1
|
O'Connell KC, Almeida MB, Nouwairi RL, Costen ET, Lawless NK, Charette ME, Stewart BM, Nixdorf SL, Landers JP. Microwave-assisted extraction, separation, and chromogenic detection of laced marijuana for presumptive point-of-interdiction testing. LAB ON A CHIP 2024; 24:4403-4421. [PMID: 39162068 DOI: 10.1039/d4lc00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Presumptive drug screening enables timely procurement of search and arrest warrants and represents a crucial first step in crime scene analysis. Screening also reduces the burden on forensic laboratories which often face insurmountable backlogs. In most scenarios, on-site presumptive drug screening relies on chemical field tests for initial identification. However, even when used appropriately, these test kits remain limited to subjective colorimetric analysis, produce false positive or negative results with excessive sample quantities, and are known to cross-react with numerous innocuous substances. Previous efforts to develop microfluidic devices that incorporate these chromogenic indicator reagents address only a few of the many challenges associated with these kits. This is especially true for samples where the drug of interest is present as a lacing agent. This work describes the development of a centrifugal microfluidic device capable of integrating facile sample preparation, by way of a 3D printed snap-on cartridge amenable to microwave assisted extraction, followed by chromatographic separation and chromogenic detection on-disc. As cannabis is among the most widely used controlled substance worldwide, and displays strong interference with these indicator reagents, mock samples of laced marijuana are used for a proof-of-concept demonstration. Post extraction, the microdevice completes high throughput metering just prior to simultaneous reaction with four of the most commonly employed microchemical tests, followed by objective image analysis in CIELAB (a device-independent color model). Separation and recovery of a representative controlled substance with 93% efficiency is achieved. Correct identification, according to hierarchical cluster analysis, of three illicit drugs (e.g., heroin, phencyclidine, and cocaine) in artificially laced samples is also demonstrated on-disc. The cost effective microdevice is capable of complete automation post-extraction, with a total analysis time (including extraction) of <8 min. Finally, sample consumption is minimized, thereby preventing the complete destruction of forensic evidence.
Collapse
Affiliation(s)
- Killian C O'Connell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Mariana B Almeida
- Chemical Institute of São Carlos, University of São Paulo, São Paulo 05001, Brazil
- Department of Chemistry, Londrina State University, Londrina, Paraná 86057, Brazil
| | - Renna L Nouwairi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Emmet T Costen
- Aerospace Structural Research Corporation, Milford, Connecticut, 06460 USA
| | - Nicola K Lawless
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Cognitive Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura E Charette
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Brennan M Stewart
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Suzana L Nixdorf
- Department of Chemistry, Londrina State University, Londrina, Paraná 86057, Brazil
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
2
|
Li Z, Li Z, Xu Q, Zhao L, Li B, Liu W, Shi Y. Acoustic ejection tandem mass spectrometry for high-throughput screening of phencyclidine-type substances in urine, including authentic cases. Anal Chim Acta 2024; 1312:342751. [PMID: 38834265 DOI: 10.1016/j.aca.2024.342751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The abuse of the Phencyclidine-type substances, especially ketamine is a serious problem worldwide, and retrospective analysis are important for both the analysis and the identification of forms of drug abuse. The current major analytical methods, while all excellent in terms of accuracy, are time- and reagent-consuming. This depletion is made even more unfortunate by the fact that a large number of samples are negative in retrospective analyses. It is clear that a set of methods that can be analyzed both accurately and quickly need to be developed and applied to the screening and analysis of large quantities of samples. RESULTS We described a urine test based on acoustic ejection mass spectrometry, which allows precise injection at very low volumes and near 1 ejection s-1 and data acquisition. The confidence in identification was increased by the characterization of the abundance ratio of the two pairs of ions. Urine samples could be diluted with water and loaded into a 384-well plate for sampling without complicated sample preparation. The sample in the transparent 384-well plate was pre-scanned by the laser, and then 20 nL droplets were ejected into the ion source for targeted analysis of 2 ion transitions per droplet totaling 9 targeted analytes in the sequence of acquisition methods. It took 90 min to screen 250 samples in this approach, yielding 10 ng mL-1 detection limits. Positive samples were further analyzed by UHPLC-MS/MS for confirmation and quantification of up to 36 analytes. SIGNIFICANCE This was the first fast screening method for phencyclidine-type substances based on acoustic ejection mass spectrometry, which greatly reduces the analytical time, and can accomplish in 1.5 h what UHPLC-MS/MS needs 3 days to complete. And the samples can be analyzed without complicated sample preparation, and also can obtain good detectability. It was applied to a short-term retrospective analysis in Shanghai, and its accuracy was also extremely high.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zehong Li
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qing Xu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Liuqing Zhao
- SCIEX Analytical Instrument Trading Co., Ltd, Shanghai, 200335, PR China
| | - Bo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wei Liu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China.
| |
Collapse
|
3
|
Bhatia G, Gupta S. Drug Use and Road Traffic Injuries- Shots in the Dark. Indian J Psychol Med 2024; 46:264-267. [PMID: 38699768 PMCID: PMC11062304 DOI: 10.1177/02537176231166144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Affiliation(s)
- Gayatri Bhatia
- Dept. of Psychiatry, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sahil Gupta
- Dept. of Trauma Surgery and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Poetto AS, Catesini G, Dossetto P, Marchetti S, Addobbati R. Drug driving in Italy. The results of the first roadside drug testing service utilizing on-site confirmatory analysis between 2019 and 2022. Forensic Sci Int 2024; 355:111929. [PMID: 38262308 DOI: 10.1016/j.forsciint.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Drug driving represents a public safety concern, and the size of this issue in Italy is not fully known. Drug testing is composed of two steps: 1) screening and 2) confirmatory analysis. The second step, and the associate medical examination to assess the state of impairment, usually are not performed right after the screening as they require specialized personnel and instrumental equipment that are not historically available at roadblocks. These pitfalls make this process both complicated and time-consuming. METHODS A mobile laboratory was set up in 2019 by the Forensic Lab Service S.r.l. (limited liability company) to improve roadblock timing, planning, as well as to shed light on the extent of the drug driving issue in Italy. Drug screenings were performed using DrugWipe® Saliva testing. Confirmatory analysis was performed on oral fluids by liquid chromatography coupled with tandem mass spectrometry. A dedicated room of the mobile laboratory was also designed for drug driving medical assessment. RESULT 2082 samples were collected during 88 road safety services held in different locations across Italy. In total, 9 % of the tested subjects were positive to both the screening and the confirmatory analysis. The most prevalent illicit drugs found in this study were THC (72 %), followed by cocaine (41 %). Drug drivers were mostly male (93 %) and younger than 30 years of age (58 %). CONCLUSIONS The prevalence of drivers testing positive for illicit drugs resulted to be higher compared to the results obtained in the DRUID project and to other surveys previously performed in Italy. These data demonstrate the need for control services to improve road safety in regards to drug driving.
Collapse
Affiliation(s)
| | - Giulio Catesini
- Forensic Lab Service Srl, Rome, Italy; Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Dossetto
- Forensic Lab Service Srl, Rome, Italy; Sciex, Milano, Italy
| | | | - Riccardo Addobbati
- Forensic Lab Service Srl, Rome, Italy; Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
5
|
Wang D, Feng Y, Yang M, Sun H, Zhang Q, Wang R, Tong S, Su R, Jin Y, Wang Y, Lu Z, Han L, Sun Y. Variations in the oral microbiome and metabolome of methamphetamine users. mSystems 2024; 9:e0099123. [PMID: 38112416 PMCID: PMC10804968 DOI: 10.1128/msystems.00991-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of Peptostreptococcus and Gemella were significantly increased, while the relative abundances of Campylobacter and Aggregatibacter were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., Peptostreptococcus, Gemella, Campylobacter, and Aggregatibacter, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Feng
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Yang
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingchen Zhang
- Department of Orthopedics, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqing Tong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rui Su
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
McGrane IR, Ramsbacher NC, Rook WC, Omar FA. Effects of 3,4-methylenedioxymethamphetamine and methamphetamine on motor vehicle driving performance: A systematic review of experimental and observational studies. J Forensic Sci 2023; 68:22-34. [PMID: 36411495 DOI: 10.1111/1556-4029.15179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) are common drugs of abuse and driving under their influence may occur in 1 million people yearly in the United States. This systematic review fills the currently unmet need in understanding the effects of METH and MDMA on motor vehicle driving performance (MVP) and provides insight into the forensic community. A PubMed search on September 24, 2020, for experimental and observational studies, which evaluated the impact of METH and MDMA on MVP was performed. After a review of 208 abstracts, 103 were considered potentially interesting and full texts were obtained. After the exclusion of non-English articles, review articles, single case reports, and articles which did not evaluate METH or MDMA on MVP, a total of nine experimental studies, 10 traditional observational studies, and 35 case series were included. The clinical rigor of experimental studies was evaluated using the Jadad scale. Experimental studies often demonstrated no significant MVP safety signals for METH or MDMA use, which was contrary to the overwhelming MVP safety risks found in observational studies. Common driving behaviors while using METH or MDMA include: errors in judgment, traveling at high speeds, failure to stop, merging inappropriately, lane weaving, and crashes. Limitations of experimental studies that led to dissimilar MVP outcomes from observational studies include: the common use of driving simulators, as opposed to actual driving examinations, and doses of METH or MDMA administered may not be representative of blood concentrations seen in observational studies. This systematic review has no funding source and was not registered.
Collapse
Affiliation(s)
- Ian R McGrane
- Skaggs School of Pharmacy, College of Health, University of Montana, Missoula, Montana, USA.,Department of Pharmacy, Providence St. Patrick Hospital, Missoula, Montana, USA
| | - Nathan C Ramsbacher
- Department of Pharmacy, Providence St. Patrick Hospital, Missoula, Montana, USA
| | - William C Rook
- Department of Pharmacy, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Faddy A Omar
- Department of Pharmacy, Holy Rosary Healthcare, Miles City, Montana, USA
| |
Collapse
|
7
|
Jing L, Li Q, Li S, Li H, Xia F. Introduction. ELECTROCHEMICAL BIOSENSORS FOR WHOLE BLOOD ANALYSIS 2023:1-16. [DOI: 10.1007/978-981-99-5644-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Cheng JYK, Hui JWS, Chan WS, So MH, Hong YH, Leung WT, Ku KW, Yeung HS, Lo KM, Fung KM, Ip CY, Dao KL, Cheung BKK. Interpol review of toxicology 2019-2022. Forensic Sci Int Synerg 2022; 6:100303. [PMID: 36597440 PMCID: PMC9799715 DOI: 10.1016/j.fsisyn.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jack Yuk-ki Cheng
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | | - Wing-sum Chan
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Man-ho So
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Yau-hin Hong
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Wai-tung Leung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Ka-wai Ku
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Hoi-sze Yeung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kam-moon Lo
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kit-mai Fung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Chi-yuen Ip
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kwok-leung Dao
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | |
Collapse
|
9
|
Xu F, Zhou J, Yang H, Chen L, Zhong J, Peng Y, Wu K, Wang Y, Fan H, Yang X, Zhao Y. Recent advances in exhaled breath sample preparation technologies for drug of abuse detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Li L, Zhang T, Wang D, Zhang Y, He X, Wang X, Li P. Portable Digital Linear Ion Trap Mass Spectrometer Based on Separate-Region Corona Discharge Ionization Source for On-Site Rapid Detection of Illegal Drugs. Molecules 2022; 27:molecules27113506. [PMID: 35684444 PMCID: PMC9182377 DOI: 10.3390/molecules27113506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
As narcotic control has become worse in the past decade and the death toll of drug abuse hits a record high, there is an increasing demand for on-site rapid detection of illegal drugs. This work developed a portable digital linear ion trap mass spectrometer based on separate-region corona discharge ionization source to meet this need. A separate design of discharge and reaction regions was adopted with filter air as both carrier gas for the analyte and protection of the corona discharge needle. The linear ion trap was driven by a digital waveform with a low voltage (±100 V) to cover a mass range of 50–500 Da with a unit resolution at a scan rate of 10,000 Da/s. Eighteen representative drugs were analyzed, demonstrating excellent qualitative analysis capability. Tandem mass spectrometry (MS/MS) was also performed by ion isolation and collision-induced dissociation (CID) with air as a buffer gas. With cocaine as an example, over two orders of magnitude dynamic range and 10 pg of detection limit were achieved. A single analysis time of less than 10 s was obtained by comparing the information of characteristic ions and product ions with the built-in database. Analysis of a real-world sample further validated the feasibility of the instrument, with the results benchmarked by GC-MS. The developed system has powerful analytical capability without using consumables including solvent and inert gas, meeting the requirements of on-site rapid detection applications.
Collapse
Affiliation(s)
- Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (D.W.); (Y.Z.); (X.H.)
| | - Tianyi Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (D.W.); (Y.Z.); (X.H.)
| | - Deting Wang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (D.W.); (Y.Z.); (X.H.)
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (D.W.); (Y.Z.); (X.H.)
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (D.W.); (Y.Z.); (X.H.)
| | - Xiaozhi Wang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (D.W.); (Y.Z.); (X.H.)
- Correspondence: ; Tel.: +86-136-562-498-81
| |
Collapse
|
11
|
Chen R, Huang P, Wei S, Zhang C, Lai X, Wang H, Tang J. Methamphetamine exposure increases cardiac microvascular permeability by activating the VEGF-PI3K-Akt-eNOS signaling pathway, reversed by Bevacizumab. Hum Exp Toxicol 2022; 41:9603271221121795. [PMID: 35975811 DOI: 10.1177/09603271221121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methamphetamine (METH) is an illicit amphetamine-like psychostimulant that is commonly abused. However, the modulation of METH-induced cardiac microvascular permeability is still not completely known. Previously, we discovered that the vascular endothelial growth factor (VEGF) regulated the cardiotoxicity produced by METH. In this work, we looked into the effect of METH exposure on cardiac microvascular permeability via the VEGF-PI3K-Akt-eNOS signaling pathway, as well as the efficacy of Bevacizumab treatment in reducing this effect. The findings revealed that METH exposure enhanced cardiac microvascular permeability while also activating the VEGF-PI3K-Akt-eNOS signaling pathway. Furthermore, treatment with Bevacizumab has been shown to be effective in reversing the METH-induced phenomena. Briefly stated, our research may provide fresh insight into the molecular underpinnings of METH-induced cardiac microvascular permeability, and it may also provide evidence for a relationship between METH misuse and Bevacizumab medication.
Collapse
Affiliation(s)
- Rui Chen
- Department of Forensic Medicine, 12453Guangdong Medical University, Dongguan, China
| | - Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, 70570Southern Medical University, Foshan, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, 70570Southern Medical University, Guangzhou, China
| | - Cui Zhang
- School of Forensic Medicine, 70570Southern Medical University, Guangzhou, China
| | - Xiaoping Lai
- Department of Forensic Medicine, 12453Guangdong Medical University, Dongguan, China
| | - Huijun Wang
- School of Forensic Medicine, 70570Southern Medical University, Guangzhou, China
| | - Jianpin Tang
- Department of Forensic Medicine, 12453Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Abstract
As more states in the U.S legalize recreational and medicinal cannabis, rates of driving under the influence of this drug are increasing significantly. Aspects of this emerging public health issue potentially pit science against public policy. The authors believe that the legal cart is currently significantly ahead of the scientific horse. Issues such as detection procedures for cannabis-impaired drivers, and use of blood THC levels to gauge impairment, should rely heavily on current scientific knowledge. However, there are many, often unacknowledged research gaps in these and related areas, that need to be addressed in order provide a more coherent basis for public policies. This review focuses especially on those areas. In this article we review in a focused manner, current information linking cannabis to motor vehicle accidents and examine patterns of cannabis-impairment of driving related behaviors, their time courses, relationship to cannabis dose and THC blood levels, and compare cannabis and alcohol-impaired driving patterns directly. This review also delves into questions of alcohol-cannabis combinations and addresses the basis for of per-se limits in cannabis driving convictions. Finally, we distinguish between areas where research has provided clear answers to the above questions, areas that remain unclear, and make recommendations to fill gaps in current knowledge.
Collapse
Affiliation(s)
- Godfrey D. Pearlson
- Department of Psychiatry, Olin Neuropsychiatry Research Center, Institute of Living, Hartford Healthcare Corporation, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Michael C. Stevens
- Department of Psychiatry, Olin Neuropsychiatry Research Center, Institute of Living, Hartford Healthcare Corporation, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
A comprehensive UHPLC-MS/MS screening method for the analysis of 98 New Psychoactive Substances and related compounds in human hair. J Pharm Biomed Anal 2021; 205:114310. [PMID: 34391138 DOI: 10.1016/j.jpba.2021.114310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022]
Abstract
In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the targeted analysis of 98 New Psychoactive Substances (NPS) from the hair matrix. The monitored compounds included various chemical classes (7 phenethylamines, 10 tryptamines, 18 cathinones, 24 synthetic opioids, and 38 synthetic cannabinoids) with emphasis given to newly emerged NPS. The method employed a direct extraction process through the incubation of hair samples (25 mg) and internal standards with M3® reagent at 100 °C for 60 min, followed by extract purification through acid and basic liquid-liquid micro-extraction (LLME). Extracted compounds were analyzed through LC-MS/MS system operating in multiple reaction monitoring mode. NPS were separated in 9.5 min with a Poroshell 120 EC-C18 column (2.7 μm, 4.6 × 50 mm) using a gradient eluting mobile phase composed of water and acetonitrile/water (95:5) both containing 0.1 % of formic acid. The developed and validated method shows a good precision (≤ 15 %), linearity (R2 between 0.993 and 0.999), selectivity, and sensitivity (LOD: 0.6-10.3 pg mg-1 and LOQ: 2.1-34.4 pg mg-1). The method showed also reduced matrix effect and acceptable recovery for most of the targeted compounds. Our results showed that this method is suitable for quantifying NPS in hair matrix and could be employed in the context of routine analyses in analytical laboratories.
Collapse
|