay was employed to study in vitro cytotoxic effects of the taxifolin against human fibroblasts. We also evaluate the possible biological properties/cosmetic effects of Stizolophus balsamita extract and taxifolin on the human skin. Sixty healthy Caucasian adult females with no dermatological diseases were investigated. We evaluate the effects of S. balsamita extract and taxifolin on skin hydration and transepidermal water loss (TEWL). It was revealed that S. balsamita extract might decrease TEWL level and fixed the barrier function of the epidermis. The presence of bioactive phytochemical constituents in S. balsamita inflorescences makes them a valuable and safe source for creating new cosmetics and medicines.
Collapse
|
31
|
Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021; 26:molecules26051487. [PMID: 33803306 PMCID: PMC7967157 DOI: 10.3390/molecules26051487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the different levels of bioactive compounds in tea reported in the literature, the aim of this study was to determine whether commercially available leaf teas could be an important source of phenolics and selected minerals (copper, manganese, iron, zinc, magnesium, calcium, sodium, potassium) and if the differences in the content of these components between various types of tea are significant. It was found that both the amount of these compounds in tea and the antioxidant activity of tea infusions were largely determined by the origin of tea leaves as well as the processing method, which can modify the content of the studied components up to several hundred-fold. The group of green teas was the best source of phenolic compounds (110.73 mg/100 mL) and magnesium (1885 µg/100 mL) and was also characterised by the highest antioxidant activity (59.02%). This type of tea is a great contributor to the daily intake of the studied components. The average consumption of green tea infusions, assumed to be 3–4 cups (1 L) a day, provides the body with health-promoting polyphenol levels significantly exceeding the recommended daily dose. Moreover, drinking one litre of an unfermented tea infusion provides more than three times the recommended daily intake of manganese. Tea infusions can be a fairly adequate, but only a supplementary, source of potassium, zinc, magnesium, and copper in the diet. Moreover, it could be concluded that the antioxidant activity of all the analysed types of tea infusions results not only from the high content of phenolic compounds and manganese but is also related to the presence of magnesium and potassium.
Collapse
|