1
|
Khan S, Rauf A, Aljohani ASM, Al-Awthan YS, Ahmad Z, Bahattab OS, Khan S, Saadiq M, Khan SA, Thiruvengadam R, Thiruvengadam M. Green synthesis of silver and gold nanoparticles in Callistemon viminalis extracts and their antimicrobial activities. Bioprocess Biosyst Eng 2024; 47:1197-1211. [PMID: 38512495 DOI: 10.1007/s00449-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Omar S Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Shehla Khan
- Department, of Biotechnology, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Muhammad Saadiq
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
2
|
Jha PK, Jaidumrong T, Rokaya D, Ovatlarnporn C. Callistemon viminalis leaf extract phytochemicals modified silver-ruthenium bimetallic zinc oxide nanocomposite biosynthesis: application on nanocoating photocatalytic Escherichia coli disinfection. RSC Adv 2024; 14:11017-11026. [PMID: 38586445 PMCID: PMC10995692 DOI: 10.1039/d4ra01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Antibiotics are of great interest due to antibiotic-resistant problems around the globe due to bacterial resistance to conventional antibiotics. In this study, a novel green biosynthesis of silver-ruthenium bimetallic zinc oxide nanocomposite using Callistemon viminalis leaf extract as a reducing agent using zinc nitrate hexahydrate, silver nitrate, and ruthenium(iii) chloride as capping agents was reported. The results demonstrated that the surface morphology of the prepared bimetallic nanocomposite by scanning electron microscopy was hexagonal in shape for zinc nanoparticle, rectangular in shape for silver nanoparticle, and tetragonal in shape for ruthenium nanoparticle, having an average surface size 25, 35, and 55 nm, respectively. Fourier transform infrared analysis confirmed the presence of compounds containing alkene, halo-, sulfoxide, phenol, nitro-, phenyl-ester, carboxylic acid, amines, and alcohols which act as functional groups attached to the surface of nanocomposites. Results from X-ray diffraction analysis found 81.12% crystallinity and hexagonal structure of zinc nanoparticles, rectangular structure of silver nanoparticles, and tetragonal structure of ruthenium nanoparticles, which are also similar to the results from transmission electron microscopy analysis. The average size distribution by dynamic light scattering of silver-ruthenium bimetallic zinc oxide nanocomposite was 255 nm, which confirms the biosynthesis of non-uniform size. Photo-disinfection activity of a silver-ruthenium bimetallic zinc oxide nanocomposite against Escherichia coli bacteria isolated from hospital wastewater under dark and ultraviolet-A irradiation conditions was observed. The antibacterial activity was calculated at 2.42704239, ensuring the silver-ruthenium bimetallic zinc oxide nanomaterials have photo-disinfection properties. The results from this study revealed that the developed novel antibacterial nanocomposite of silver-ruthenium bimetallic zinc oxide is useful in nanocoating photocatalytic Escherichia coli disinfection and can be applied to disinfect surfaces.
Collapse
Affiliation(s)
- Pankaj Kumar Jha
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Tunyakamon Jaidumrong
- Faculty of Environmental Management, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University Zarqa 13110 Jordan
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
3
|
Mady MS, Ibrahim RR, El-Sayed EK, El-Shazly M, Chen LY, Lai KH, El Shaarawy FS, Moharram FA. UHPLC-MS profiles and antidiarrheal activity of Quercus coccinea münchh. and Quercus robur L. employing in vivo technique. Front Pharmacol 2023; 14:1120146. [PMID: 36874027 PMCID: PMC9982048 DOI: 10.3389/fphar.2023.1120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction: Quercus L. genus (Oak) belongs to the family Fagaceae and their galls are used commercially in leather tanning, dyeing, and ink preparation. Several Quercus species were traditionally used to manage wound healing, acute diarrhea, hemorrhoid, and inflammatory diseases. The present study aims to investigate the phenolic content of the 80% aqueous methanol extract (AME) of Q. coccinea and Q. robur leaves as well as to assess their anti-diarrheal activity. Methods: Polyphenolic content of Q. coccinea and Q. robur AME were investigated using UHPLC/MS. The antidiarrheal potential of the obtained extracts was evaluated by conducting a castor oil-induced diarrhea in-vivo model. Result and Discussion: Twenty-five and twenty-six polyphenolic compounds were tentatively identified in Q. coccinea and Q. robur AME, respectively. The identified compounds are related to quercetin, kaempferol, isorhamnetin, and apigenin glycosides and their aglycones. In addition, hydrolyzable tannins, phenolic acid, phenyl propanoides derivatives, and cucurbitacin F were also identified in both species AME of Q. coccinea (250, 500, and 1000 mg/kg) exhibited a significant prolongation in the onset of diarrhea by 17.7 %, 42.6%, and 79.7% respectively while AME of Q. robur at the same doses significantly prolonged the onset of diarrhea by 38.6%, 77.3%, and 2.4 folds respectively as compared to the control. Moreover, the percentage of diarrheal inhibition of Q. coccinea was 23.8%, 28.57%, and 42,86% respectively, and for Q. robur 33.34%, 47.3%, and 57.14% respectively as compared to the control group. Both extracts significantly decreased the volume of intestinal fluid by 27%, 39.78%, and 50.1% for Q. coccinea respectively; and by 38.71%, 51.19%, and 60% for Q. robur respectively as compared to the control group. In addition, AME of Q. coccinea exhibited a peristaltic index of 53.48, 47.18, and 42.28 with significant inhibition of gastrointestinal transit by 18.98%, 28.53%, and 35.95 % respectively; while AME of Q. robur exhibited a peristaltic index of 47.71, 37, and 26.41 with significant inhibition of gastrointestinal transit by 27.72%, 43.89%, and 59.99% respectively as compared with the control group. Notably, Q. robur showed a better antidiarrheal effect in comparison with Q. coccinea and, the highest effect was observed for Q. robur at 1000 mg/kg as it was nonsignificant from the loperamide standard group in all measured parameters.
Collapse
Affiliation(s)
- Mohamed S Mady
- Faculty of Pharmacy, Pharmacognosy Department, Helwan University, Cairo, Egypt
| | - Reham R Ibrahim
- Faculty of Pharmacy, Pharmacognosy Department, Helwan University, Cairo, Egypt
| | - Elsayed K El-Sayed
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Helwan University, Cairo, Egypt
| | - Mohamed El-Shazly
- Faculty of Pharmacy, Pharmacognosy Department, Ain-Shams University, Cairo, Egypt
| | - Lo-Yun Chen
- College of Pharmacy, Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Hung Lai
- College of Pharmacy, Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,College of Pharmacy, Ph.D Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University Hospital, Traditional Herbal Medicine Research Center, Taipei, Taiwan
| | | | - Fatma A Moharram
- Faculty of Pharmacy, Pharmacognosy Department, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Exploiting Polyphenol-Mediated Redox Reorientation in Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15121540. [PMID: 36558995 PMCID: PMC9787032 DOI: 10.3390/ph15121540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Polyphenol, one of the major components that exert the therapeutic effect of Chinese herbal medicine (CHM), comprises several categories, including flavonoids, phenolic acids, lignans and stilbenes, and has long been studied in oncology due to its significant efficacy against cancers in vitro and in vivo. Recent evidence has linked this antitumor activity to the role of polyphenols in the modulation of redox homeostasis (e.g., pro/antioxidative effect) in cancer cells. Dysregulation of redox homeostasis could lead to the overproduction of reactive oxygen species (ROS), resulting in oxidative stress, which is essential for many aspects of tumors, such as tumorigenesis, progression, and drug resistance. Thus, investigating the ROS-mediated anticancer properties of polyphenols is beneficial for the discovery and development of novel pharmacologic agents. In this review, we summarized these extensively studied polyphenols and discussed the regulatory mechanisms related to the modulation of redox homeostasis that are involved in their antitumor property. In addition, we discussed novel technologies and strategies that could promote the development of CHM-derived polyphenols to improve their versatile anticancer properties, including the development of novel delivery systems, chemical modification, and combination with other agents.
Collapse
|
5
|
Ebrahim HY, Mady MS, Atya HB, Ali SA, Elsayed HE, Moharram FA. Melaleuca rugulosa (Link) Craven Tannins: Appraisal of anti-inflammatory, radical scavenging activities, and molecular modeling studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115596. [PMID: 35987414 DOI: 10.1016/j.jep.2022.115596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genus Melaleuca or tea tree species are well known to be an important source of biological active oils and extracts. The biological significance appears in their usage for treatment of several clinical disorder owing to their traditional uses as anti-inflammatory, antibacterial, antifungal, and cytotoxic activities. AIM OF THE STUDY Our study aimed to investigate the metabolic profile of the M. rugulosa polyphenol-rich fraction along with determination of its anti-inflammatory potential, free radical scavenging and antiaging activities supported with virtual understanding of the mode of action using molecular modeling strategy. MATERIALS AND METHODS The anti-inflammatory activity of the phenolic rich fraction was investigated through measuring its inhibitory activity against inflammatory mediators viz tumor necrosing factor receptor-2 (TNF-α) and cyclooxygenases 1/2 (COX-1/2) in a cell free and cell-based assays. Moreover, the radical scavenging activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and β-carotene assays, while the antiaging activity in anti-elastase, anti-collagenase, and anti-tyrosinase inhibitory assays. Finally, the biological findings were supported with molecular docking study using MOE software. RESULTS The chromatographic purification of the polyphenol-rich fraction of Melaleuca rugulosa (Link) Craven afforded fourteen phytoconstituents (1-14). The anti-inflammatory gauging experiments demonstrated inhibition of inflammatory-linked enzymes COX-1/2 and the TNF-α at low μg/mL levels in the enzyme-based assays. Further investigation of the underlying mechanism was inferred from the quantification of protein levels and gene expression in the lipopolysaccharide (LPS)-activated murine macrophages (RAW264.7) in vitro model. The results revealed the reduction of protein synthesis of COX-1/2 and TNF-α with the down regulation of gene expression. The cell free in vitro radical scavenging assessment of the polyphenol-rich fraction revealed a significant DPPH reduction, peroxyl radicals scavenging, and β-carotene peroxidation inhibition. Besides, the polyphenol-rich fraction showed a considerable inhibition of the skin aging-related enzymes as elastase, collagenase, and tyrosinase. Ultimately, the computational molecular modelling studies uncovered the potential binding poses and relevant molecular interactions of the identified polyphenols with their targeted enzymes. Particularly, terflavin C (8) which showed a favorable binding pose at the elastase binding pocket, while rosmarinic acid (14) demonstrated the best binding pose at the COX-2 catalytic domain. In short, natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions. CONCLUSION Natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions.
Collapse
Affiliation(s)
- Hassan Y Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt.
| | - Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt.
| | - Hanaa B Atya
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo, 11795, Egypt.
| | - Sahar A Ali
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt.
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
6
|
Elsayed HE, Ebrahim HY, Mady MS, Khattab MA, El-Sayed EK, Moharram FA. Ethnopharmacological impact of Melaleuca rugulosa (Link) Craven leaves extract on liver inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115215. [PMID: 35337921 DOI: 10.1016/j.jep.2022.115215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melaleuca species have been used by many ethnic communities for the management and treatment of several ailments as hemorrhoids, cough, skin infections, rheumatism, sore throat, pain, inflammation, and digestive system malfunctions. However, the detailed mechanistic pharmacological effect of Melaleuca rugulosa (Link) Craven leaves in the management of liver inflammation has not been yet addressed. AIM OF THE STUDY The present study aimed to evaluate the anti-inflammatory, antioxidant, and antiapoptotic capacities of the aqueous methanol extract of M. rugulosa leaves in relevance to their flavonoid content using an appropriate in vivo model. MATERIALS AND METHODS The aqueous methanol extract of M. rugulosa leaves was administered to the rats at three non-toxic doses (250, 500, and 1000 mg/kg) for seven days prior to the initiation of liver-injury induced by paracetamol (3 g/kg). Liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated in serum samples. The oxidative stress markers including reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels as well as the inflammatory markers such as tumour necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB), were assessed in liver homogenate. The results were supported by histopathological and immuno-histochemical studies. The phytochemical investigation of the flavonoid-rich fraction of the aqueous methanol extract was accomplished using different chromatographic and spectroscopic techniques. RESULTS The aqueous methanol extract of M. rugulosa leaves showed a powerful hepatoprotective activity evidenced by the significant reduction of MDA and NO levels, as well as increasing GSH and catalase activity. Moreover, the extract exhibited anti-inflammatory and antiapoptotic activities witnessed by decreasing TNF-α, NF-κB, iNOS, p-JNK, caspase-3, BAX, and increasing Bcl-2 levels. Moreover, the pretreatment of rats with all doses of M. rugulosa leaves extract showed a significant decrease in liver weight/body weight (LW/BW) ratio, and total bilirubin induced by paracetamol. On the other hand, the chromatographic separation of the flavonoid-rich fraction afforded twenty known flavonoids namely; iso-orientin (1), orientin (2), isovitexin (3), vitexin (4), quercetin-3-O-β-D-glucuronid methyl ether (5), quercetin-3-O-β-D-mannuronpyranoside (6), isoquercetin (7), quercitrin (8), kaempferol-3-O-β-D-mannuronopyranoside (9), kaempferol-7-O-methyl ether-3-O-β-D-glucopyranoside (10), guaijaverin (11), avicularin (12), kaempferide-3-O-β-D-glucopyranoside (13), astragalin (14), afzelin (15), luteolin (16), apigenin (17), quercetin (18), kaempferol (19), and catechin (20). CONCLUSION The aqueous methanol extract of M. rugulosa leaves showed potential hepatoprotective, antioxidant, and anti-inflammatory activities against paracetamol-induced liver inflammation which is correlated at least in part to its considerable phenolic content.
Collapse
Affiliation(s)
- Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.
| | - Hassan Y Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elsayed K El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
7
|
Rathore R, Rai N. Pharmacological action and underlying molecular mechanism of Callistemon: A genus of promising medicinal herbs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154013. [PMID: 35279614 DOI: 10.1016/j.phymed.2022.154013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION The genus Callistemon belongs to a group of medically significant plants which have found tremendous use in traditional medicine across the globe. They are reported for anti-cancer, neuroprotective, anti-inflammatory, antioxidant, anti-microbial, and many other significant medicinal attributes. However, the current use of this genus is limited mainly to ornamental and recreational purposes. Recent studies have reported several novel compounds like phloroglucinol derivatives, terpenes, phenolics, etc., from Callistemon spp., which have great medical significance. Further, there is a surge of recent studies reporting novel pharmacological properties of Callistemon. The number of review studies discussing the underlying molecular mechanism behind the pharmacological action of Callistemon is quite limited. METHODS The literature search for studies published from 1991 to 2021 using Google scholar and PubMed were selected. The review documented relevant literature focused on Callistemon spp exhibiting significant pharmacological effects. RESULTS This review deals with the pharmacological properties of Callistemon and the underlying molecular mechanism responsible for protective effect in several pathophysiological conditions. This study updated the current information regarding the medicinal importance of Callistemon spp. for research and the public community. DISCUSSION AND CONCLUSIONS The preliminary studies, interrogating pharmacological properties of Callistemon spp., hold great promise and demand further research to decipher the mode of action. More and more research are needed in this direction to explore the full potential of the genus Callistemon as a medicinal herb.
Collapse
Affiliation(s)
- Rinu Rathore
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| |
Collapse
|