1
|
Lam YY, Tan A, Kempe K, Boyd BJ. Metabolic glycan labelling with bio-orthogonal targeting and its potential in drug delivery. J Control Release 2025; 378:880-898. [PMID: 39694071 DOI: 10.1016/j.jconrel.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
New modes of targeted drug delivery are emerging with promise of enhancing therapeutic efficacy while reducing side effects. This review examines the landscape of metabolic glycan labelling-a technique gaining traction for its potential in specific drug targeting. By exploiting the natural glycan synthetic pathway of monosaccharides, unnatural sugar analogues are incorporated into glycoproteins, allowing for the presentation of unique functional groups on cells. This enables specific targeting using 'clickable' probes with complementary click chemistry functional groups. The selection of sugar analogues and chemical tags are crucial components explored in this review, alongside considerations for cell lines, tissues, and cargo selection. The review discusses non-therapeutic and therapeutic applications of metabolic glycan labelling, as well as its potential beyond labelling of cell surfaces. The review also highlights underexplored areas of metabolic glycan labelling by assessing the limited literature addressing labelling efficiency, turnover rates, the impact of sugar supplements in cell culture, and the critical cell to functionalised sugar ratio. Furthermore, this review delves into the future landscape and goals of metabolic glycan labelling, envisioning its potential in targeted drug delivery.
Collapse
Affiliation(s)
- Yuen Yi Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Pharmacy, University of Copenhagen Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Alsulaimany M, Aljohani AKB, Abd El-Sattar NEA, Almadani SA, Alatawi OM, Alharbi HY, Aljohani MS, Al-Shareef AH, Alghamdi R, Tayeb SM, Keshek DE, El-Adl K, Anwer KE. Dual VEGFR-2 and EGFR T790M inhibitors of phenyldiazenes: anticancer evaluations, ADMET, docking, design and synthesis. Future Med Chem 2025; 17:287-300. [PMID: 39819342 PMCID: PMC11792794 DOI: 10.1080/17568919.2025.2453409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
AIM New phenyldiazene scaffold-linked heterocyclic pyrazole, pyrimidinone, pyrimidinthione, and/or triazine rings have been developed and synthesized. METHODS & RESULTS Cytotoxicity of our derivatives was estimated on four cancer and VERO normal cell lines targeting EGFRT790M (epidermal growth factor receptor) and VEGFR-2 (vascular endothelial growth factor receptor-2) enzymes. Our new derivatives selectively inhibited both VEGFR-2 and EGFR as they have the essential structural requirements for inhibitors of both receptors. Derivative 14 was the most active on A549, HCT116, HepG2, and MCF-7 cancers with half-maximal inhibitory concentration (IC50) = 5.50, 9.77, 7.12, and 7.85 µM respectively. The assessed derivatives 5, 7, 8, 9, 10, 12 and 14 showed IC50 = 54.40-62.60 μM against normal VERO (normal kidney) cells with low toxicity. In addition, derivatives 14, 8, 10, 7 and 9 were discovered to be very good active inhibitors of VEGFR-2 at IC50 values of 1.15, 1.35, 140, 1.78 and 1.90 µM, respectively. Furthermore, derivatives 14, 10, 8, and 9 strongly repressed EGFRT790M with IC50 = 0.28, 0.33, 0.35, and 0.50 µM correspondingly. Additionally, the highly active compounds 8, 10, and 14 showed good ADMET profile. CONCLUSION Our derivatives could be considered as anticancer agents with dual VEGFR-2 and EGFRT790M inhibition.
Collapse
Affiliation(s)
- Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ahmed K. B. Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Nour E. A. Abd El-Sattar
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat City, Egypt
| | - Sara A. Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Omar M. Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hussam Y. Alharbi
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S. Aljohani
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Adel H. Al-Shareef
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Saeed M. Tayeb
- Department of Pharmaceutical Science, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Doaa E. Keshek
- Department of biology, Al-Jumum College University, Umm Al-Qura University, Makkah, Sudia Arabia
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Kurls E. Anwer
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
4
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025:10.1007/s11010-024-05199-3. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
6
|
Khaled NA, Ibrahim MA, Mohamed NA, Ahmed SA, Ahmed NS. DFT studies on N-(1-(2-bromobenzoyl)-4-cyano-1H-pyrazol-5-yl). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124864. [PMID: 39067358 DOI: 10.1016/j.saa.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
In this work, molecular descriptors of N-(1-(2-bromobenzoyl)-4-cyano-1H-pyrazol-5-yl) halogenated benzamides (1a-h) have been computed using a quantum chemical technique through DFT. Prior work involved the synthesis of compounds (1a-h) and the assessment of their anticancer activity on breast, colon, and liver tumors: MCF-7, HCT-116, and HepG-2 cell lines respectively. Since 1a, 1b, and 1d showed the most potential anticancer impact, their ability to inhibit EGFRWT was investigated. Based on the biological data, 1b inhibited EGFRWT the most. According to the docking evaluation, an H-bond with the threonine residue was one of the main non-covalent contacts between 1b and the EGFRWT active site residues. PES, MESP, HOMOs, LUMOs, energy band gap, global reactivity indices [electron affinity (A), ionization energies (I), electrophilicity index (ω), nucleophilicity index (ε), chemical potential (μ), electronegativity (χ), hardness (η), and softness (S)], condensed Fukui functions, NBO, and NCIs are the molecular descriptors of 1a-h that were computed using DFT technique. According to the theoretical investigation results, compounds (1a-h) might have anticancer effects; these findings are consistent with the biological findings from our previous research. Compound 1b had the lowest binding energy, according to an assessment of the binding energies between the threonine and the three most active compounds (1a, 1b, and 1d). This is consistent with the outcomes of the docking study and the biological examination of the influence of 1a, 1b, and 1d on EGFRWT.
Collapse
Affiliation(s)
- Nada A Khaled
- Therapeutical Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Neama A Mohamed
- Therapeutical Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; Basic Science Department, Faculty of Engineering, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Nesreen S Ahmed
- Therapeutical Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Hunt HL, Goncalves BG, Biggs MA, Rico MI, Murray ME, Lebedenko CG, Banerjee IA. Design and investigation of interactions of novel peptide conjugates of purine and pyrimidine derivatives with EGFR and its mutant T790M/L858R: an in silico and laboratory study. Mol Divers 2024; 28:3683-3711. [PMID: 38240950 DOI: 10.1007/s11030-023-10772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
Peptide-based therapeutics have been gaining attention due to their ability to actively target tumor cells. Additionally, several varieties of nucleotide derivatives have been developed to reduce cell proliferation and induce apoptosis of tumor cells. In this work, we have developed novel peptide conjugates with newly designed purine analogs and pyrimidine derivatives and explored the binding interactions with the kinase domain of wild-type EGFR and its mutant EGFR [L858R/ T790M] which are known to be over-expressed in tumor cells. The peptides explored included WNWKV (derived from sea cucumber) and LARFFS, which in previous work was predicted to bind to Domain I of EGFR. Computational studies conducted to explore binding interactions include molecular docking studies, molecular dynamics simulations and MMGBSA to investigate the binding abilities and stability of the complexes. The results indicate that conjugation enhanced binding capabilities, particularly for the WNWKV conjugates. MMGBSA analysis revealed nearly twofold higher binding toward the T790M/L858R double mutant receptor. Several conjugates were shown to have strong and stable binding with both wild-type and mutant EGFR. As a proof of concept, we synthesized pyrimidine conjugates with both peptides and determined the KD values using SPR analysis. The results corroborated with the computational analyses. Additionally, cell viability and apoptosis studies with lung cancer cells expressing the wild-type and double mutant proteins revealed that the WNWKV conjugate showed greater potency than the LARFFS conjugate, while LARFFS peptide alone showed poor binding to the kinase domain. Thus, we have designed peptide conjugates that show potential for further laboratory studies for developing therapeutics for targeting the EGFR receptor and its mutant T790M/L858R.
Collapse
Affiliation(s)
- Hannah L Hunt
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mia I Rico
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Molly E Murray
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
8
|
Ganai AM, Vrettos EI, Kyrkou SG, Zoi V, Khan Pathan T, Karpoormath R, Bouziotis P, Alexiou GA, Kastis GA, Protonotarios NE, Tzakos AG. Design Principles and Applications of Fluorescent Kinase Inhibitors for Simultaneous Cancer Bioimaging and Therapy. Cancers (Basel) 2024; 16:3667. [PMID: 39518106 PMCID: PMC11545566 DOI: 10.3390/cancers16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Kinase inhibitors are potent therapeutic agents in cancer treatment, but their effectiveness is frequently restricted by the inability to image the tumor microenvironment. To address this constraint, kinase inhibitor-fluorophore conjugates have emerged as promising theranostic agents, allowing for simultaneous cancer diagnosis and treatment. These conjugates are gaining attention for their ability to visualize malignant tissues and concurrently enhance therapeutic interventions. This review explores the design principles governing the development of multimodal inhibitors, highlighting their potential as platforms for kinase tracking and inhibition via bioimaging. The structural aspects of constructing such theranostic agents are critically analyzed. This work could shed light on this intriguing field and provide adequate impetus for developing novel theranostic compounds based on small molecule inhibitors and fluorophores.
Collapse
Affiliation(s)
- Ab Majeed Ganai
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - Tabasum Khan Pathan
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - George A. Kastis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Nicholas E. Protonotarios
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| |
Collapse
|
9
|
Chaudhari PJ, Nemade AR, Shirkhedkar AA. Recent updates on potential of VEGFR-2 small-molecule inhibitors as anticancer agents. RSC Adv 2024; 14:33384-33417. [PMID: 39439843 PMCID: PMC11495155 DOI: 10.1039/d4ra05244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
The vascular endothelial growth factor receptor (VEGFR) system is the key component for controlling angiogenesis in cancer cells. Blocking vascular endothelial growth factor receptor 2 (VEGFR2) signalling is one of the most promising approaches to hindering angiogenesis and the subsequent growth of cancer cells. The USFDA-approved small-molecule drugs targeting VEGFR-2 are developing drug resistance over the course of chemotherapy, and cardiac-related side effects are consistently being reported; hence, there is an urgent need for more safe and effective anticancer molecules. The present review focuses on the structure and physiology of VEGFR-2 and its involvement in the progression of cancer cells. The recent updates from the last five years through papers and patents on structure-activity relationships, pharmacophoric attributes, molecular docking interactions, antiangiogenic assays, cancer cell line studies, and the potencies (IC50) of VEGFR-2 inhibitors are discussed herein. The common structural framework requirements, such as the Asp-Phe-Gly (DFG) motif of VEGFR-2 interacting with the HBD-HBA region in the ligand molecules, the central aryl ring occupying the linker region, and a variety of bio-isosteres, can enhance activity against VEGFR-2. At one end, the heteroaryl moiety is essential for interaction within the ATP-binding site of VEGFR-2, while the terminal hydrophobic tail occupies the allosteric binding site. Three to five bond spacers between the heteroaryl and HBD-HBA regions provided a better result towards VEGFR-2 inhibition, mirroring the behaviors of standard drugs. The in-depth analysis of recent updates on VEGFR-2 inhibitors presented in this paper will help prospective synthetic and medicinal chemists to discover new lead molecules for the treatment of various cancers.
Collapse
Affiliation(s)
- Prashant Jagannath Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Aditya Ramchandra Nemade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka 560054 India
| | - Atul Arun Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
| |
Collapse
|
10
|
Seiwerth F, Bitar L, Samaržija M, Jakopović M. Long-term progression-free survival in non-small cell lung cancer patients: a spotlight on bevacizumab and its biosimilars. Expert Opin Biol Ther 2024; 24:1017-1024. [PMID: 39285584 DOI: 10.1080/14712598.2024.2405562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION In the era of immunotherapy, bevacizumab seems to be losing its place in NSCLC treatment algorithms. The aim of this work is to try to define the advantages and disadvantages of NSCLC treatment with bevacizumab in combination regimens. AREAS COVERED We conducted a literature search in PubMed and Google Scholar to review the most important topics regarding bevacizumab treatment in NSCLC, with or without driver mutations, including trials with checkpoint inhibitors. Special emphasis was placed on the analysis of data on the treatment of patients with CNS metastases. EXPERT OPINION Bevacizumab is an antiangiogenic compound whose addition to chemotherapy made the first major breakthrough in the treatment of NSCLC. However, for the last 10 years or so, the use of combination immunotherapy regimens has suppressed the use and acquisition of new knowledge about bevacizumab. Newer data are primarily related to the treatment of EGFR-positive NSCLC patients with bevacizumab, with only a few larger studies investigating the use of a combination of bevacizumab and checkpoint inhibitors. The basic task remains to define the place of bevacizumab in treatment algorithms.
Collapse
Affiliation(s)
- Fran Seiwerth
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lela Bitar
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Shen S, Hong Y, Huang J, Qu X, Sooranna SR, Lu S, Li T, Niu B. Targeting PD-1/PD-L1 in tumor immunotherapy: Mechanisms and interactions with host growth regulatory pathways. Cytokine Growth Factor Rev 2024; 79:16-28. [PMID: 39179486 DOI: 10.1016/j.cytogfr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Xiaosheng Qu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, 169 Changle West Rd, Xi'an 710032, China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China.
| |
Collapse
|
12
|
Jaiswal A, Shrivastav S, Kushwaha HR, Chaturvedi R, Singh RP. Oncogenic potential of SARS-CoV-2-targeting hallmarks of cancer pathways. Cell Commun Signal 2024; 22:447. [PMID: 39327555 PMCID: PMC11426004 DOI: 10.1186/s12964-024-01818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death. Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis. Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, potentially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activating host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and pathways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular components involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infection and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer consequences.
Collapse
Affiliation(s)
- Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanah Shrivastav
- SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Zhu Y, Li T, Zhou S, Wang G, Zhang H, Yin Y, Wang T, Chen X. Survivin inhibition attenuates EGF-induced epithelial mesenchymal transformation of human RPE cells via the EGFR/MAPK pathway. PLoS One 2024; 19:e0309539. [PMID: 39213375 PMCID: PMC11364297 DOI: 10.1371/journal.pone.0309539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The abnormal growth factors-induced epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells was known as a vital pathogenesis of proliferative vitreoretinopathy (PVR). This study aims to explore how survivin inhibition affects EMT induced by epidermal growth factor (EGF) in RPE cells. METHODS Human primary RPE cells were identified in vitro. EMT in RPE cells was induced by EGF. Inhibition of survivin in RPE cells was accomplished through the use of a survivin inhibitor (YM155) and survivin siRNA. The viability, proliferation and migration of RPE cells was detected by methylthiazol tetrazolium assay, bromodeoxyuridine labeling assay, and wound healing assay, respectively. The EGF receptor /mitogen-activated protein kinase (EGFR/MAPK) proteins and EMT-related proteins were measured by western blot and immunofluorescence assay. RESULTS EGF induced significant EMT in RPE cells, activated the phosphorylation of EGFR/MAPK signaling proteins, and caused changes to EMT-related proteins. YM155 suppressed RPE cells' viability, proliferation, and migration; induced the phosphorylation of EGFR, JNK, and P38MAPK; and down regulated EGFR and phosphorylated ERK. YM155 also increased expression of E-cadherin and ZO-1 proteins and reduced expression of N-cadherin, Vimentin, and α-SMA proteins. The EGF-induced increase of RPE cell proliferation and migration was constrained by survivin inhibition. Moreover, survivin inhibition in RPE cells suppressed the EGF-caused phosphorylation of EGFR/MAPK proteins and attenuated the EGF-induced reduction of E-cadherin and ZO-1 proteins and increase of N-cadherin, Vimentin, and α-SMA proteins. CONCLUSIONS Survivin inhibition attenuates EGF-induced EMT of RPE cells by affecting the EGFR/MAPK signaling pathway. Survivin might be a promising target for preventing PVR.
Collapse
Affiliation(s)
- Yusheng Zhu
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Teng Li
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Sirui Zhou
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Guowei Wang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Huihui Zhang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Yong Yin
- Xi’ an Eye Bank, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Xiaodong Chen
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| |
Collapse
|
14
|
Sharma M, Kaur C, Singhmar P, Rai S, Sen T. DNA origami-templated gold nanorod dimer nanoantennas: enabling addressable optical hotspots for single cancer biomarker SERS detection. NANOSCALE 2024; 16:15128-15140. [PMID: 39058266 DOI: 10.1039/d4nr01110d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The convergence of DNA origami and surface-enhanced Raman spectroscopy (SERS) has opened a new avenue in bioanalytical sciences, particularly in the detection of single-molecule proteins. This breakthrough has enabled the development of advanced sensor technologies for diagnostics. DNA origami offers a highly controllable framework for the precise positioning of nanostructures, resulting in superior SERS signal amplification. In our investigation, we have successfully designed and synthesized DNA origami-based gold nanorod monomer and dimer assemblies. Moreover, we have evaluated the potential of dimer assemblies for label-free detection of a single biomolecule, namely epidermal growth factor receptor (EGFR), a crucial biomarker in cancer research. Our findings have revealed that the significant Raman amplification generated by DNA origami-assembled gold nanorod dimer nanoantennas facilitates the label-free identification of Raman peaks of single proteins, which is a prime aim in biomedical diagnostics. The present work represents a significant advancement in leveraging plasmonic nanoantennas to realize single protein SERS for the detection of various cancer biomarkers with single-molecule sensitivity.
Collapse
Affiliation(s)
- Mridu Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Charanleen Kaur
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Priyanka Singhmar
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Shikha Rai
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Tapasi Sen
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| |
Collapse
|
15
|
Akbar W, Ehsan S, Siddique SA, Sarfraz M, Shaheen F, Shafqat A, Shahnaz, Siddique MBA, Saeed A, Al-Salahi R, El Bakri Y. Solid Phase Synthesis, DFT Calculations, Molecular Docking, and Biological Studies of Symmetrical N 2, N 4, N 6-Trisubstituted-1,3,5-triazines. ACS OMEGA 2024; 9:34428-34444. [PMID: 39157158 PMCID: PMC11325405 DOI: 10.1021/acsomega.4c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
A diversity-oriented, multicomponent convergent synthesis of symmetrical triazines through a one-pot protocol is presented in this research project. The assembly of trisubstituted triazines was initially carried out using easily available reagents through three different protocols, i.e., conventional, MW-assisted synthesis, and solid-supported MW-assisted synthesis using organic and inorganic support to carry out a comparative analysis as to which procedure best corresponds to a greener synthesis protocol. The compounds formed were characterized for structure elucidation and subjected to in vitro anticancer and antibacterial screening. Additionally, computational studies, such as DFT calculations and molecular docking analyses, were conducted.
Collapse
Affiliation(s)
- Wajiha Akbar
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Shahana Ehsan
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Sabir Ali Siddique
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-Ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Sarfraz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-Ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Faiqa Shaheen
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Ayesha Shafqat
- School
of Botany, Minhaj University, Lahore 54770, Pakistan
| | - Shahnaz
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | | | - Ayesha Saeed
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Rashad Al-Salahi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youness El Bakri
- Department
of Theoretical and Applied Chemistry, South
Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
16
|
El-Gamil DS, Zaky MY, Maximous PM, Sharaky M, El-Dessouki AM, Riad NM, Shaaban S, Abdel-Halim M, Al-Karmalawy AA. Exploring chromone-2-carboxamide derivatives for triple-negative breast cancer targeting EGFR, FGFR3, and VEGF pathways: Design, synthesis, and preclinical insights. Drug Dev Res 2024; 85:e22228. [PMID: 38952003 DOI: 10.1002/ddr.22228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 μM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.
Collapse
Affiliation(s)
- Dalia S El-Gamil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed Y Zaky
- Zoology Department, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Patrick M Maximous
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Noura M Riad
- Department of Chemistry, School of Life and Medical Sciences, New Administrative Capital, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
17
|
Azmy L, Ibraheem IBM, Alsalamah SA, Alghonaim MI, Zayed A, Abd El-Aleam RH, Mohamad SA, Abdelmohsen UR, Elsayed KNM. Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies. BIOLOGY 2024; 13:581. [PMID: 39194519 DOI: 10.3390/biology13080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from -31.6 mV to -43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from -31.6 mV to -22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1-22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6'-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.
Collapse
Affiliation(s)
- Lamya Azmy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ibraheem B M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt
| | - Soad A Mohamad
- Clinical Pharmacy Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia 61111, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
18
|
Elsebaie HA, Nafie MS, Tawfik HO, Belal A, Ghoneim MM, Obaidullah AJ, Shaaban S, Ayed AA, El-Naggar M, Mehany ABM, Shaldam MA. Discovery of new 1,3-diphenylurea appended aryl pyridine derivatives as apoptosis inducers through c-MET and VEGFR-2 inhibition: design, synthesis, in vivo and in silico studies. RSC Med Chem 2024; 15:2553-2569. [PMID: 39026631 PMCID: PMC11253870 DOI: 10.1039/d4md00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Interest has been generated in VEGFR-2 and c-MET as potential receptors for the treatment of different malignancies. Using aryl pyridine derivatives with 1,3-diphenylurea attached, a number of promising dual VEGFR-2 and c-MET inhibitors were developed and synthesized. Regarding the molecular target, compounds 2d, 2f, 2j, 2k, and 2n had potent IC50 values of 65, 24, 150, 170, and 18 nM against c-MET, respectively. Additionally, they had potent IC50 values of 310, 35, 290, 320, and 24 nM against VEGFR-2, respectively. Regarding cytotoxicity, compounds 2d, 2f, 2j, 2k and 2n exhibited potent cytotoxicity against MCF-7 with IC50 values in the range 0.76-21.5 μM, and they showed promising cytotoxic activity against PC-3 with IC50 values in the range 1.85-3.42 μM compared to cabozantinib (IC50 = 1.06 μM against MCF-7 and 2.01 μM against PC-3). Regarding cell death, compound 2n caused cell death in MCF-7 cells by 87.34-fold; it induced total apoptosis by 33.19% (8.04% for late apoptosis, 25.15% for early apoptosis), stopping their growth in the G2/M phase, affecting the expression of apoptosis-related genes P53, Bax, caspases 3 and 9 and the anti-apoptotic gene, Bcl-2. In vivo study illustrated the anticancer activity of compound 2n by reduction of tumor mass and volume, and the tumor inhibition ratio reached 56.1% with an improvement of hematological parameters. Accordingly, compound 2n can be further developed as a selective target-oriented chemotherapeutic against breast cancer.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah 27272 United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AlSalam University in Egypt Kafr Al Zaiyat 6615062 Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University Ad Diriyah Riyadh 13713 Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Salwa Shaaban
- Department of Microbiology & Immunology, Faculty of pharmacySuef University Beni-Suef Egypt
- Department of Clinical Laboratory Sciences, Faculty of Applied medical Sciences, King Khalid University Abha Saudi Arabia
| | - Abdelmoneim A Ayed
- Department of Chemistry, Faculty of Science, Cairo University Giza Cairo 12613 Egypt
| | - Mohamed El-Naggar
- Chemistry department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah P. O. Box 27272 Sharjah United Arab Emirates
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AlSalam University in Egypt Kafr Al Zaiyat 6615062 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| |
Collapse
|
19
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Ebrahimi F, Zargari NR, Akhlaghi M, Asghari SM, Abdi K, Balalaie S, Asadi M, Beiki D. Synthesis, Radiolabeling, and Biodistribution Study of a Novel DOTA-Peptide for Targeting Vascular Endothelial Growth Factor Receptors in the Molecular Imaging of Breast Cancer. Pharmaceutics 2024; 16:899. [PMID: 39065596 PMCID: PMC11279866 DOI: 10.3390/pharmaceutics16070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 07/28/2024] Open
Abstract
As angiogenesis plays a pivotal role in tumor progression and metastasis, leading to more cancer-related deaths, the angiogenic process can be considered as a target for diagnostic and therapeutic applications. The vascular endothelial growth factor receptor-1 (VEGR-1) and VEGFR-2 have high expression on breast cancer cells and contribute to angiogenesis and tumor development. Thus, early diagnosis through VEGFR-1/2 detection is an excellent strategy that can significantly increase a patient's chance of survival. In this study, the VEGFR1/2-targeting peptide VGB3 was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), using 6-aminohexanoic acid (Ahx) as a spacer to prevent steric hindrance in binding. DOTA-Ahx-VGB3 was radiolabeled with Gallium-68 (68Ga) efficiently. An in vitro cell binding assay was assessed in the 4T1 cell line. The tumor-targeting potential of [68Ga]Ga-DOTA-Ahx-VGB3 was conducted for 4T1 tumor-bearing mice. Consequently, high radiochemical purity [68Ga]Ga-DOTA-Ahx-VGB3 (RCP = 98%) was prepared and stabilized in different buffer systems. Approximately 17% of the radiopeptide was internalized after 2 h incubation and receptor binding as characterized by the IC50 value being about 867 nM. The biodistribution and PET/CT studies revealed that [68Ga]Ga-DOTA-Ahx-VGB3 reached the tumor site and was excreted rapidly by the renal system. These features convey [68Ga]Ga-DOTA-Ahx-VGB3 as a suitable agent for the noninvasive visualization of VEGFR-1/2 expression.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - S. Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran;
| | - Khosrou Abdi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran 158754416, Iran
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| |
Collapse
|
21
|
Allawi MM, Razzak Mahmood AA, Tahtamouni LH, Saleh AM, Kanaan SI, Saleh KM, AlSakhen MF, Himsawi N, Yasin SR. Anti-proliferation evaluation of new derivatives of indole-6-carboxylate ester as receptor tyrosine kinase inhibitors. Future Med Chem 2024; 16:1313-1331. [PMID: 39109434 PMCID: PMC11318749 DOI: 10.1080/17568919.2024.2347084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024] Open
Abstract
Aim: The main goal was to create two new groups of indole derivatives, hydrazine-1-carbothioamide (4a and 4b) and oxadiazole (5, and 6a-e) that target EGFR (4a, 4b, 5) or VEGFR-2 (6a-e). Materials & methods: The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR/VEGFR-2, and the anti-proliferative properties were tested in vitro. Results: Compounds 4a (targeting EGFR) and 6c (targeting VEGFR-2) were the most effective cytotoxic agents, arresting cancer cells in the G2/M phase and inducing the extrinsic apoptosis pathway. Conclusion: The results of this study show that compounds 4a and 6c are promising cytotoxic compounds that inhibit the tyrosine kinase activity of EGFR and VEGFR-2, respectively.
Collapse
Affiliation(s)
- Mustafa M Allawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Uruk university, Baghdad, Iraq
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, 10001, Baghdad, Iraq
| | - Lubna H Tahtamouni
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry & Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Abdulrahman M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11884, Egypt
- Aweash El-Hagar Family Medicine Center, Epidemiological Surveillance Unit, MOHP, Mansoura, 35711, Egypt
| | - Sana I Kanaan
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Khaled M Saleh
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology & Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Salem R Yasin
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
22
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
23
|
Eissa I, Yousef RG, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, Ismail A, Elkady H, Metwaly AM. New Theobromine Apoptotic Analogue with Anticancer Potential Targeting the EGFR Protein: Computational and In Vitro Studies. ACS OMEGA 2024; 9:15861-15881. [PMID: 38617602 PMCID: PMC11007702 DOI: 10.1021/acsomega.3c08148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
AIM The aim of this study was to design and examine a novel epidermal growth factor receptor (EGFR) inhibitor with apoptotic properties by utilizing the essential structural characteristics of existing EGFR inhibitors as a foundation. METHOD The study began with the natural alkaloid theobromine and developed a new semisynthetic derivative (T-1-PMPA). Computational ADMET assessments were conducted first to evaluate its anticipated safety and general drug-likeness. Deep density functional theory (DFT) computations were initially performed to validate the three-dimensional (3D) structure and reactivity of T-1-PMPA. Molecular docking against the EGFR proteins was conducted to investigate T-1-PMPA's binding affinity and inhibitory potential. Additional molecular dynamics (MD) simulations over 200 ns along with MM-GPSA, PLIP, and principal component analysis of trajectories (PCAT) experiments were employed to verify the binding and inhibitory properties of T-1-PMPA. Afterward, T-1-PMPA was semisynthesized to validate the proposed design and in silico findings through several in vitro examinations. RESULTS DFT studies indicated T-1-PMPA's reactivity using electrostatic potential, global reactive indices, and total density of states. Molecular docking, MD simulations, MM-GPSA, PLIP, and ED suggested the binding and inhibitory properties of T-1-PMPA against the EGFR protein. The in silico ADMET predicted T-1-PMPA's safety and general drug-likeness. In vitro experiments demonstrated that T-1-PMPA effectively inhibited EGFRWT and EGFR790m, with IC50 values of 86 and 561 nM, respectively, compared to Erlotinib (31 and 456 nM). T-1-PMPA also showed significant suppression of the proliferation of HepG2 and MCF7 malignant cell lines, with IC50 values of 3.51 and 4.13 μM, respectively. The selectivity indices against the two cancer cell lines indicated the overall safety of T-1-PMPA. Flow cytometry confirmed the apoptotic effects of T-1-PMPA by increasing the total percentage of apoptosis to 42% compared to 31, and 3% in Erlotinib-treated and control cells, respectively. The qRT-PCR analysis further supported the apoptotic effects by revealing significant increases in the levels of Casp3 and Casp9. Additionally, T-1-PMPA controlled the levels of TNFα and IL2 by 74 and 50%, comparing Erlotinib's values (84 and 74%), respectively. CONCLUSION In conclusion, our study's findings suggest the potential of T-1-PMPA as a promising apoptotic anticancer lead compound targeting the EGFR.
Collapse
Affiliation(s)
- Ibrahim
H. Eissa
- Pharmaceutical
Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy
(Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G. Yousef
- Pharmaceutical
Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy
(Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Aisha A. Alsfouk
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalal Z. Husein
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharja 72511, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed Ismail
- Biochemistry
and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical
Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy
(Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy
and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical
Products Research Department, Genetic Engineering and Biotechnology
Research Institute, City of Scientific Research
and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
24
|
Elgammal WE, Halawa AH, Eissa IH, Elkady H, Metwaly AM, Hassan SM, El-Agrody AM. Design, synthesis, and anticancer evaluation of N-sulfonylpiperidines as potential VEGFR-2 inhibitors, apoptotic inducers. Bioorg Chem 2024; 145:107157. [PMID: 38340473 DOI: 10.1016/j.bioorg.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
A new panel of N-sulfonylpiperidine derivatives has been designed and synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Anti-proliferative activities of the synthesized members were tested against colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), and breast cancer (MCF-7) cell lines. Compounds 3a, 4, 8, and 9 showed the highest activities against the tested cell lines. In particular, compound 8 showed excellent activities against HCT-116, HepG-2, and MCF-7 with IC50 values of 3.94, 3.76, and 4.43 μM, respectively. Such IC50 values are comparable to vinblastine (IC50 = 3.21, 7.35, 5.83 μM, respectively) and doxorubicin (IC50 = 6.74, 7.52, 8.19 μM, respectively). In vitro VEGFR-2 inhibitory activity of the most promising molecules (3a, 4, 8, and 9) indicated that compound 8 is the highest VEGFR-2 inhibitor with an IC50 of 0.0554 μM, compared to sorafenib (IC50 = 0.0416 μM). The most promising candidates (3a, 4, 8, and 9) were subjected to flow cytometry analyses to assess their effects on the cell cycle behavior and the apoptotic power against the three tested cell lines (HCT-116, HepG-2, and MCF-7). The tested compound arrested the tumor cells at both the G2/M and Pre-G1 phases. In addition, compound 9 was proved as the most effective apoptotic inducer among the tested compounds against the tested cells. Molecular docking studies against VEGFR-2 (PDB ID: 2OH4) revealed good binding modes of the synthesized compound similar to that of sorafenib. Computational investigation of ADMET parameters revealed the drug-likeness of the synthesized compounds.
Collapse
Affiliation(s)
- Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ahmed H Halawa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Saber M Hassan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M El-Agrody
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
25
|
Yousefi N, Salimi A, Mohammadnezhad G, Taheri S, Peiravian F. A Cost-effectiveness Analysis of Adding Cetuximab to the First-line Treatment of Metastatic Colorectal Carcinoma in Iran; Considering Genetic Screening for Precision Medicine. J Gastrointest Cancer 2023; 54:1212-1219. [PMID: 36622516 DOI: 10.1007/s12029-022-00904-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE This study aimed to evaluate the cost-effectiveness of cetuximab in different genetic populations of metastatic colorectal carcinoma patients, including KRAS and RAS wild types and mutants, when added to FOLFIRI treatment regimens for evidence-based disease management in Iran. METHOD A Markov decision model was designed in TreeAge software with the three states of stable, progress, and death. Clinical outcomes were extracted from published clinical studies, and costs were extracted from the Iranian local data. The primary outcome was an incremental cost-effectiveness ratio (ICER) in the simulated population. RESULTS The cost-utility model from the perspective of the health system indicated that the average direct medical costs of a patient that has not been genetically screened are $56,985.27 and $20,767.74 in FOLFIRI + cetuximab and FOLFIRI regimens, respectively. However, costs per patient in the KRAS wild-type population were $21,845.52 in FOLFIRI and $78,321.22 in FOLFIRI + cetuximab. In RAS wild-type patients, FOLFIRI and FOLFIRI + cetuximab costs per patient were $23,111.62 and $84,976.39, respectively. Incremental QALYs for the above scenarios were 0.069, 0.193, and 0.285, respectively. Therefore, the ICER of add-on cetuximab in Iran compared to the treatment alternatives in the scenarios with and without KRAS screening was $520,771.55/QALY, $292,768.16/QALY, and $217,460.51/QALY. CONCLUSION Although genetic screening in precision medicine reduces costs per outcome, according to the willingness-to-pay threshold of $4349.50 in the Iranian health system, add-on cetuximab to the FOLFIRI regimen is not a cost-effective strategy even with genetic screening and a 20% price reduction.
Collapse
Affiliation(s)
- Nazila Yousefi
- Department of Pharmacoeconomics and Pharma Management, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Salimi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Taheri
- Department of Pharmacoeconomics and Pharma Management, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Peiravian
- Department of Pharmacoeconomics and Pharma Management, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Fang LR, Wang YH, Xiong ZZ, Wang YM. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy. OPENNANO 2023; 14:100184. [DOI: 10.1016/j.onano.2023.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Venkateswaran S, Manivannan HP, Francis AP, Veeraraghavan VP, R G, Sankaran K. Identification of Potential Phytochemical Inhibitors From Conium maculatum Targeting the Epidermal Growth Factor Receptor in Metastatic Colorectal Cancer via Molecular Docking Analysis. Cureus 2023; 15:e48000. [PMID: 38034159 PMCID: PMC10687488 DOI: 10.7759/cureus.48000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Metastatic colorectal cancer (mCRC) continues to rank as the second deadliest cancer on the global scale. CRC diagnosed at metastatic (stage IV) makes treatment strategies more challenging. Even though there are numerous therapeutic options available, the side effects of these treatments threaten the human health. Therefore, we are in the phase of searching new molecules that are less harmful and cost-effective. The common source of many pharmaceutical medications is plants. This study focuses on virtually screening phytochemicals from Conium maculatum as potential inhibitors of the epidermal growth factor receptor (EGFR), a crucial target in cancer therapy. Methods and materials C. maculatum was selected due to its phytochemicals and prior indications of its anticancer properties. In silico investigations encompass druglikeness screening, pharmacokinetics assessment, molecular docking, toxicity prediction, molecular target screening, and molecular dynamics simulations. A comprehensive analysis led to the identification of promising lead compounds. Results A total of 25 compounds exhibited favorable pharmacokinetic and drug-like characteristics. Among them, 12 compounds displayed a high affinity for EGFR as determined by molecular docking experiments. Further safety assessment using ProTox-II revealed that seven compounds had no anticipated toxicity, affirming their safety profiles. Conclusion These findings collectively predicted the efficacy of seven phytochemicals from C. maculatum as EGFR inhibitors in mCRC. Further experimental investigations and optimization of the identified leads were needed to validate the efficacy and safety of identified lead compounds and explore their therapeutic potential in CRC.
Collapse
Affiliation(s)
- Samyuktha Venkateswaran
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Gayathri R
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Kavitha Sankaran
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
28
|
Sohn B, Park K, Ahn SS, Park YW, Choi SH, Kang SG, Kim SH, Chang JH, Lee SK. Dynamic contrast-enhanced MRI radiomics model predicts epidermal growth factor receptor amplification in glioblastoma, IDH-wildtype. J Neurooncol 2023; 164:341-351. [PMID: 37689596 DOI: 10.1007/s11060-023-04435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE To develop and validate a dynamic contrast-enhanced (DCE) MRI-based radiomics model to predict epidermal growth factor receptor (EGFR) amplification in patients with glioblastoma, isocitrate dehydrogenase (IDH) wildtype. METHODS Patients with pathologically confirmed glioblastoma, IDH wildtype, from January 2015 to December 2020, with an EGFR amplification status, were included. Patients who did not undergo DCE or conventional brain MRI were excluded. Patients were categorized into training and test sets by a ratio of 7:3. DCE MRI data were used to generate volume transfer constant (Ktrans) and extracellular volume fraction (Ve) maps. Ktrans, Ve, and conventional MRI were then used to extract the radiomics features, from which the prediction models for EGFR amplification status were developed and validated. RESULTS A total of 190 patients (mean age, 59.9; male, 55.3%), divided into training (n = 133) and test (n = 57) sets, were enrolled. In the test set, the radiomics model using the Ktrans map exhibited the highest area under the receiver operating characteristic curve (AUROC), 0.80 (95% confidence interval [CI], 0.65-0.95). The AUROC for the Ve map-based and conventional MRI-based models were 0.74 (95% CI, 0.58-0.90) and 0.76 (95% CI, 0.61-0.91). CONCLUSION The DCE MRI-based radiomics model that predicts EGFR amplification in glioblastoma, IDH wildtype, was developed and validated. The MRI-based radiomics model using the Ktrans map has higher AUROC than conventional MRI.
Collapse
Affiliation(s)
- Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kisung Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Kurban B, Sağlık BN, Osmaniye D, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis and Anticancer Activities of Pyrazole-Thiadiazole-Based EGFR Inhibitors. ACS OMEGA 2023; 8:31500-31509. [PMID: 37663500 PMCID: PMC10468883 DOI: 10.1021/acsomega.3c04635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Lung cancer is one of the most common cancer types of cancer with the highest mortality rates. However, while epidermal growth factor receptor (EGFR) is an important parameter for lung cancer, EGFR inhibitors also show great promise in the treatment of the disease. Therefore, a series of new EGFR inhibitor candidates containing thiadiazole and pyrazole rings have been developed. The activities of the synthesized compounds were elucidated by in vitro MTT, (which is chemically 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), cytotoxicity assay, analysis of mitochondrial membrane potential (MMP) by flow cytometry, and EGFR inhibition experiments. Molecular docking and molecular dynamics simulations were performed as in silico studies. Compounds 6d, 6g, and 6j showed inhibitor activity against the A549 cell line with IC50 = 5.176 ± 0.164; 1.537 ± 0.097; and 8.493 ± 0.667 μM values, respectively. As a result of MMP by flow cytometry, compound 6g showed 80.93% mitochondrial membrane potential. According to the results of the obtained EGFR inhibitory assay, compound 6g shows inhibitory activity on the EGFR enzyme with a value of IC50 = 0.024 ± 0.002 μM.
Collapse
Affiliation(s)
- Berkant Kurban
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
30
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides as Potential Multi-Target Antiproliferative Agents. Pharmaceuticals (Basel) 2023; 16:1039. [PMID: 37513950 PMCID: PMC10385579 DOI: 10.3390/ph16071039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
A small set of indole-based derivatives, IV and Va-I, was designed and synthesized. Compounds Va-i demonstrated promising antiproliferative activity, with GI50 values ranging from 26 nM to 86 nM compared to erlotinib's 33 nM. The most potent antiproliferative derivatives-Va, Ve, Vf, Vg, and Vh-were tested for EGFR inhibitory activity. Compound Va demonstrated the highest inhibitory activity against EGFR with an IC50 value of 71 ± 06 nM, which is higher than the reference erlotinib (IC50 = 80 ± 05 nM). Compounds Va, Ve, Vf, Vg, and Vh were further tested for BRAFV600E inhibitory activity. The tested compounds inhibited BRAFV600E with IC50 values ranging from 77 nM to 107 nM compared to erlotinib's IC50 value of 60 nM. The inhibitory activity of compounds Va, Ve, Vf, Vg, and Vh against VEGFR-2 was also determined. Finally, in silico docking experiments attempted to investigate the binding mode of compounds within the active sites of EGFR, BRAFV600E, and VEGFR-2.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71234, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
31
|
Yao L, Cai W, Chen S, Wang A, Wang X, Zhao C, Shou C, Jia Y. Design, syntheses and biological evaluation of natural product aiphanol derivatives and analogues: discovery of potent anticancer agents. Bioorg Med Chem Lett 2023; 90:129326. [PMID: 37182611 DOI: 10.1016/j.bmcl.2023.129326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
The natural product aiphanol (1) is one of the substances with anticancer biological activity isolated from traditional Chinese medicines (TCM) Smilax glabra Roxb. (Tufuling). Our recent research found that aiphanol could suppress angiogenesis and tumor growth by dual-blocking VEGF/VEGFRs and COX2 signal pathway. In this study, four series of 40 aiphanol derivatives and analogues were designed, synthesized and evaluated for their anticancer activity. Among them, the analogues 10j and 14c exhibited the most potent inhibition and broad-spectrum antiproliferative activity toward nine tumor cell lines. The IC50 values of the analogues 10j and 14c range from 0.81 to 10 μmol/L which up to 80-fold vs. parent compound aiphanol. The structure-activity relationship (SAR) studies indicated that the substrate at 7-position of benzo 1,4-dioxane is very crucial for anticancer activity. Molecular docking indicated that the compound 14c (ent-14c) tightly binds to VEGFR2 and COX2, respectively. Therefore, compounds 10j and 14c could be promising candidates for the development of anticancer agents in the future.
Collapse
Affiliation(s)
- Licheng Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Wenqing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Shanmei Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Aidan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China.
| |
Collapse
|
32
|
Bortnevskaya YS, Shiryaev NA, Zakharov NS, Kitoroage OO, Gradova MA, Karpechenko NY, Novikov AS, Nikolskaya ED, Mollaeva MR, Yabbarov NG, Bragina NA, Zhdanova KA. Synthesis and Biological Properties of EGFR-Targeted Photosensitizer Based on Cationic Porphyrin. Pharmaceutics 2023; 15:pharmaceutics15041284. [PMID: 37111769 PMCID: PMC10145264 DOI: 10.3390/pharmaceutics15041284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) in oncology is characterized by low invasiveness, minimal side effects, and little tissue scarring. Increasing the selectivity of PDT agents toward a cellular target is a new approach intended to improve this method. This study is devoted to the design and synthesis of a new conjugate based on meso-arylporphyrin with a low-molecular-weight tyrosine kinase inhibitor, Erlotinib. A nano-formulation based on Pluronic F127 micelles was obtained and characterized. The photophysical and photochemical properties and biological activity of the studied compounds and their nano-formulation were studied. A significant, 20-40-fold difference between the dark and photoinduced activity was achieved for the conjugate nanomicelles. After irradiation, the studied conjugate nanomicelles were 1.8 times more toxic toward the EGFR-overexpressing cell line MDA-MB-231 compared to the conditionally normal NKE cells. The IC50 was 0.073 ± 0.014 μM for the MDA-MB-231 cell line and 0.13 ± 0.018 μM for NKE cells after irradiation for the target conjugate nanomicelles.
Collapse
Affiliation(s)
- Yulia S Bortnevskaya
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Nikita A Shiryaev
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Nikita S Zakharov
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Oleg O Kitoroage
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Margarita A Gradova
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St., 4, 119991 Moscow, Russia
| | - Natalia Yu Karpechenko
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Highway, 24, 115522 Moscow, Russia
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, Ostrovityanova St., 1, 117997 Moscow, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7-9, 199034 Saint Petersburg, Russia
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St., 4, 119334 Moscow, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St., 4, 119334 Moscow, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St., 4, 119334 Moscow, Russia
| | - Natal'ya A Bragina
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Kseniya A Zhdanova
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| |
Collapse
|
33
|
Mohamed M, Klenke AK, Anokhin MV, Amadou H, Bothwell PJ, Conroy B, Nesterov EE, Nesterova IV. Zero-Background Small-Molecule Sensors for Near-IR Fluorescent Imaging of Biomacromolecular Targets in Cells. ACS Sens 2023; 8:1109-1118. [PMID: 36866808 PMCID: PMC10515643 DOI: 10.1021/acssensors.2c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In this study, we report a general approach to the design of a new generation of small-molecule sensors that produce a zero background but are brightly fluorescent in the near-IR spectral range upon selective interaction with a biomolecular target. We developed a fluorescence turn-on/-off mechanism based on the aggregation/deaggregation of phthalocyanine chromophores. As a proof of concept, we designed, prepared, and characterized sensors for in-cell visualization of epidermal growth factor receptor (EGFR) tyrosine kinase. We established a structure/bioavailability correlation, determined conditions for the optimal sensor uptake and imaging, and demonstrated binding specificity and applications over a wide range of treatment options involving live and fixed cells. The new approach enables high-contrast imaging and requires no in-cell chemical assembly or postexposure manipulations (i.e., washes). The general design principles demonstrated in this work can be extended toward sensors and imaging agents for other biomolecular targets.
Collapse
Affiliation(s)
- Myar Mohamed
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Anastasia K. Klenke
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Maksim V. Anokhin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Harouna Amadou
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Paige J. Bothwell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Brigid Conroy
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Evgueni E. Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V. Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
34
|
Ghorab WM, El-Sebaey SA, Ghorab MM. Design, synthesis and Molecular modeling study of certain EGFRinhibitors with a quinazolinone scaffold as anti-hepatocellular carcinoma and Radio-sensitizers. Bioorg Chem 2023; 131:106310. [PMID: 36528923 DOI: 10.1016/j.bioorg.2022.106310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A set of novel N-substituted-2-((4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)thio)acetamide 3-16 were designed and synthesized from 2-mercapto-3-phenylquinazolinone 2. The targeted compounds were screened for their cytotoxic activity against the hepatocellular carcinoma cell line HepG-2. Compounds 8, 9, 10, and 11 with IC50 values of 1.11, 4.28, 5.70, and 4.69 µM, respectively, showed 5.7- to 28-fold higher activities than the positive control doxorubicin (IC50 32.02 µM). Furthermore, compounds 8 and 9 were tested for EGFR inhibitory activity and demonstrated IC50 values of 73.23 and 58.26 µM, respectively, when compared to erlotinib's IC50 value of 9.79 µM. The most potent compounds, 8 and 9, were subjected to a single dose of 8 Gy of γ-radiation, and their cytotoxic efficacy was found to increase after irradiation, demonstrating the synergistic effect of γ-irradiation. Molecular docking was adopted for the most active compounds to confirm their mode of action.
Collapse
Affiliation(s)
- Walid M Ghorab
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Samiha A El-Sebaey
- Department of Pharmaceutical organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Youssef Abbas Street, Nasr City, Cairo, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt.
| |
Collapse
|
35
|
Braun D, Judmann B, Cheng X, Wängler B, Schirrmacher R, Fricker G, Wängler C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin α vβ 3 Targeting. ACS OMEGA 2023; 8:2793-2807. [PMID: 36687076 PMCID: PMC9850772 DOI: 10.1021/acsomega.2c07484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Radiolabeled heterobivalent peptidic ligands (HBPLs) are a highly promising compound class for the sensitive and specific visualization of tumors as they often exhibit superior properties compared to their monospecific counterparts and are able to concomitantly or complementarily address different receptor types. The combination of two receptor-specific agents targeting the epidermal growth factor receptor (EGFR) and the integrin αvβ3 in one HBPL would constitute a synergistic combination of binding motifs as these two receptor types are concurrently overexpressed on several human tumor types and are closely associated with disease progression and metastasis. Here, we designed and synthesized two heterobivalent radioligands consisting of the EGFR-specific peptide GE11 and αvβ3-specific cyclic RGD peptides, bearing a (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid chelator for efficient radiolabeling and linkers of different lengths between both peptides. Both HBPLs were radiolabeled with 68Ga3+ in high radiochemical yields, purities of 96-99%, and molar activities of 36-88 GBq/μmol. [68Ga]Ga-1 and [68Ga]Ga-2 were evaluated for their log D(7.4) and stability toward degradation by human serum peptidases, showing a high hydrophilicity for both agents of -3.07 ± 0.01 and -3.44 ± 0.08 as well as a high stability toward peptidase degradation in human serum with half-lives of 272 and 237 min, respectively. Further on, the in vitro receptor binding profiles of both HBPLs to the target EGF and integrin αvβ3 receptors were assessed on EGFR-positive A431 and αvβ3-positive U87MG cells. Finally, we investigated the in vivo pharmacokinetics of HBPL [68Ga]Ga-1 by positron emission tomography/computed tomography imaging in A431 tumor-bearing xenograft mice to assess its potential for the receptor-specific visualization of EGFR- and/or αvβ3-expressing tumors. In these experiments, [68Ga]Ga-1 demonstrated a tumor uptake of 2.79 ± 1.66% ID/g, being higher than in all other organs and tissues apart from kidneys and blood at 2 h p.i. Receptor blocking studies revealed the observed tumor uptake to be solely mediated by integrin αvβ3, whereas no contribution of the GE11 peptide sequence to tumor uptake via the EGFR could be determined. Thus, the approach to develop radiolabeled EGFR- and integrin αvβ3-bispecific HBPLs is in general feasible although another peptide lead structure than GE11 should be used as the basis for the EGFR-specific part of the agents.
Collapse
Affiliation(s)
- Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Xia Cheng
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
36
|
Pan L, Meng F, Wang W, Wang XH, Shen H, Bao P, Kang J, Kong D. Nintedanib in an elderly non-small-cell lung cancer patient with severe steroid-refractory checkpoint inhibitor-related pneumonitis: A case report and literature review. Front Immunol 2023; 13:1072612. [PMID: 36703957 PMCID: PMC9872202 DOI: 10.3389/fimmu.2022.1072612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint inhibitors tremendously improve cancer prognosis; however, severe-grade immune-related adverse events may cause premature death. Current recommendations for checkpoint inhibitor-related pneumonitis (CIP) treatment are mainly about immunosuppressive therapy, and anti-fibrotic agents are also needed, especially for patients with poor response to corticosteroids and a longer pneumonitis course. This is because fibrotic changes play an important role in the pathological evolution of CIP. Here, we report a case demonstrating that nintedanib is a promising candidate drug for CIP management or prevention, as it has potent anti-fibrotic efficacy and a safety profile. Moreover, nintedanib could partially inhibit tumor growth in patients with non-small-cell lung cancer, and its efficacy can be improved in combination with other anti-tumor therapies.
Collapse
Affiliation(s)
- Lei Pan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fanqi Meng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xu-hao Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Hui Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pengchen Bao
- The First Clinical College, China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Delei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,*Correspondence: Delei Kong,
| |
Collapse
|
37
|
Peng W, Yao C, Pan Q, Zhang Z, Ye J, Shen B, Zhou G, Fang Y. Novel considerations on EGFR-based therapy as a contributor to cancer cell death in NSCLC. Front Oncol 2023; 13:1120278. [PMID: 36910653 PMCID: PMC9995697 DOI: 10.3389/fonc.2023.1120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) represented by gefitinib and erlotinib are widely used in treating non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR-TKI treatment remains a clinical challenge. In recent years, emerging research investigated in EGFR-TKI-based combination therapy regimens, and remarkable achievements have been reported. This article focuses on EGFR-TKI-based regimens, reviews the standard and novel application of EGFR targets, and summarizes the mechanisms of EGFR-TKI combinations including chemotherapy, anti-vascular endothelial growth factor monoclonal antibodies, and immunotherapy in the treatment of NSCLC. Additionally, we summarize clinical trials of EGFR-TKI-based combination therapy expanding indications to EGFR mutation-negative lung malignancies. Moreover, novel strategies are under research to explore new drugs with good biocompatibility. Nanoparticles encapsulating non-coding RNA and chemotherapy of new dosage forms drawn great attention and showed promising prospects in effective delivery and stable release. Overall, as the development of resistance to EGFR-TKIs treatment is inevitable in most of the cases, further research is needed to clarify the underlying mechanism of the resistance, and to evaluate and establish EGFR-TKI combination therapies to diversify the treatment landscape for NSCLC.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyun Yao
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Pan
- Department of Medical Oncology, Liyang People's Hospital, Liyang, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjun Ye
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Fang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Guo L, Wang J, Li N, Cui J, Su Y. Peptides for diagnosis and treatment of ovarian cancer. Front Oncol 2023; 13:1135523. [PMID: 37213272 PMCID: PMC10196167 DOI: 10.3389/fonc.2023.1135523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Ovarian cancer is the most deadly gynecologic malignancy, and its incidence is gradually increasing. Despite improvements after treatment, the results are unsatisfactory and survival rates are relatively low. Therefore, early diagnosis and effective treatment remain two major challenges. Peptides have received significant attention in the search for new diagnostic and therapeutic approaches. Radiolabeled peptides specifically bind to cancer cell surface receptors for diagnostic purposes, while differential peptides in bodily fluids can also be used as new diagnostic markers. In terms of treatment, peptides can exert cytotoxic effects directly or act as ligands for targeted drug delivery. Peptide-based vaccines are an effective approach for tumor immunotherapy and have achieved clinical benefit. In addition, several advantages of peptides, such as specific targeting, low immunogenicity, ease of synthesis and high biosafety, make peptides attractive alternative tools for the diagnosis and treatment of cancer, particularly ovarian cancer. In this review, we focus on the recent research progress regarding peptides in the diagnosis and treatment of ovarian cancer, and their potential applications in the clinical setting.
Collapse
|
39
|
Jayaswamy PK, Vijaykrishnaraj M, Patil P, Alexander LM, Kellarai A, Shetty P. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer's disease. Ageing Res Rev 2023; 83:101791. [PMID: 36403890 DOI: 10.1016/j.arr.2022.101791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal role in early brain development, although its expression pattern declines in accordance with the maturation of the active nervous system. However, recurrence of EGFR expression in brain cells takes place during neural functioning decline and brain atrophy in order to maintain the homeostatic neuronal pool. As a consequence, neurotoxic lesions such as amyloid beta fragment (Aβ1-42) formed during the alternative splicing of amyloid precursor protein in Alzheimer's disease (AD) elevate the expression of EGFR. This inappropriate peptide deposition on EGFR results in the sustained phosphorylation of the downstream signaling axis, leading to extensive Aβ1-42 production and tau phosphorylation as subsequent pathogenesis. Recent reports convey that the pathophysiology of AD is correlated with EGFR and its associated membrane receptor complex molecules. One such family of molecules is the annexin superfamily, which has synergistic relationships with EGFR and is known for membrane-bound signaling that contributes to a variety of inflammatory responses. Besides, Galectin-3, tissue-type activated plasminogen activator, and many more, which lineate the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) result in severe neuronal loss. Altogether, we emphasized the perspectives of cellular senescence up-regulated by EGFR and its associated membrane receptor molecules in the pathogenesis of AD as a target for a therapeutical alternative to intervene in AD.
Collapse
Affiliation(s)
- Pavan K Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - M Vijaykrishnaraj
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Prakash Patil
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Lobo Manuel Alexander
- Department of Neurology, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Adithi Kellarai
- Department of General Medicine, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India; Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
40
|
Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Front Oncol 2022; 12:992171. [PMID: 36465350 PMCID: PMC9714258 DOI: 10.3389/fonc.2022.992171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Protein-protein interactions (PPIs) play vital roles in normal cellular processes. Dysregulated PPIs are involved in the process of various diseases, including cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer treatment. However, despite rapid advances in small-molecule drugs and biologics, it is still hard to target PPIs, especially for those intracellular PPIs. Macrocyclic peptides have gained growing attention for their therapeutic properties in targeting dysregulated PPIs. Macrocyclic peptides have some unique features, such as moderate sizes, high selectivity, and high binding affinities, which make them good drug candidates. In addition, some oncology macrocyclic peptide drugs have been approved by the US Food and Drug Administration (FDA) for clinical use. Here, we reviewed the recent development of macrocyclic peptides in cancer treatment. The opportunities and challenges were also discussed to inspire new perspectives.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
41
|
Mandal A. The Focus on Core Genetic Factors That Regulate Hepatic Injury in Cattle Seems to be Important for the Dairy Sector’s Long-Term Development. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cattle during the perinatal period, as well as malnutrition, generate oxidative stress which leads to high culling rates of calves after calving across the world. Although metabolic diseases have such a negative impact on the welfare and economic value of dairy cattle, that becomes a serious industrial concern across the world. According to research, genetic factors have a role or controlling fat deposition in the liver by influencing the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress, and inflammation, all of which contribute to hepatic damage. This review focuses on the critical regulatory mechanisms of VEGF, mTOR/AKT/p53, TNF-alpha, Nf-kb, interleukin, and antioxidants that regulate lipid peroxidation in the liver via direct or indirect pathways, suggesting that they could be a potential critical therapeutic target for hepatic disease.
Collapse
|
42
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
43
|
Barta P, Kamaraj R, Kucharova M, Novy Z, Petrik M, Bendova K, Hajduch M, Pavek P, Trejtnar F. Preparation, In Vitro Affinity, and In Vivo Biodistribution of Receptor-Specific 68Ga-Labeled Peptides Targeting Vascular Endothelial Growth Factor Receptors. Bioconjug Chem 2022; 33:1825-1836. [PMID: 36197842 DOI: 10.1021/acs.bioconjchem.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As angiogenesis plays a key role in tumor growth and metastasis, the angiogenic process has attracted scientific interest as a target for diagnostic and therapeutic agents. Factors influencing angiogenesis include the vascular endothelial growth factor (VEGF) family and the two associated receptor types (VEGFR-1 and VEGFR-2). VEGFR-1/-2 detection and quantification in cancer lesions are essential for tumor process management. As a result of the advantageous pharmacokinetics and image contrast, peptides radiolabeled with PET emitters have become interesting tools for the visualization of VEGFR-1/-2-positive tumors. In this study, we prepared 68Ga-labeled peptides containing 15 (peptide 1) and 23 (peptide 2) amino acids as new PET tracers for tumor angiogenic process imaging. METHODS The peptides were conjugated with NODAGA-tris(t-Bu ester) and subsequently radiolabeled with [68Ga]Ga-chloride. The prepared [68Ga]Ga-NODAGA-peptide 1 and [68Ga]Ga-NODAGA-peptide 2 were tested for radiochemical purity and saline/plasma stability. Consequently, the binding affinity toward VEGFRs was assessed in vitro on human glioblastoma and kidney carcinoma cells. The found peptide receptor affinity was compared with the calculated values in the PROtein binDIng enerGY prediction (PRODIGY) server. Finally, the biodistribution study was performed on BALB/c female mice to reveal the basic pharmacokinetic behavior of radiopeptides. RESULTS The in vitro affinity testing of [68Ga]Ga-NODAGA-peptides 1 and 2 showed retained receptor binding as characterized by equilibrium dissociation constant (KD) values in the range of 0.5-1.2 μM and inhibitory concentration 50% (IC50) values in the range of 3.0-5.6 μM. Better binding properties of peptide 2 to VEGFR-1/-2 were found in the PRODIGY server. The biodistribution study on mice showed remarkable accumulation of both peptides in the kidneys and urinary bladder with a short half-life after intravenous application. The in vitro plasma stability of [68Ga]Ga-NODAGA-peptide 2 was superior to that of [68Ga]Ga-NODAGA-peptide 1. CONCLUSIONS The obtained results demonstrated a high radiolabeling yield with no need for purification and preserved binding potency of 68Ga-labeled peptides 1 and 2 toward VEGFRs in cancer cells. The peptide-receptor protein interaction assessed in protein-peptide docking determined the strongest interaction of peptide 2 with domain 2 of VEGFR-2 in addition to a more acceptable plasma stability (t1/2 = 120 min) than that for peptide 1. We found both radiolabeled peptides very potent in their receptor binding, which makes them suitable imaging agents. The rapid transition of the radiopeptides into the urinary tract indicates suitable pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Pavel Barta
- Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Rajamanikkam Kamaraj
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Monika Kucharova
- Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Zbynek Novy
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Katerina Bendova
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Marian Hajduch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc 779 00, Czech Republic
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Frantisek Trejtnar
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
44
|
Kiritsis C, Shegani A, Makrypidi K, Roupa I, Lazopoulos A, Panagiotopoulou A, Triantopoulou S, Paravatou-Petsotas M, Pietzsch HJ, Pelecanou M, Papadopoulos M, Pirmettis I. Synthesis and preclinical evaluation of rhenium and technetium-99m "4 + 1" mixed-ligand complexes bearing quinazoline derivatives as potential EGFR imaging agents. Bioorg Med Chem 2022; 73:117012. [PMID: 36155319 DOI: 10.1016/j.bmc.2022.117012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
Abstract
Epidermal growth factor receptors (EGFR) of tyrosine kinase (TK) have shown high expression levels in most cancers and are considered a promising target for cancer diagnosis and therapy. Expanding the investigation for novel targeted radiopharmaceuticals, an EGFR inhibitor such as 4-aminoquinazoline derivatives along with a radionuclide such as technetium-99m (99mTc) could be ideal. Thus, we report herein the synthesis, characterization, and biological evaluation of new "4 + 1" mixed-ligand ReIII- and 99mTcIII-complexes of the general formula [99mTc][Tc(NS3)(CN-R)] bearing tris(2-mercaptoethyl)-amine (NS3) as the tetradentate tripodal ligand and a series of isocyanide derivatives (CN-R) of tyrosine kinase inhibitor (3-bromophenyl)quinazoline-4,6-diamine as the monodentate ligand. The quinazoline isocyanide derivatives 4a-d were prepared in two steps and reacted with the [Re(NS3)PMe2Ph] precursor leading to the final complexes 5a-d in high yield. All compounds were characterized by elemental analysis, IR, and NMR spectroscopies. In vitro studies, for their potency to inhibit the cell growth, using intact A431 cells indicate that the quinazoline derivatives 4a-d and the Re complexes 5a-d significantly inhibit the A431 cell growth. In addition, the EGFR autophosphorylation study of complex 5b shows an IC50 value in the nanomolar range. The corresponding "4 + 1" 99mTc-complexes 6a-d were prepared by employing the [99mTc]TcEDTA intermediate and the appropriate monodentate 4a-d in a two-step synthetic procedure with a radiochemical yield (RCY) from 63 to 77 % and a radiochemical purity (RCP) > 99 % after HPLC purification. Their structures have been established by HPLC comparative studies using the well-characterized Re-complexes 5a-d as reference. All 99mTc-complexes remain stable for at least 6 h, and their logD7.4 values confirmed their anticipated lipophilic character. Biodistribution studies in healthy Swiss albino mice of 99mTc-complexes showed hepatobiliary excretion and initial fast blood clearance. Complex 6b was also tested in Albino SCID mice bearing A431 tumors and showed rapid tumor uptake at 5 min (2.80 % ID/g) with a moderate tumor/muscle ratio (2.06) at 4 h p.i. The results encourage further investigation for this type of 99mTc-complexes as single-photon emission computed tomography (SPECT) radio agents for imaging tumors overexpressing EGFR.
Collapse
Affiliation(s)
- Christos Kiritsis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Antonio Shegani
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Konstantina Makrypidi
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Ioanna Roupa
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Aristotelis Lazopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Sotiria Triantopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Minas Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| |
Collapse
|
45
|
Judmann B, Braun D, Schirrmacher R, Wängler B, Fricker G, Wängler C. Toward the Development of GE11-Based Radioligands for Imaging of Epidermal Growth Factor Receptor-Positive Tumors. ACS OMEGA 2022; 7:27690-27702. [PMID: 35967067 PMCID: PMC9366781 DOI: 10.1021/acsomega.2c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is closely associated with tumor development and progression and thus an important target structure for imaging and therapy of various tumors. As a result of its important role in malignancies of various origins and the fact that antibody-based compounds targeting the EGFR have significant drawbacks in terms of in vivo pharmacokinetics, several attempts have been made within the last five years to develop peptide-based EGFR-specific radioligands based on the GE11 scaffold. However, none of these approaches have shown convincing results so far, which has been proposed to be attributed to different potential challenges associated with the GE11 lead structure: first, an aggregation of radiolabeled peptides, which might prevent their interaction with their target receptor, or second, a relatively low affinity of monomeric GE11, necessitating its conversion into a multimeric or polymeric form to achieve adequate EGFR-targeting properties. In the present work, we investigated if these aforementioned points are indeed critical and if the EGFR-targeting ability of GE11 can be improved by choosing an appropriate hydrophilic molecular design or a peptide multimer system to obtain a promising radiopeptide for the visualization of EGFR-overexpressing malignancies by positron emission tomography (PET). For this purpose, we developed several monovalent 68Ga-labeled GE11-based agents, a peptide homodimer and a homotetramer to overcome the challenges associated with GE11. The developed ligands were successfully labeled with 68Ga3+ in high radiochemical yields of ≥97% and molar activities of 41-104 GBq/μmol. The resulting radiotracers presented log D(7.4) values between -2.17 ± 0.21 and -3.79 ± 0.04 as well as a good stability in human serum with serum half-lives of 112 to 217 min for the monovalent radiopeptides and 84 and 62 min for the GE11 homodimer and homotetramer, respectively. In the following in vitro studies, none of the 68Ga-labeled radiopeptides demonstrated a considerable EGF receptor-specific uptake in EGFR-positive A431 cells. Moreover, none of the agents was able to displace [125I]I-EGF from the EGFR in competitive displacement assays in the same cell line in concentrations of up to 1 mM, whereas the endogenous receptor ligand hEGF demonstrated a high affinity of 15.2 ± 3.3 nM. These results indicate that it is not the aggregation of the GE11 sequence that seems to be the factor limiting the usefulness of the peptide as basis for radiotracer design but the limited affinity of monovalent and small homomultivalent GE11-based radiotracers to the EGFR. This highlights that the development of small-molecule GE11-based radioligands is not promising.
Collapse
Affiliation(s)
- Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, T6G 1Z2 Edmonton, AB, Canada
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
46
|
Jin C, Luo X, Li X, Zhou R, Zhong Y, Xu Z, Cui C, Xing X, Zhang H, Tian M. Positron emission tomography molecular imaging-based cancer phenotyping. Cancer 2022; 128:2704-2716. [PMID: 35417604 PMCID: PMC9324101 DOI: 10.1002/cncr.34228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
During the past several decades, numerous studies have provided insights into biological characteristics of cancer cells and identified various hallmarks of cancer acquired in the tumorigenic processes. However, it is still challenging to image these distinctive traits of cancer to facilitate the management of patients in clinical settings. The rapidly evolving field of positron emission tomography (PET) imaging has provided opportunities to investigate cancer's biological characteristics in vivo. This article reviews the current status of PET imaging on characterizing hallmarks of cancer and discusses the future directions of PET imaging strategies facilitating in vivo cancer phenotyping.
Collapse
Affiliation(s)
- Chentao Jin
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyun Luo
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyi Li
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Rui Zhou
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Yan Zhong
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Zhoujiao Xu
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Chunyi Cui
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoqing Xing
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Hong Zhang
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouChina
| | - Mei Tian
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
47
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
48
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
49
|
Haider K, Das S, Joseph A, Yar MS. An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev Res 2022; 83:859-890. [PMID: 35297084 DOI: 10.1002/ddr.21925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Centre for Excellence for Biomaterials Engineering, Faculty of Applied Sciences, AIMST University, Malaysia
| |
Collapse
|
50
|
Vorolanib, a novel tyrosine receptor kinase receptor inhibitor with potent preclinical anti-angiogenic and anti-tumor activity. Mol Ther Oncolytics 2022; 24:577-584. [PMID: 35252556 PMCID: PMC8861424 DOI: 10.1016/j.omto.2022.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/07/2022] [Indexed: 01/13/2023] Open
Abstract
Vorolanib (CM082) is a multi-targeted tyrosine kinase receptor inhibitor with a short half-life and limited tissue accumulation that has been shown to reduce choroidal neovascularization in rats. In this preclinical study, vorolanib demonstrated competitive binding and inhibitory activities with KDR, PDGFRβ, FLT3, and C-Kit, and inhibited RET and AMPKα1 more weakly than sunitinib, indicating more stringent kinase selectivity. Vorolanib inhibited vascular endothelial growth factor (VEGF)-induced proliferation of human umbilical vein endothelial cells (HUVECs) and HUVEC tube formation in vitro. In mouse xenograft models, vorolanib inhibited tumor growth of MV-4-11, A549, 786-O, HT-29, BxPC-3, and A375 cells in a dose-dependent fashion. Complete tumor regression was achieved in the MV-4-11 xenograft model. No significant toxicities were observed in vorolanib groups, whereas a significant negative impact on body weights was observed in the sunitinib group at a dose of 40 mg/kg qd. Overall, vorolanib is a novel multi-kinase receptor inhibitor with potent preclinical anti-angiogenic and anti-tumor activity that is potentially less toxic than other similar kinase inhibitors.
Collapse
|