1
|
Maeyama L, Fas S, Schüttrumpf J, Henrichsen S. Comparative analysis of purity of human albumin preparations for clinical use. Anal Chim Acta 2024; 1332:343364. [PMID: 39580176 DOI: 10.1016/j.aca.2024.343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Albumin is the most prevalent plasma protein and serves numerous physiological roles, both in body fluid management and in various other capacities. In many diseases, a deficiency of albumin has been observed, and in certain conditions, albumin substitution has been demonstrated to improve outcome in comparison to plasma expansion using crystalloid or other colloid solutions. The favourable effects of using albumin in patients with liver cirrhosis are likely associated with the non-oncotic functions of albumin. Albumin for clinical use is obtained through fractionation of pooled donor plasma. The production procedures are optimized to ensure pure, chemically uncompromised and native protein. RESULTS We have extensively analysed commercial preparations of human albumin for clinical use from six different providers. Parameters that must correspond to the requirements of international pharmacopoeias were assessed (aluminium, ethanol, sodium, the presence of dimers and oligomers) and found to conform in all cases. In addition, we used for the first time nuclear magnetic resonance (NMR) as an additional analytical approach for investigating in greater depth the quality of a biological remedy gained from human plasma. We applied both 1H NMR and 13C-HSQC for confirming the identity of the albumin preparations, which also conformed in all cases. Moreover, we utilized T2-filtered 1H NMR and 13C-HSQC measurements to identify the presence of small molecules in the preparations. This demonstrated similar patterns of additional substances present, but also unveiled certain differences in purity in the products of the different providers. SIGNIFICANCE Our analyses confirmed that albumin preparations in clinical use conform to the requirements. We furthermore demonstrate that NMR measurements can provide further depth in identity and purity measurements of biologicals. Despite largely standardized protocols in pharmaceutical albumin production, our in-depth analyses revealed differences in purity. Some samples exhibited lower levels of components other than albumin. We discuss possible causes of these observations and their potential implications for clinical therapy.
Collapse
Affiliation(s)
- Liye Maeyama
- Biotest AG, Landsteinerstraße 5, D-63303, Dreieich, Germany
| | - Stefanie Fas
- Biotest AG, Landsteinerstraße 5, D-63303, Dreieich, Germany
| | | | | |
Collapse
|
2
|
Harris G, Bradshaw ML, Halsall DJ, Scott DJ, Unwin RJ, Norden AGW. Is there reversible dimerization of albumin in blood plasma? And does it matter? Exp Physiol 2024; 109:1663-1671. [PMID: 39177455 PMCID: PMC11442857 DOI: 10.1113/ep092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Most albumin in blood plasma is thought to be monomeric with some 5% covalently dimerized. However, many reports in the recent biophysics literature find that albumin is reversibly dimerized or even oligomerized. We review data on this from X-ray crystallography and diverse biophysical techniques. The number-average molecular weight of albumin would be increased by dimerization, affecting size-dependent filtration processes of albumin such as at the glycocalyx of the capillary endothelium and the podocyte slit-diaphragm of the renal glomerulus. If correct, and depending on characteristics of the process, such as Kd, reversible dimerization of albumin in plasma would have major implications for normal physiology and medicine. We present quantitative models of the impact of dimerization on albumin molecular forms, on the number-average molecular weight of albumin, and estimate the effect on the colloid osmotic pressure of albumin. Dimerization reduces colloid osmotic pressure as total albumin concentration increases below that expected in the absence of dimerization. Current models of albumin filtration by the renal glomerulus would need revision to account for the dynamic size of albumin molecules filtered. More robust biophysical data are needed to give a definitive answer to the questions posed and we suggest possible approaches to this.
Collapse
Affiliation(s)
- Gemma Harris
- Research Complex at Harwell, Rutherford Appleton LaboratoryDidcotUK
| | | | - David J. Halsall
- Department of Clinical BiochemistryAddenbrooke's HospitalCambridgeUK
| | - David J. Scott
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | | |
Collapse
|
3
|
Uzelac T, Takić M, Stevanović V, Vidović N, Pantović A, Jovanović P, Jovanović V. The Potential Benefits of Acute Aronia Juice Supplementation on Physical Activity Induced Alterations of the Serum Protein Profiles in Recreational Runners: A Pilot Study. Healthcare (Basel) 2024; 12:1276. [PMID: 38998811 PMCID: PMC11240927 DOI: 10.3390/healthcare12131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Intensive physical activity (PA) can lead to proteinuria and, consequently, serum protein profiles in athletes. Therefore, the aim of this study was to investigate the effects of acute aronia juice consumption before a simulated half-marathon race on serum protein profiles in recreational runners. The pilot study was designed as a single-blind, placebo-controlled, crossover study, with 10 male participants who consumed aronia juice (containing 1.3 g polyphenols) or placebo before the race. The blood levels of total proteins, albumin, the non-albumin fractions gamma, beta, alpha2 and alpha1, as well as renal function parameters, were determined before and 15 min, 1 h and 24 h after the race. The significant changes in urea, creatinine and uric acid levels were noticed at selected time points in both groups. In the placebo group, a significant decrease in total proteins (p < 0.05) was observed 24 h after the race, along with an increase in gamma fraction abundance (p < 0.05). In addition, urea and uric acid levels returned to baseline only in the aronia group 24 h after the race. Thus, according to the results obtained, acute aronia juice supplementation before intensive PA could influence the transient change in renal function and PA-induced protein loss in recreational runners.
Collapse
Affiliation(s)
- Tamara Uzelac
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Takić
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Vuk Stevanović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Nevena Vidović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Ana Pantović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Petar Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Simenido GA, Zubanova EM, Ksendzov EA, Kostjuk SV, Timashev PS, Golubeva EN. Bovine Serum Albumin Effect on Collapsing PNIPAM Chains in Aqueous Solutions: Spin Label and Spin Probe Study. Polymers (Basel) 2024; 16:1335. [PMID: 38794528 PMCID: PMC11124808 DOI: 10.3390/polym16101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The influence of bovine serum albumin (BSA) on collapsing poly(N-isopropylacrylamide) (PNIPAM) chains was studied with turbidimetry and spin probe and spin label electron paramagnetic resonance spectroscopy. An increased ratio of collapsed chains in aqueous solutions in the narrow temperature region near the LCST appeared in the presence of 2.5-10 wt% BSA. The spin probe EPR data indicate that the inner cavities of the BSA dimers are probably responsive to the capture of small hydrophobic or amphiphilic molecules, such as TEMPO nitroxyl radical. The observed features of the structure and dynamics of inhomogeneities of aqueous PNIPAM-BSA solutions, including their mutual influence on the behavior of the polymer and protein below the LCST, should be considered when developing and investigating PNIPAM-based drug delivery systems.
Collapse
Affiliation(s)
- Georgii A. Simenido
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.M.Z.); (P.S.T.); (E.N.G.)
| | - Ekaterina M. Zubanova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.M.Z.); (P.S.T.); (E.N.G.)
| | - Evgenii A. Ksendzov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006 Minsk, Belarus; (E.A.K.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006 Minsk, Belarus; (E.A.K.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Peter S. Timashev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.M.Z.); (P.S.T.); (E.N.G.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Elena N. Golubeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.M.Z.); (P.S.T.); (E.N.G.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Mitin D, Bullinger F, Dobrynin S, Engelmann J, Scheffler K, Kolokolov M, Krumkacheva O, Buckenmaier K, Kirilyuk I, Chubarov A. Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI. Int J Mol Sci 2024; 25:4041. [PMID: 38612851 PMCID: PMC11012161 DOI: 10.3390/ijms25074041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential "metal-free" organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40-50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21-27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Collapse
Affiliation(s)
- Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Friedemann Bullinger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Sergey Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Mikhail Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Igor Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Go EB, Lee JH, Cho JH, Kwon NH, Choi JI, Kwon I. Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation. J Biol Eng 2024; 18:23. [PMID: 38576037 PMCID: PMC10996255 DOI: 10.1186/s13036-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications. One promising serum half-life extender for therapeutic proteins is human serum albumin (HSA), which is the most abundant protein in human serum, known to have an exceptionally long serum half-life. However, conjugating a macromolecular half-life extender to a small protein, such as scFv, often results in a significant loss of its critical properties. RESULTS In this study, we conjugated the HSA to a permissive site of scFv to improve pharmacokinetic profiles. To ensure minimal damage to the antigen-binding capacity of scFv upon HSA conjugation, we employed a site-specific conjugation approach using a heterobifunctional crosslinker that facilitates thiol-maleimide reaction and inverse electron-demand Diels-Alder reaction (IEDDA). As a model protein, we selected 4D5scFv, derived from trastuzumab, a therapeutic antibody used in human epithermal growth factor 2 (HER2)-positive breast cancer treatment. We introduced a phenylalanine analog containing a very reactive tetrazine group (frTet) at conjugation site candidates predicted by computational methods. Using the linker TCO-PEG4-MAL, a single HSA molecule was site-specifically conjugated to the 4D5scFv (4D5scFv-HSA). The 4D5scFv-HSA conjugate exhibited HER2 binding affinity comparable to that of unmodified 4D5scFv. Furthermore, in pharmacokinetic profile in mice, the serum half-life of 4D5scFv-HSA was approximately 12 h, which is 85 times longer than that of 4D5scFv. CONCLUSIONS The antigen binding results and pharmacokinetic profile of 4D5scFv-HSA demonstrate that the site-specifically albumin-conjugated scFv retained its binding affinity with a prolonged serum half-life. In conclusion, we developed an effective strategy to prepare site-specifically albumin-conjugated 4D5scFv, which can have versatile clinical applications with improved efficacy.
Collapse
Affiliation(s)
- Eun Byeol Go
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jeong Haeng Cho
- ProAbTech, Gwangju, 61005, Republic of Korea
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na Hyun Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
7
|
Lv X, Li W, Zhang M, Wang R, Chang J. Investigation of steric hindrance effect on the interactions between four alkaloids and HSA by isothermal titration calorimetry and molecular docking. J Mol Recognit 2024; 37:e3075. [PMID: 38191989 DOI: 10.1002/jmr.3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/24/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
The binding of four alkaloids with human serum albumin (HSA) was investigated by isothermal titration calorimetry (ITC), spectroscopy and molecular docking techniques. The findings demonstrated that theophylline or caffeine can bind to HAS, respectively. The number of binding sites and binding constants are obtained. The binding mode is a static quenching process. The effects of steric hindrance, temperature, salt concentration and buffer solution on the binding indicated that theophylline and HSA have higher binding affinity than caffeine. The fluorescence and ITC results showed that the interaction between HSA and theophylline or caffeine is an entropy-driven spontaneous exothermic process. The hydrophobic force was the primary driving factor. The experimental results were consistent with the molecular docking data. Based on the molecular structures of the four alkaloids, steric hindrance might be a major factor in the binding between HSA and these four alkaloids. This study elucidates the mechanism of interactions between four alkaloids and HSA.
Collapse
Affiliation(s)
- Xinluan Lv
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Wenjin Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Miao Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Ruiyong Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| |
Collapse
|
8
|
Wu N, Liu T, Tian M, Liu C, Ma S, Cao H, Bian H, Wang L, Feng Y, Qi J. Albumin, an interesting and functionally diverse protein, varies from 'native' to 'effective' (Review). Mol Med Rep 2024; 29:24. [PMID: 38099350 PMCID: PMC10784728 DOI: 10.3892/mmr.2023.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Human serum albumins (HSAs) are synthesized in the liver and are the most abundant proteins in plasma of healthy human. They play an important role in the pathophysiological processes of the liver and even the whole organism. Previous studies have mainly focused on the regulation of HSAs' expression. However, with the progress of research in recent years, it has been found that the content of circulating albumin cannot fully reflect the biological function of albumin itself. Given the aforementioned fact, the concept of serum 'effective albumin concentration' has been proposed. It refers to the content of albumin that is structurally and functionally intact. Alterations in the molecular structure and function of albumin have been reported in a variety of diseases, including liver disease. Moreover, these changes have been verified to affect the progression of oxidative stress‑related diseases. However, the link between albumin structure and function has not been fully elaborated, and the mechanisms by which different forms of albumin affect disease also need to be further investigated. In this context, the present review mainly expounded the biological characteristics and functions of albumin, summarized the different types of post‑translational modification of albumin, and discussed their functional changes and possible mechanisms in non‑alcoholic fatty liver disease, alcoholic hepatitis, viral hepatitis and different stages of cirrhosis. This will help to improve understanding of the role of albumin in disease development and provide a more comprehensive physiological basis for it in disease treatment.
Collapse
Affiliation(s)
- Nijin Wu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tiantian Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Miaomiao Tian
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chenxi Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shujun Ma
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Huiling Cao
- Department of Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongjun Bian
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Le Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, P.R. China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, P.R. China
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Bauer I, Ilina E, Zharkov T, Grigorieva E, Chinak O, Kupryushkin M, Golyshev V, Mitin D, Chubarov A, Khodyreva S, Dmitrienko E. Self-Penetrating Oligonucleotide Derivatives: Features of Self-Assembly and Interactions with Serum and Intracellular Proteins. Pharmaceutics 2023; 15:2779. [PMID: 38140119 PMCID: PMC10747088 DOI: 10.3390/pharmaceutics15122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Lipophilic oligonucleotide derivatives are a potent approach to the intracellular delivery of nucleic acids. The binding of these derivatives to serum albumin is a determinant of their fate in the body, as its structure contains several sites of high affinity for hydrophobic compounds. This study focuses on the features of self-association and non-covalent interactions with human serum albumin of novel self-penetrating oligonucleotide derivatives. The study revealed that the introduction of a triazinyl phosphoramidate modification bearing two dodecyl groups at the 3' end region of the oligonucleotide sequence has a negligible effect on its affinity for the complementary sequence. Dynamic light scattering verified that the amphiphilic oligonucleotides under study can self-assemble into micelle-like particles ranging from 8 to 15 nm in size. The oligonucleotides with dodecyl groups form stable complexes with human serum albumin with a dissociation constant of approximately 10-6 M. The oligonucleotide micelles are simultaneously destroyed upon binding to albumin. Using an electrophoretic mobility shift assay and affinity modification, we examined the ability of DNA duplexes containing triazinyl phosphoramidate oligonucleotides to interact with Ku antigen and PARP1, as well as the mutual influence of PARP1 and albumin or Ku antigen and albumin upon interaction with DNA duplexes. These findings, together with the capability of dodecyl-containing derivatives to effectively penetrate different cells, such as HEK293 and T98G, indicate that the oligonucleotides under study can be considered as a platform for the development of therapeutic preparations with a target effect.
Collapse
Affiliation(s)
- Irina Bauer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina Ilina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Timofey Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Evgeniya Grigorieva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Olga Chinak
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Maxim Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Victor Golyshev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Khodyreva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Elena Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Khersonsky O, Goldsmith M, Zaretsky I, Hamer-Rogotner S, Dym O, Unger T, Yona M, Fridmann-Sirkis Y, Fleishman SJ. Stable Mammalian Serum Albumins Designed for Bacterial Expression. J Mol Biol 2023; 435:168191. [PMID: 37385581 DOI: 10.1016/j.jmb.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Albumin is the most abundant protein in the blood serum of mammals and has essential carrier and physiological roles. Albumins are also used in a wide variety of molecular and cellular experiments and in the cultivated meat industry. Despite their importance, however, albumins are challenging for heterologous expression in microbial hosts, likely due to 17 conserved intramolecular disulfide bonds. Therefore, albumins used in research and biotechnological applications either derive from animal serum, despite severe ethical and reproducibility concerns, or from recombinant expression in yeast or rice. We use the PROSS algorithm to stabilize human and bovine serum albumins, finding that all are highly expressed in E. coli. Design accuracy is verified by crystallographic analysis of a human albumin variant with 16 mutations. This albumin variant exhibits ligand binding properties similar to those of the wild type. Remarkably, a design with 73 mutations relative to human albumin exhibits over 40 °C improved stability and is stable beyond the boiling point of water. Our results suggest that proteins with many disulfide bridges have the potential to exhibit extreme stability when subjected to design. The designed albumins may be used to make economical, reproducible, and animal-free reagents for molecular and cell biology. They also open the way to high-throughput screening to study and enhance albumin carrier properties.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irina Zaretsky
- Antibody Engineering Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shelly Hamer-Rogotner
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meital Yona
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Fridmann-Sirkis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
11
|
Pavlova AS, Ilyushchenko VV, Kupryushkin MS, Zharkov TD, Dyudeeva ES, Bauer IA, Chubarov AS, Pyshnyi DV, Pyshnaya IA. Complexes and Supramolecular Associates of Dodecyl-Containing Oligonucleotides with Serum Albumin. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1165-1180. [PMID: 37758315 DOI: 10.1134/s0006297923080102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 10/03/2023]
Abstract
Serum albumin is currently in the focus of biomedical research as a promising platform for the creation of multicomponent self-assembling systems due to the presence of several sites with high binding affinity of various compounds in its molecule, including lipophilic oligonucleotide conjugates. In this work, we investigated the stoichiometry of the dodecyl-containing oligonucleotides binding to bovine and human serum albumins using an electrophoretic mobility shift assay. The results indicate the formation of the albumin-oligonucleotide complexes with a stoichiometry of about 1 : (1.25 ± 0.25) under physiological-like conditions. Using atomic force microscopy, it was found that the interaction of human serum albumin with the duplex of complementary dodecyl-containing oligonucleotides resulted in the formation of circular associates with a diameter of 165.5 ± 94.3 nm and 28.9 ± 16.9 nm in height, and interaction with polydeoxyadenylic acid and dodecyl-containing oligothymidylate resulted in formation of supramolecular associates with the size of about 315.4 ± 70.9 and 188.3 ± 43.7 nm, respectively. The obtained data allow considering the dodecyl-containing oligonucleotides and albumin as potential components of the designed self-assembling systems for solving problems of molecular biology, biomedicine, and development of unique theranostics with targeted action.
Collapse
Affiliation(s)
- Anna S Pavlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Valeriya V Ilyushchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Timofey D Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniya S Dyudeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina A Bauer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
12
|
Nemergut M, Sedláková D, Fabriciová G, Belej D, Jancura D, Sedlák E. Explanation of inconsistencies in the determination of human serum albumin thermal stability. Int J Biol Macromol 2023; 232:123379. [PMID: 36702231 DOI: 10.1016/j.ijbiomac.2023.123379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Thermal denaturation of human serum albumin has been the subject of many studies in recent decades, but the results of these studies are often conflicting and inconclusive. To clarify this, we combined different spectroscopic and calorimetric techniques and performed an in-depth analysis of the structural changes that occur during the thermal unfolding of different conformational forms of human serum albumin. Our results showed that the inconsistency of the results in the literature is related to the different quality of samples in different batches, methodological approaches and experimental conditions used in the studies. We confirmed that the presence of fatty acids (FAs) causes a more complex process of the thermal denaturation of human serum albumin. While the unfolding pathway of human serum albumin without FAs can be described by a two-step model, consisting of subsequent reversible and irreversible transitions, the thermal denaturation of human serum albumin with FAs appears to be a three-step process, consisting of a reversible step followed by two consecutive irreversible transitions.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dominik Belej
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
| |
Collapse
|
13
|
Georgieva E, Atanasov V, Kostandieva R, Tsoneva V, Mitev M, Arabadzhiev G, Yovchev Y, Karamalakova Y, Nikolova G. Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19. Int J Mol Sci 2023; 24:ijms24065807. [PMID: 36982882 PMCID: PMC10058219 DOI: 10.3390/ijms24065807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Oxidative stress and the albumin oxidized form can lead to hypoalbuminemia, which is a predisposing factor for reduced treatment effectiveness and an increased mortality rate in severe COVID-19 patients. The aim of the study is to evaluate the application of free radical 3-Maleimido-PROXYL and SDSL-EPR spectroscopy in the in vitro determination of ox/red HSA in serum samples from patients with SARS-CoV-2 infection. Venous blood was collected from patients intubated (pO2 < 90%) with a positive PCR test for SARS-CoV-2 and controls. At the 120th minute after the incubation of the serum samples from both groups with the 3-Maleimido-PROXYL, the EPR measurement was started. The high levels of free radicals were determined through the nitroxide radical TEMPOL, which probably led to increased oxidation of HSA and hypoalbuminemia in severe COVID-19. The double-integrated spectra of 3-Maleimido-PROXYL radical showed a low degree of connectivity due to high levels of oxidized albumin in COVID-19 patients. The low concentrations of reduced albumin in serum samples partially inhibit spin-label rotation, with Amax values and ΔH0 spectral parameters comparable to those of 3-Maleimido-PROXYL/DMSO. Based on the obtained results, we suggest that the stable nitroxide radical 3-Maleimido-PROXYL can be successfully used as a marker to study oxidized albumin levels in COVID-19.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of "General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of "Medical Chemistry and Biochemistry", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Mitko Mitev
- Department of "Diagnostic Imaging", University Hospital "Prof. Dr. St. Kirkovich", 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of "Surgery and anesthesiology", University Hospital "Prof. Dr. St. Kirkovich", 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of "Surgery and anesthesiology", University Hospital "Prof. Dr. St. Kirkovich", 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of "Medical Chemistry and Biochemistry", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of "Medical Chemistry and Biochemistry", Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| |
Collapse
|
14
|
Popova V, Poletaeva Y, Chubarov A, Dmitrienko E. pH-Responsible Doxorubicin-Loaded Fe3O4@CaCO3 Nanocomposites for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15030771. [PMID: 36986632 PMCID: PMC10053241 DOI: 10.3390/pharmaceutics15030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
A magnetic nanocomposite (MNC) is an integrated nanoplatform that combines a set of functions of two types of materials. A successful combination can give rise to a completely new material with unique physical, chemical, and biological properties. The magnetic core of MNC provides the possibility of magnetic resonance or magnetic particle imaging, magnetic field-influenced targeted delivery, hyperthermia, and other outstanding applications. Recently, MNC gained attention for external magnetic field-guided specific delivery to cancer tissue. Further, drug loading enhancement, construction stability, and biocompatibility improvement may lead to high progress in the area. Herein, the novel method for nanoscale Fe3O4@CaCO3 composites synthesis was proposed. For the procedure, oleic acid-modified Fe3O4 nanoparticles were coated with porous CaCO3 using an ion coprecipitation technique. PEG-2000, Tween 20, and DMEM cell media was successfully used as a stabilization agent and template for Fe3O4@CaCO3 synthesis. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) data were used for the Fe3O4@CaCO3 MNC’s characterization. To improve the nanocomposite properties, the concentration of the magnetic core was varied, yielding optimal size, polydispersity, and aggregation ability. The resulting Fe3O4@CaCO3 had a size of 135 nm with narrow size distributions, which is suitable for biomedical applications. The stability experiment in various pH, cell media, and fetal bovine serum was also evaluated. The material showed low cytotoxicity and high biocompatibility. An excellent anticancer drug doxorubicin (DOX) loading of up to 1900 µg/mg (DOX/MNC) was demonstrated. The Fe3O4@CaCO3/DOX displayed high stability at neutral pH and efficient acid-responsive drug release. The series of DOX-loaded Fe3O4@CaCO3 MNCs indicated effective inhibition of Hela and MCF-7 cell lines, and the IC 50 values were calculated. Moreover, 1.5 μg of the DOX-loaded Fe3O4@CaCO3 nanocomposite is sufficient to inhibit 50% of Hela cells, which shows a high prospect for cancer treatment. The stability experiments for DOX-loaded Fe3O4@CaCO3 in human serum albumin solution indicated the drug release due to the formation of a protein corona. The presented experiment showed the “pitfalls” of DOX-loaded nanocomposites and provided step-by-step guidance on efficient, smart, anticancer nanoconstruction fabrication. Thus, the Fe3O4@CaCO3 nanoplatform exhibits good performance in the cancer treatment area.
Collapse
Affiliation(s)
| | | | - Alexey Chubarov
- Correspondence: or (A.C.); (E.D.); Tel.: +7-913-763-1420 (A.C.); +7-913-904-1742 (E.D.)
| | - Elena Dmitrienko
- Correspondence: or (A.C.); (E.D.); Tel.: +7-913-763-1420 (A.C.); +7-913-904-1742 (E.D.)
| |
Collapse
|
15
|
Fluorinated Human Serum Albumin as Potential 19F Magnetic Resonance Imaging Probe. Molecules 2023; 28:molecules28041695. [PMID: 36838682 PMCID: PMC9959765 DOI: 10.3390/molecules28041695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Fluorinated human serum albumin conjugates were prepared and tested as potential metal-free probes for 19F magnetic resonance imaging (MRI). Each protein molecule was modified by several fluorine-containing compounds via the N-substituted natural acylating reagent homocysteine thiolactone. Albumin conjugates retain the protein's physical and biological properties, such as its 3D dimensional structure, aggregation ability, good solubility, proteolysis efficiency, biocompatibility, and low cytotoxicity. A dual-labeled with cyanine 7 fluorescence dye and fluorine reporter group albumin were synthesized for simultaneous fluorescence imaging and 19F MRI. The preliminary in vitro studies show the prospects of albumin carriers for multimodal imaging.
Collapse
|
16
|
Fuentes-Lemus E, Reyes JS, López-Alarcón C, Davies MJ. Crowding modulates the glycation of plasma proteins: In vitro analysis of structural modifications to albumin and transferrin and identification of sites of modification. Free Radic Biol Med 2022; 193:551-566. [PMID: 36336230 DOI: 10.1016/j.freeradbiomed.2022.10.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Protein modification occurs in biological milieus that are characterized by high concentrations of (macro)molecules (i.e. heterogeneous and packed environments). Recent data indicate that crowding can modulate the extent and rate of protein oxidation, however its effect on other post-translational modifications remains to be explored. In this work we hypothesized that crowding would affect the glycation of plasma proteins. Physiologically-relevant concentrations of albumin (35 mg mL-1) and transferrin (2 mg mL-1) were incubated with methylglyoxal and glyoxal (5 μM-5 mM), two α-oxoaldehyde metabolites that are elevated in the plasma of people with diabetes. Crowding was induced by adding dextran or ficoll polymers. Electrophoresis, electron microscopy, fluorescence spectroscopy and mass spectrometry were employed to investigate the structural consequences of glycation under crowded conditions. Our data demonstrate that crowding modulates the extent of formation of transferrin cross-links, and also the modification pathways in both albumin and transferrin. Arginine was the most susceptible residue to modification, with lysine and cysteine also affected. Loss of 0.48 and 7.28 arginine residues per protein molecule were determined on incubation with 500 μM methylglyoxal for albumin and transferrin, respectively. Crowding did not influence the extent of loss of arginine and lysine for either protein, but the sites of modification, detected by LC-MS, were different between dilute and crowded conditions. These data confirm the relevance of studying modification processes under conditions that closely mimic biological milieus. These data unveil additional factors that influence the pattern and extent of protein modification, and their structural consequences, in biological systems.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Juan S Reyes
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo López-Alarcón
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
17
|
Development of Chitosan/Gelatin-Based Hydrogels Incorporated with Albumin Particles. Int J Mol Sci 2022; 23:ijms232214136. [PMID: 36430612 PMCID: PMC9694906 DOI: 10.3390/ijms232214136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The research subject of this paper are natural polymer-based hydrogels modified with albumin particles. The proteins were obtained via the salt-induced precipitation method, and next characterized using dynamic light scattering (DLS), UV-Vis spectroscopy and FT-IR spectroscopy. The most favorable composition showing monodispersity and particles with a size lower than 40 nm was selected for modification of hydrogels. Such systems were obtained via the photopolymerization performed under the influence of UV radiation using diacrylate poly(ethylene glycol) as a crosslinking agent and 2-hydroxy-2-methylpropiophenone as a photoinitiator. Next, the hydrogels' swelling ability, mechanical properties, wettability and surface morphology were characterized. Moreover, FT-IR spectroscopy, incubation studies in simulated physiological liquids, pro-inflammatory activity analysis and MTT reduction assay with L929 murine fibroblasts were performed. The release profiles of proteins from hydrogels were also verified. Materials modified with proteins showed higher swelling ability, increased flexibility even by 50% and increased surface hydrophilicity. Hydrogels' contact angles were within the range 62-69° while the tensile strength of albumin-containing hydrogels was approx. 0.11 MPa. Furthermore, the possibility of the effective release of protein particles from hydrogels in acidic environment (approximately 70%) was determined. Incubation studies showed hydrogels' stability and lack of their degradation in tested media. The viability of fibroblasts was 89.54% for unmodified hydrogel, and approx. 92.73% for albumin-modified hydrogel, and such an increase indicated the positive impact of the albumin on murine fibroblast proliferation.
Collapse
|
18
|
Cantelli A, Malferrari M, Mattioli EJ, Marconi A, Mirra G, Soldà A, Marforio TD, Zerbetto F, Rapino S, Di Giosia M, Calvaresi M. Enhanced Uptake and Phototoxicity of C 60@albumin Hybrids by Folate Bioconjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193501. [PMID: 36234629 PMCID: PMC9565331 DOI: 10.3390/nano12193501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/12/2023]
Abstract
Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C60 molecules in a physiological environment, (ii) HSA, upon C60 binding, maintains its biological identity and biocompatibility, (iii) the C60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C60@HSA complex in HeLa cells.
Collapse
|
19
|
Synthesis, characterization, biomolecular interaction and in vitro glucose metabolism studies of dioxidovanadium(V) benzimidazole compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Oosting LT, Franke K, Martin MV, Kloosterman WP, Jamieson JA, Glenn LA, de Jager MW, van Zanten J, Allersma DP, Gareb B. Development of a Personalized Tumor Neoantigen Based Vaccine Formulation (FRAME-001) for Use in a Phase II Trial for the Treatment of Advanced Non-Small Cell Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14071515. [PMID: 35890409 PMCID: PMC9322189 DOI: 10.3390/pharmaceutics14071515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 01/27/2023] Open
Abstract
Stage III–IV non-small cell lung cancer (NSCLC) is a devastating disease characterized by a poor prognosis. NSCLC tumors carry genetic mutations, which can lead to the expression of altered protein sequences. Peptides originating from mutated proteins and bound to MHC molecules on the tumor cell surface are referred to as neoantigens, as they are tumor-specific and not expressed in normal cells. Due to their tumor specificity, neoantigens have a strong potential to induce an anti-tumor immune response and have been investigated for development of personalized therapeutic cancer vaccines. The current study describes the development of a clinical grade neoantigen vaccine formulation (FRAME-001) intended as immunotherapy in advanced NSCLC in combination with the immune checkpoint inhibitor pembrolizumab. The detection of aberrant tumor-specific transcripts as well as an algorithm to select immunogenic neoantigen peptides are described. Subsequently, selected neoantigen peptides were synthesized with a high throughput synthesis platform and aseptically formulated under good manufacturing practice (GMP) conditions into four aqueous peptides mixtures that each contained six neoantigen peptides. A validated stability-indicating analytical method was developed in which we considered the personalized nature of the formulation. An extensive stability study performed either at −25 °C or −80 °C showed that the formulation was stable for up to 32 weeks. The formulation was mixed with the vaccine adjuvant Montanide ISA 51 VG, which yielded the final vaccine emulsion. The stability of the vaccine emulsion was demonstrated using microscopic examination, differential light scattering, and the water-drop test. The presented data show that FRAME-001 is a feasible personalized vaccine formulation for the treatment of stage III–IV NSCLC. The presented data may give guidance in the development of novel personalized therapeutic vaccines since this formulation strategy could be used for any cancer indication.
Collapse
Affiliation(s)
- Linette T. Oosting
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.T.O.); (J.v.Z.); (D.P.A.)
| | - Katka Franke
- CureVac Netherlands B.V., Matrix Building VII, Science Park 106, 1098 XG Amsterdam, The Netherlands; (K.F.); (M.V.M.); (W.P.K.)
| | - Michael V. Martin
- CureVac Netherlands B.V., Matrix Building VII, Science Park 106, 1098 XG Amsterdam, The Netherlands; (K.F.); (M.V.M.); (W.P.K.)
| | - Wigard P. Kloosterman
- CureVac Netherlands B.V., Matrix Building VII, Science Park 106, 1098 XG Amsterdam, The Netherlands; (K.F.); (M.V.M.); (W.P.K.)
| | - Jennifer A. Jamieson
- Almac Sciences Scotland Ltd., The Fleming Building, Edinburgh Technopole, Milton Bridge, Penicuik EH26 0BE, UK; (J.A.J.); (L.A.G.)
| | - Laura A. Glenn
- Almac Sciences Scotland Ltd., The Fleming Building, Edinburgh Technopole, Milton Bridge, Penicuik EH26 0BE, UK; (J.A.J.); (L.A.G.)
| | | | - Jacoba van Zanten
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.T.O.); (J.v.Z.); (D.P.A.)
| | - Derk P. Allersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.T.O.); (J.v.Z.); (D.P.A.)
| | - Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.T.O.); (J.v.Z.); (D.P.A.)
- Correspondence:
| |
Collapse
|
21
|
Vita GM, De Simone G, De Marinis E, Nervi C, Ascenzi P, di Masi A. Serum albumin and nucleic acids biodistribution: from molecular aspects to biotechnological applications. IUBMB Life 2022; 74:866-879. [PMID: 35580148 DOI: 10.1002/iub.2653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Abstract
Serum albumin (SA) is the most abundant protein in plasma and represents the main carrier of endogenous and exogenous compounds. Several evidence supports the notion that SA binds single and double stranded deoxy- and ribonucleotides at two sites, with values of the dissociation equilibrium constant (i.e., Kd ) ranging from micromolar to nanomolar values. This can be relevant from a physiological and pathological point of view as in human plasma circulate cell-free nucleic acids (cfNAs), which are single and double stranded NAs released by different tissues via apoptosis, necrosis, and secretions. Albeit SA shows low hydrolytic reactivity toward DNA and RNA, the high plasma concentration of this protein and the occurrence of several SA receptors may be pivotal for sequestering and hydrolyzing cfNAs. Therefore, pathological conditions like cancer, characterized by altered levels of human SA or by altered SA post-translational modifications, may influence cfNAs distribution and metabolism. Besides, the stability, solubility, biocompatibility, and low immunogenicity make SA a golden share for biotechnological applications related to the delivery of therapeutic NAs (TNAs). Indeed, pre-clinical studies report the therapeutic potential of SA:TNAs complexes in precision cancer therapy. Here, the molecular and biotechnological implications of SA:NAs interaction are discussed, highlighting new perspectives into SA plasmatic functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gian Marco Vita
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Giovanna De Simone
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | - Paolo Ascenzi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.,Accademia Nazionale dei Lincei, Roma, Italy
| | - Alessandra di Masi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| |
Collapse
|
22
|
Sharifi S, Saei AA, Gharibi H, Mahmoud NN, Harkins S, Dararatana N, Lisabeth EM, Serpooshan V, Végvári Á, Moore A, Mahmoudi M. Mass Spectrometry, Structural Analysis, and Anti-Inflammatory Properties of Photo-Cross-Linked Human Albumin Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2643-2663. [PMID: 35544705 DOI: 10.1021/acsabm.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels. The impacts of methacryloylation and cross-linking on alteration of inflammatory response and toxicity were evaluated in vitro using brain-derived HMC3 macrophages and Ex-Ovo chick chorioallantoic membrane assay. Results revealed that the lysines in HSA were the primary targets reacting with MAA, though modification of cysteine, threonine, serine, and tyrosine, with MAA was also confirmed. Both methacrylated HSA and its derived hydrogels were nontoxic and did not induce inflammatory pathways, while significantly reducing macrophage adhesion to the hydrogels; one of the key steps in the process of foreign body reaction to biomaterials. Cytokine and growth factor analysis showed that albumin-based hydrogels demonstrated anti-inflammatory response modulating cellular events in HMC3 macrophages. Ex-Ovo results also confirmed the biocompatibility of HSA macromer and hydrogels along with slight angiogenesis-modulating effects. Photocurable albumin hydrogels may be used as a non-immunogenic platform for various biomedical applications including passivation coatings.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Nouf N Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shannon Harkins
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Naruphorn Dararatana
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Jagusiak A, Chłopaś K, Zemanek G, Kościk I, Skorek P, Stopa B. Albumin Binds Doxorubicin via Self−Assembling Dyes as Specific Polymolecular Ligands. Int J Mol Sci 2022; 23:ijms23095033. [PMID: 35563426 PMCID: PMC9104453 DOI: 10.3390/ijms23095033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Congo red (CR) type self–assembled ribbon–like structures (SRLS) were previously shown to interact with some proteins, including albumin. SRLS also complex with some drugs with a flat, ring–shaped structure with aromatic characteristics, intercalating them into their ribbon structure. The combination of interaction with proteins and drug binding by SRLS enables the use of such systems for immunotargeting. It is especially interesting in the case of chemotherapeutic agents. The present experiments aimed to show that the model carrier system composed of supramolecular albumin and Congo red efficiently binds doxorubicin (Dox) and that the drug can be released at reduced pH. The presented results come from the studies on such complexes differing in the molar ratio of CR to Dox. The following methods were used for the analysis: electrophoresis, dialysis, gel filtration, spectral analysis, and analysis of the size of the hydrodynamic radius using the dynamic light scattering method (DLS). The applied methods confirmed the formation of the CR–Dox complex, with large dimensions and changed properties compared with free CR. The presented results show that albumin binds both CR and its complex with Dox. Various CR–Dox molar ratios, 5:1, 2:1, and 1:1, were analyzed. The confirmation of the possibility of releasing the drug from the carriers thus formed was also obtained. The presented research is important due to the search for optimal solutions for the use of SRLS in drug immunotargeting, with particular emphasis on chemotherapeutic agents.
Collapse
Affiliation(s)
- Anna Jagusiak
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
- Correspondence:
| | - Katarzyna Chłopaś
- Pulmonology and Allergology Clinical Department, University Hospital in Krakow, 30-688 Krakow, Poland;
| | - Grzegorz Zemanek
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
| | - Izabela Kościk
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Paweł Skorek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, 31-202 Krakow, Poland;
| | - Barbara Stopa
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
| |
Collapse
|
24
|
Gordon F, Casamayou-Boucau Y, Ryder AG. Evaluating the interaction of human serum albumin (HSA) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes in different aqueous environments using anisotropy resolved multi-dimensional emission spectroscopy (ARMES). Colloids Surf B Biointerfaces 2022; 211:112310. [PMID: 35007857 DOI: 10.1016/j.colsurfb.2021.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/09/2021] [Accepted: 12/26/2021] [Indexed: 11/28/2022]
Abstract
Studying the interaction between plasma proteins and liposomes is critical, particularly for their use as drug delivery systems. Here, the efficacy of anisotropy resolved multidimensional emission spectroscopy (ARMES) for investigating the interaction of human serum albumin (HSA) with liposomes was explored and compared to conventional spectroscopic techniques. Dynamic Light Scattering (DLS) and absorbance spectroscopy (with Multivariate Curve Resolution (MCR) modeling) indicated that the highest degree of liposome rupturing, and aggregation occurred in water, with less in ammonium bicarbonate buffer (ABC) and phosphate buffered saline (PBS). Fluorescence emission spectra of HSA-liposome mixtures revealed significant hypsochromic shifts for water and ABC, but much less in PBS, where the data suggests a non-penetrating protein layer was formed. Average fluorescence lifetimes decreased upon liposome interaction in water (6.2→5.2 ns) and ABC buffer (6.3→5.6 ns) but increased slightly for PBS (5.6→5.8 ns). ARMES using polarized Total Synchronous Fluorescence Scan measurements with parallel factor (PARAFAC) analysis resolved intrinsic HSA fluorescence into two components for interactions in water and ABC buffer, but only one component for PBS. These components, in water and ABC buffer, corresponded to two different HSA populations, one blue-shifted and penetrating the liposomes (λex/em = ~ 280/320 nm) and a second, similar to free HSA in solution (λex/em = ~ 282/356 nm). PARAFAC scores for water and ABC buffer suggested that a large proportion of HSA interacted in an end on configuration. ARMES provides a new way for investigating protein-liposome interactions that exploits the full intrinsic emission space of the protein and thus avoids the use of extrinsic labels. The use of multivariate data analysis provided a comprehensive and structured framework to extract a variety of useful information (resolving different fluorescent species, quantifying their signal contribution, and extracting light scatter signals) all of which can be used to discriminate between interaction mechanisms.
Collapse
Affiliation(s)
- Fiona Gordon
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland
| | - Yannick Casamayou-Boucau
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland
| | - Alan G Ryder
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| |
Collapse
|
25
|
Lahiri J, Sandhu S, Levine BG, Dantus M. Human Serum Albumin Dimerization Enhances the S 2 Emission of Bound Cyanine IR806. J Phys Chem Lett 2022; 13:1825-1832. [PMID: 35171617 DOI: 10.1021/acs.jpclett.1c03735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyanine molecules are important phototheranostic compounds given their high fluorescence yield in the near-infrared region of the spectrum. We report on the frequency and time-resolved spectroscopy of the S2 state of IR806, which demonstrates enhanced emission upon binding to the hydrophobic pocket of human serum albumin (HSA). From excitation-emission matrix spectra and electronic structure calculations, we identify the emission as one associated with a state having the polymethine chain twisted out of plane by 103°. In addition, we find that this configuration is significantly stabilized as the concentration of HSA increases. Spectroscopic changes associated with the S1 and S2 states of IR806 as a function of HSA concentration, as well as anisotropy measurements, confirm the formation of HSA dimers at concentrations greater than 10 μM. These findings imply that the longer-lived S2 state configuration can lead to more efficient phototherapy agents, and cyanine S2 spectroscopy may be a useful tool to determine the oligomerization state of HSA.
Collapse
Affiliation(s)
- Jurick Lahiri
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shawn Sandhu
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Scognamiglio PL, Vicidomini C, Fontanella F, De Stefano C, Palumbo R, Roviello GN. Protein Binding of Benzofuran Derivatives: A CD Spectroscopic and In Silico Comparative Study of the Effects of 4-Nitrophenyl Functionalized Benzofurans and Benzodifurans on BSA Protein Structure. Biomolecules 2022; 12:biom12020262. [PMID: 35204762 PMCID: PMC8961527 DOI: 10.3390/biom12020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Benzofuran derivatives are synthetic compounds that are finding an increasing interest in the scientific community not only as building blocks for the realization of new materials, but also as potential drugs thanks to their ability to interact with nucleic acids, interfere with the amyloid peptide aggregation and cancer cell cycle. However, their ability to interact with proteins is a theme still in need of investigation for the therapeutic importance that benzofurans could have in the modulation of protein-driven processes and for the possibility of making use of serum albumins as benzofurans delivery systems. To this scope, we investigated the protein binding ability of two 4-nitrophenyl-functionalized benzofurans previously synthesized in our laboratory and herein indicated as BF1 and BDF1, which differed for the number of furan rings (a single moiety in BF1, two in BDF1), using bovine serum albumin (BSA) as a model protein. By circular dichroism (CD) spectroscopy we demonstrated the ability of the two heteroaromatic compounds to alter the secondary structure of the serum albumin leading to different consequences in terms of BSA thermal stability with respect to the unbound protein (ΔTm > 3 °C for BF1, −0.8 °C for BDF1 with respect to unbound BSA, in PBS buffer, pH 7.5) as revealed in our CD melting studies. Moreover, a molecular docking study allowed us to compare the possible ligand binding modes of the mono and difuranic derivatives showing that while BF1 is preferentially housed in the interior of protein structure, BDF1 is predicted to bind the albumin surface with a lower affinity than BF1. Interestingly, the different affinity for the protein target predicted computationally was confirmed also experimentally by fluorescence spectroscopy (kD = 142.4 ± 64.6 nM for BDF1 vs. 28.4 ± 10.1 nM for BF1). Overall, the above findings suggest the ability of benzofurans to bind serum albumins that could act as their carriers in drug delivery applications.
Collapse
Affiliation(s)
| | - Caterina Vicidomini
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy; (C.V.); (R.P.)
| | - Francesco Fontanella
- Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, 03043 Cassino (FR), Italy; (F.F.); (C.D.S.)
| | - Claudio De Stefano
- Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, 03043 Cassino (FR), Italy; (F.F.); (C.D.S.)
| | - Rosanna Palumbo
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy; (C.V.); (R.P.)
- Correspondence: ; Tel.: +39-3491928417
| |
Collapse
|
27
|
|
28
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
29
|
Cheng Z, Huang Y, Shao P, Wang L, Zhu S, Yu J, Lu W. Hypoxia-Activated Albumin-Binding Exatecan Prodrug for Cancer Therapy. ACS OMEGA 2022; 7:1082-1089. [PMID: 35036771 PMCID: PMC8757358 DOI: 10.1021/acsomega.1c05671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
As an effective drug delivery strategy for traditional antitumor drugs, the stimulus-responsive albumin-based prodrugs are getting more and more attention. These prodrugs only release drugs in specific tumor microenvironments, which can prevent premature release of the drug in the circulation. Tumor hypoxia is a fundamental feature of the solid tumor microenvironment. As a hypoxia-activated linker, the 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole can be a trigger for albumin-based prodrugs. In this study, we report the synthesis and biological evaluation of the hypoxia-activated albumin-binding prodrug Mal-azo-Exatecan. After intravenous administration, the maleimide on the side chain can rapidly bind to endogenous albumin, enabling the prodrugs to accumulate in tumors, where tumor-associated hypoxia microenvironments trigger the selective release of Exatecan. The 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole as a cleavable linker has high plasma stability and does not cause Exatecan release from HSA-azo-Exatecan during circulation in vivo, avoiding systemic side effects caused by Exatecan.
Collapse
|
30
|
Asanbaeva N, Sukhanov A, Diveikina AA, Rogozhnikova O, Trukhin DV, Tormyshev VM, Chubarov AS, Maryasov AG, Genaev A, Shernyukov AV, Salnikov GE, Lomzov AA, Pyshnyi DV, Bagryanskaya E. Application of W-band 19F electron nuclear double resonance (ENDOR) spectroscopy to distance measurement using a trityl spin probe and a fluorine label. Phys Chem Chem Phys 2022; 24:5982-6001. [DOI: 10.1039/d1cp05445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Marina Bennati and coworkers (Angew. Chemie - Int. Ed., 2020, 59, 373–379., A. J. Magn. Reson., 2021, 333, 107091) proposed to use electron nuclear double resonance (ENDOR) spectroscopy in...
Collapse
|
31
|
Zhang F, Richter G, Bourgeois B, Spreitzer E, Moser A, Keilbach A, Kotnik P, Madl T. A General Small-Angle X-ray Scattering-Based Screening Protocol for Studying Physical Stability of Protein Formulations. Pharmaceutics 2021; 14:69. [PMID: 35056965 PMCID: PMC8778066 DOI: 10.3390/pharmaceutics14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Armin Moser
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | | | - Petra Kotnik
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
32
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
33
|
Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021; 22:ijms22168411. [PMID: 34445120 PMCID: PMC8395139 DOI: 10.3390/ijms22168411] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Serum albumin physically interacts with fatty acids, small molecules, metal ions, and several other proteins. Binding with a plethora of bioactive substances makes it a critical transport molecule. Albumin also scavenges the reactive oxygen species that are harmful to cell survival. These properties make albumin an excellent choice to promote cell growth and maintain a variety of eukaryotic cells under in vitro culture environment. Furthermore, purified recombinant human serum albumin is mostly free from impurities and modifications, providing a perfect choice as an additive in cell and tissue culture media while avoiding any regulatory constraints. This review discusses key features of human serum albumin implicated in cell growth and survival under in vitro conditions.
Collapse
|
34
|
Ischemia-Modified Albumin: Origins and Clinical Implications. DISEASE MARKERS 2021; 2021:9945424. [PMID: 34336009 PMCID: PMC8315882 DOI: 10.1155/2021/9945424] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Albumin is one of the most abundant proteins in the body of mammals: about 40% of its pool is located in the intravascular space and the remainder is found in the interstitial space. The content of this multifunctional protein in blood is about 60-65% of total plasma proteins. A decrease in its synthesis or changes of functional activity can destabilize oncotic blood pressure, cause a violation of transporting hormones, fatty acids, metals, and drugs. Albumin properties change under ischemic attacks associated with oxidative stress, production of reactive oxygen species, and acidosis. Under these conditions, ischemia-modified albumin (IMA) is generated that has a reduced metal-binding capacity, especially for transition metals, such as copper, nickel, and cobalt. The method of determining the cobalt-binding capability of HSA was initially proposed to evaluate IMA level and then licensed as an ACB test for routine clinical analysis for myocardial ischemia. Subsequent studies have shown the viability of the ACB test in diagnosing other diseases associated with the development of oxidative stress. This review examines recent data on IMA generation mechanisms, describes principles, advantages, and limitations of methods for evaluation of IMA levels, and provides detailed analysis of its use in diagnostic and monitoring therapeutic efficacy in different diseases.
Collapse
|
35
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|