1
|
Brothers HR, Chambenahalli R, Nichol GS, Garden JA, Jenkins DM. Ring-opening polymerization of ε-caprolactone with a macrocyclic tetracarbene indium complex. Dalton Trans 2024. [PMID: 39686831 DOI: 10.1039/d4dt03198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The first chiral tetracarbene indium(III) complexes have been synthesized by employing a rigid dianionic macrocyclic tetra-NHC ligand. The macrocyclic indium tetra-NHC bromide and ethoxide complexes are structurally similar to analagous salen complexes. The indium ethoxide complex effectively promotes living ring-opening polymerization of ε-caprolactone at room temperature.
Collapse
Affiliation(s)
- Henry R Brothers
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Raju Chambenahalli
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - Gary S Nichol
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - Jennifer A Garden
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - David M Jenkins
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
2
|
Neole NG, Yhobu Z, Małecki JG, Nagaraju DH, Budagumpi S. Ruthenium(II) N-heterocyclic carbene polymer based sensors for detection of predatory drugs like ketamine and scopolamine. Dalton Trans 2024; 53:18330-18345. [PMID: 39465536 DOI: 10.1039/d4dt02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The current demand in the field of abusive drug research is to have a highly sensitive and rapid method for detecting ketamine and scopolamine, which are frequently used in drug-facilitated sexual assaults administered via beverages and food. We report here the first electrochemical sensors of N-heterocyclic carbene (NHC) coordinated ruthenium organometallic 1-dimensional polymers and their multi-walled carbon nano tube (MWCNT)-based composite for detecting ketamine and scopolamine. The preparation of ruthenium NHC organometallics and the MWCNT composite as sensors offers significant advantages for electrochemical applications, with enhanced sensitivities of 121.979 and 3.273 μA μM-1 cm-2 for ketamine and scopolamine, respectively, and selectivity in sensing applications. The complex-carbon composite sensor has a low limit of detection i.e., 0.194 and 3.18 nM for ketamine and scopolamine identification, respectively. Alongside, the selectivity of the composite sensor was evaluated in the presence of other blood constituents, and the study evidenced remarkable discernment towards the title drugs. Furthermore, real-time analyses using the composite sensor demonstrated quantitative identification of ketamine and scopolamine. Therefore, this innovation has the potential to provide valuable tools for forensic investigations and address the urgent need for real-time detection of date rape drugs. This contribution demonstrates a robust proof-of-concept that emphasizes the importance of creating non-enzymatic, environmentally friendly, and cost-effective sensors for on-site sensing applications as point-of-care devices.
Collapse
Affiliation(s)
- Nupoor Gopal Neole
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
- Department of Forensic Science, School of Sciences, JAIN (Deemed-to-be University), J. C. Road, Sudhama Nagar, Bangalore-560027, Karnataka, India
| | - Zhoveta Yhobu
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
| | - Jan Grzegorz Małecki
- Institute of Chemistry, University of Silesia, 9th Szkolna St, 40-006 Katowice, Poland
| | - Doddahalli H Nagaraju
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
| |
Collapse
|
3
|
Han W, Ryu H, Kang C, Hong S. Chiral Biaryl N-Heterocyclic Carbene-Palladium Catalysts with Anagostic C-H···Pd Interaction for Enantioselective Desymmetric C-N Cross-Coupling. Org Lett 2024. [PMID: 39527761 DOI: 10.1021/acs.orglett.4c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Novel chiral biaryl imidazo[1,5-a]pyridine carbene-palladium complexes (ImPy-Pd) featuring an anagostic C-H···Pd interaction and a C5-aryl substituent have been developed and successfully applied to the Pd-catalyzed enantioselective desymmetric C-N cross-coupling of malonamide derivatives, providing chiral 3,4-dihydroquinoline-2-ones with quaternary stereocenters in high yields (≤99%) and enantioselectivities (≤97:3 er). The chiral catalyst exerts stereocontrol by restricting the rotation of substituents around the metal center through anagostic interactions with sterically bulky substituents.
Collapse
Affiliation(s)
- Woosong Han
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| | - Huijeong Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| | - Changmuk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Bibak S, Poursattar Marjani A, Sarreshtehdar Aslaheh H. MCM-41 supported 2-aminothiophenol/Cu complex as a sustainable nanocatalyst for Suzuki coupling reaction. Sci Rep 2024; 14:18070. [PMID: 39103430 DOI: 10.1038/s41598-024-69101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
We have developed an innovative mesoporous nanocatalyst by carefully attaching a 2-aminothiophenol-Cu complex onto functionalized MCM-41. This straightforward synthesis process has yielded a versatile nanocatalyst known for its outstanding efficiency, recyclability, and enhanced stability. The structural integrity of the nanocatalyst was comprehensively analyzed using an array of techniques, including BET (Brunauer-Emmett-Teller) for surface area measurement, ICP (Inductively Coupled Plasma) for metal content determination, EDS (Energy-Dispersive X-ray Spectroscopy) for elemental mapping, XRD (X-ray Diffraction) for crystalline structure elucidation, SEM (Scanning Electron Microscopy), EMA (Elemental Mapping Analysis), TEM (Transmission Electron Microscopy), TGA (Thermogravimetric Analysis), FT-IR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy), and CV (cyclic voltammetry). Subsequently, the catalytic properties of the newly developed MCM-41-CPTEO-2-aminothiophenol-Cu catalyst was evaluated in the synthesis of biphenyls, demonstrating outstanding yields through a Suzuki coupling reaction between phenylboronic acid and aryl halides. Importantly, this reaction was conducted in an environmentally friendly medium. Note the remarkable recyclability of the catalyst, proving its sustainability over six cycles with minimal loss in activity additionally hot filtration test was prepared to examine the stability of this nanocatalyst. This outstanding feature emphasizes the catalyst's potential for long-term, environmentally conscious catalytic applications.
Collapse
Affiliation(s)
- Sepideh Bibak
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | | |
Collapse
|
5
|
Wang W. Recent Advances in the Titanium-Based Catalysts for Ring-Opening Polymerization. ACS OMEGA 2024; 9:29983-29993. [PMID: 39035956 PMCID: PMC11256339 DOI: 10.1021/acsomega.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
At present, economic development and daily life cannot be separated from organic synthetic polymers. However, a large number of nondegradable polymers have caused serious pollution to the environment. It is necessary for sustainable development to use biodegradable materials instead of traditional polymers, but it is not yet comparable in performance and cost to the competitor it will replace. Therefore, there is a long way to go to develop effective synthesis methods. Through ring-opening polymerization, some cyclic monomers, such as ε-caprolactone or lactide, can be synthesized into biodegradable polymers, which can not only replace traditional synthetic polymers in some fields but also have applications in drug delivery, surgical consumables, human implant materials, bone materials, etc. Ring-opening polymerization is a potential candidate for solving environmental pollution. For ring-opening polymerization, catalysts are very important, among which titanium catalysts have attracted much attention because of their high efficiency, economy, and nontoxicity. In this paper, the development status of organotitanium compounds as ring-opening polymerization catalysts is reviewed, including the effects of different ligand structures on polymerization behavior and polymer structure, and its development trend is prospected. We hope that this review will be helpful for developing efficient ring-opening polymerization catalysts.
Collapse
Affiliation(s)
- Wei Wang
- Sinopec (Beijing) Research Institute
of Chemical Industry Co., Ltd., Sinopec
Key Laboratory of Research and Application of Medical and Hygienic
Materials, No. 14 Beisanhuan
Donglu, Chao Yang District, Beijing 100013, China
| |
Collapse
|
6
|
Podchorodecka P, Dziuk B, Szostak R, Szostak M, Bisz E. IPr* Oxa - a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands. Dalton Trans 2023; 52:13608-13617. [PMID: 37698540 DOI: 10.1039/d3dt02255b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as a major direction in ancillary ligand development for stabilization of reactive metal centers in inorganic and organometallic chemistry. In particular, wingtip-flexible NHCs have attracted significant attention due to their unique ability to provide a sterically-demanding environment for transition metals in various oxidation states. Herein, we report a new class of sterically-hindered, wingtip-flexible NHC ligands that feature N,C-chelating oxazole donors. These ligands are readily accessible through a modular arylation of oxazole derivatives. We report their synthesis and complete structural and electronic characterization. The evaluation of steric, electron-donating and π-accepting properties and coordination chemistry to Ag(I), Pd(II) and Rh(I) is described. Preliminary studies of catalytic activity in Ag, Pd and Rh-catalyzed coupling and hydrosilylation reactions are presented. This study establishes the fluxional behavior of a freely-rotatable oxazole unit, wherein the oxazolyl ring adjusts to the steric and electronic environment of the metal center. Considering the tremendous impact of sterically-hindered NHCs and their potential to stabilize reactive metals by N-chelation, we expect that this class of NHC ligands will be of broad interest in inorganic and organometallic chemistry.
Collapse
Affiliation(s)
- Pamela Podchorodecka
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| |
Collapse
|
7
|
Jia T, Diane O, Ghosh D, Skander M, Fontaine G, Retailleau P, Poupon J, Bignon J, Moulai Siasia YM, Servajean V, Hue N, Betzer JF, Marinetti A, Bombard S. Anti-Cancer and Radio-Sensitizing Properties of New Bimetallic ( N-Heterocyclic Carbene)-Amine-Pt(II) Complexes. J Med Chem 2023; 66:6836-6848. [PMID: 37191470 DOI: 10.1021/acs.jmedchem.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bioactive NHC-transition metal complexes have shown promise as anti-cancer agents, but their potential use as radiosensitizers has been neglected so far. We disclose here a new series of bimetallic platinum(II) complexes displaying NHC-type bridging ligands, (bis-NHC)[trans-Pt(RNH2)I2]2, that have been synthesized via a simple, two-step procedure. They display cytotoxicity in the micromolar range on cancerous cell lines, accumulate in cells, and bind to genomic DNA, by inducing DNA damages. Notably, these bimetallic complexes demonstrate significant radiosensitizing effects on both ovarian cells A2780 and nonsmall lung carcinoma cells H1299. Further investigations revealed that bimetallic species make irradiation-induced DNA damages more persistent by inhibiting repair mechanisms. Indeed, a higher and persistent accumulation of both γ-H2AX and 53BP1 foci post-irradiation was detected, in the presence of the NHC-Pt complexes. Overall, we provide the first in vitro evidence for the radiosensitizing properties of NHC-platinum complexes, which suggests their potential use in combined chemo-radio therapy protocols.
Collapse
Affiliation(s)
- Tao Jia
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Oumar Diane
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Deepanjan Ghosh
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Myriem Skander
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Gaelle Fontaine
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Pascal Retailleau
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Joël Poupon
- Hôpital Lariboisière, Laboratoire de Toxicologie Biologique, 2 rue Ambroise Paré, Paris 75475, France
| | - Jérôme Bignon
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Ytabelle Maga Moulai Siasia
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Vincent Servajean
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Nathalie Hue
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Jean-François Betzer
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Angela Marinetti
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Sophie Bombard
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| |
Collapse
|
8
|
Vila J, Solà M, Achard T, Bellemin-Laponnaz S, Pla-Quintana A, Roglans A. Rh(I) Complexes with Hemilabile Thioether-Functionalized NHC Ligands as Catalysts for [2 + 2 + 2] Cycloaddition of 1,5-Bisallenes and Alkynes. ACS Catal 2023; 13:3201-3210. [PMID: 36910871 PMCID: PMC9990073 DOI: 10.1021/acscatal.2c05790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Indexed: 02/19/2023]
Abstract
The [2 + 2 + 2] cycloaddition of 1,5-bisallenes and alkynes under the catalysis of Rh(I) with hemilabile thioether-functionalized N-heterocyclic carbene ligands is described. This protocol effectively provides an entry to different trans-5,6-fused bicyclic systems with two exocyclic double bonds in the cyclohexene ring. The process is totally chemoselective with the two internal double bonds of the 1,5-bisallenes being involved in the cycloaddition. The complete mechanism of this transformation as well as the preference for the trans-fusion over the cis-fusion has been rationalized by density functional theory calculations. The reaction follows a typical [2 + 2 + 2] cycloaddition mechanism. The oxidative addition takes place between the alkyne and one of the allenes and it is when the second allene is inserted into the rhodacyclopentene that the trans-fusion is generated. Remarkably, the hemilabile character of the sulfur atom in the N-heterocyclic carbene ligand modulates the electron density in key intermediates, facilitating the overall transformation.
Collapse
Affiliation(s)
- Jordi Vila
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-Université de Strasbourg, UMR7504, 23 Rue du Loess BP 43, 67034 Strasbourg, France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-Université de Strasbourg, UMR7504, 23 Rue du Loess BP 43, 67034 Strasbourg, France
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| | - Anna Roglans
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| |
Collapse
|
9
|
Coordination Versatility of NHC-metal Topologies in Asymmetric Catalysis: Synthetic Insights and Recent Trends. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Mayr J, Reich RM, Kühn FE. Ru(II) complexes with phosphine-functionalized NHC ligands in catalytic transfer hydrogenations. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Musaoğlu D, Avcı Özbek H, Demirhan F. Heck coupling reactions of aryl halides catalyzed by saturated ferrocenylmethylimidazolinium salts/palladium. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Dong Z, Jiang C, Zhao C. A Review on Generation and Reactivity of the N-Heterocyclic Carbene-Bound Alkynyl Acyl Azolium Intermediates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227990. [PMID: 36432089 PMCID: PMC9696695 DOI: 10.3390/molecules27227990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
N-heterocyclic carbene (NHC) has been widely used as an organocatalyst for both umpolung and non-umpolung chemistry. Previous works mainly focus on species including Breslow intermediate, azolium enolate intermediate, homoenolate intermediate, alkenyl acyl azolium intermediate, etc. Notably, the NHC-bound alkynyl acyl azolium has emerged as an effective intermediate to access functionalized cyclic molecular skeleton until very recently. In this review, we summarized the generation and reactivity of the NHC-bound alkynyl acyl azolium intermediates, which covers the efforts and advances in the synthesis of achiral and axially chiral cyclic scaffolds via the NHC-bound alkynyl acyl azolium intermediates. In particular, the mechanism related to this intermediate is discussed in detail.
Collapse
|
13
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
14
|
Lima CGS, Pauli FP, Madriaga VG, Amaral AAP, Graciano IA, Meira VL, Forezi LDSM, Ferreira VF, Lima TDM, de Carvalho da Silva F. Supramolecular Catalysts for Organic Synthesis: Preparation and Applications of Cyclodextrins and Calixarenes in C‐C Cross‐Coupling Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Vitor F. Ferreira
- Universidade Federal Fluminense Departamento de Tecnologia Farmacêutica BRAZIL
| | | | | |
Collapse
|
15
|
Ritleng V, Michon C. Bidentate Donor-Functionalized N-Heterocyclic Carbenes: Valuable Ligands for Ruthenium-Catalyzed Transfer Hydrogenation. Molecules 2022; 27:molecules27154703. [PMID: 35897879 PMCID: PMC9329912 DOI: 10.3390/molecules27154703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Ruthenium complexes are by far the most studied compounds that catalyze hydrogen transfer reactions. In this review, we describe the use in this field of ruthenium complexes bearing bidentate donor-functionalized N-heterocyclic carbene ligands. The review specifically covers the application in transfer hydrogenations of (κ2-CNHC,Y)-ruthenacyclic compounds where the Y donor atom is a N, P, O, or S atom, and where the N-heterocyclic carbene ligand is a classical imidazol-2-ylidene, a benzimidazol-2-ylidene, a mesoionic 1,2,3-triazolylidene, or an imidazol-4-ylidene ligand. Tridentate donor-functionalized N-heterocyclic carbene complexes thus fall outside the scope of the review. Applications in (asymmetric) transfer hydrogenation of ketones, aldehydes, imines, alkenes, and nitrobenzene are discussed.
Collapse
|
16
|
Sánchez A, Sanz-Garrido J, Carrasco CJ, Montilla F, Álvarez E, González-Arellano C, Carlos Flores J, Galindo A. Synthesis and characterization of chiral bidentate bis(N-heterocyclic carbene)-carboxylate palladium and nickel complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Mukherjee N, Mondal B, Saha TN, Maity R. Palladium, Iridium and Rhodium Complexes Bearing Chiral N‐Heterocyclic Carbene Ligands Applied in Asymmetric Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bhaskar Mondal
- Department of Chemistry University of Calcutta Kolkata India
| | - Tarak Nath Saha
- Department of Chemistry University of Calcutta Kolkata India
| | - Ramananda Maity
- Department of Chemistry University of Calcutta Kolkata India
| |
Collapse
|