1
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
2
|
Puițel AC, Bălușescu G, Balan CD, Nechita MT. The Potential Valorization of Corn Stalks by Alkaline Sequential Fractionation to Obtain Papermaking Fibers, Hemicelluloses, and Lignin-A Comprehensive Mass Balance Approach. Polymers (Basel) 2024; 16:1542. [PMID: 38891488 PMCID: PMC11174482 DOI: 10.3390/polym16111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The current study deals with an examination of strategies for the sequential treatment of corn stalks (CSs) in an integrated manner aiming to obtain papermaking fibers and to recover both lignin and hemicelluloses (HCs). Several pathways of valorization were experimentally trialed, focusing on getting information from mass balance analysis in an attempt to reveal the potential outcomes in terms of pulp yield, chemical composition, and papermaking properties such as tensile and burst strength. The raw lignin amounts and purity as well as separated hemicelluloses were also characterized. In this work, pulp yields in the range of 44-50% were obtained from CSs, while lignin and hemicelluloses yielded maximum values of 10 g/100 g of CS and 6.2 g/100 g of CS, respectively. Other findings of mass balance analysis evidenced that besides the papermaking pulp, the lignin and HCs also have interesting output values. The recovered lignin yield values were shown to be less than 50% in general, meaning that even if 67 to 90% of it is removed from CSs, only about half is recovered. The removal rates of hemicelluloses were found to be in the range of approx. 30 to 60%. About 15 to 25% of the original HCs could be recovered, and polysaccharides-based products with 67 to 75% xylan content could be obtained. Some key opinions were developed regarding how the mass balance could turn as a result of the chosen CS valorization set-up. The determined antioxidant activity showed that both lignin and hemicelluloses had interesting values for IC50.
Collapse
Affiliation(s)
| | - Georgiana Bălușescu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania; (A.C.P.); (C.D.B.)
| | | | - Mircea Teodor Nechita
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania; (A.C.P.); (C.D.B.)
| |
Collapse
|
3
|
Ionin VA, Malyar YN, Borovkova VS, Zimonin DV, Gulieva RM, Fetisova OY. Inherited Structure Properties of Larch Arabinogalactan Affected via the TEMPO/NaBr/NaOCl Oxidative System. Polymers (Basel) 2024; 16:1458. [PMID: 38891405 PMCID: PMC11175108 DOI: 10.3390/polym16111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Arabinogalactan (AG), extracted from larch wood, is a β-1,3-galactan backbone and β-1,6-galactan side chains with attached α-1-arabinofuranosyl and β-1-arabinopyranosyl residues. Although the structural characteristics of arabinogalactan II type have already been studied, its functionalization using 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation remains a promising avenue. In this study, the oxidation of AG, a neutral polysaccharide, was carried out using the TEMPO/NaBr/NaOCl system, resulting in polyuronides with improved functional properties. The oxidation of AG was controlled by analyzing portions of the reaction mixture using spectrophotometric and titration methods. To determine the effect of the TEMPO/NaBr/NaOCl system, air-dried samples of native and oxidized AG were studied by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, as well as by gel permeation chromatography. Compounds that model free (1,1-diphenyl-2-picrylhydrazyl (DPPH)) and hydroxyl radicals (iron(II) sulfate, hydrogen peroxide, and salicylic acid) were used to study the antioxidant properties. It was found that, in oxidized forms of AG, the content of carboxyl groups increases by 0.61 mmol compared to native AG. The transformation of oxidized AG into the H+ form using a strong acid cation exchanger leads to an increase in the number of active carboxyl groups to 0.76 mmol. Using FTIR spectroscopy, characteristic absorption bands (1742, 1639, and 1403 cm-1) were established, indicating the occurrence of oxidative processes with a subsequent reduction in the carboxyl group. The functionality of AG was also confirmed by gel permeation chromatography (GPC), which is reflected in an increase in molecular weights (up to 15,700 g/mol). A study of the antioxidant properties of the oxidized and protonated forms of AG show that the obtained antioxidant activity (AOA) values are generally characteristic of polyuronic acids. Therefore, the TEMPO oxidation of AG and other neutral polysaccharides can be considered a promising approach for obtaining compounds with the necessary controlled characteristics.
Collapse
Affiliation(s)
- Vladislav A. Ionin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia; (V.A.I.); (V.S.B.); (D.V.Z.); (R.M.G.); (O.Y.F.)
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Yuriy N. Malyar
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia; (V.A.I.); (V.S.B.); (D.V.Z.); (R.M.G.); (O.Y.F.)
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Valentina S. Borovkova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia; (V.A.I.); (V.S.B.); (D.V.Z.); (R.M.G.); (O.Y.F.)
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Dmitriy V. Zimonin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia; (V.A.I.); (V.S.B.); (D.V.Z.); (R.M.G.); (O.Y.F.)
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Roksana M. Gulieva
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia; (V.A.I.); (V.S.B.); (D.V.Z.); (R.M.G.); (O.Y.F.)
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Olga Yu. Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia; (V.A.I.); (V.S.B.); (D.V.Z.); (R.M.G.); (O.Y.F.)
| |
Collapse
|
4
|
Hussain MA, Ali A, Alsahli TG, Khan N, Sharif A, Haseeb MT, Alsaidan OA, Tayyab M, Bukhari SNA. Polysaccharide-Based Hydrogel from Seeds of Artemisia vulgaris: Extraction Optimization by Box-Behnken Design, pH-Responsiveness, and Sustained Drug Release. Gels 2023; 9:525. [PMID: 37504404 PMCID: PMC10379781 DOI: 10.3390/gels9070525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The current research work focuses on the extraction and optimization of the hydrogel (AVM) from the seeds of Artemisia vulgaris using Box-Behnken design-response surface methodology (BBD-RSM). The AVM was obtained through a hot water extraction process. The influence of different factors, including pH (U = 4 to 10), temperature (V = 25 to 110 °C), seed/water ratio, i.e., S/W ratio (W = 1/10 to 1/70 w/v), and seed/water contact time, i.e., S/W time (X = 1 to 12 h) on the yield of AVM was evaluated. The p-value for the analysis of variance (ANOVA) was found to be <0.001, indicating that the yield of AVM mainly depended on the abovementioned factors. The highest yield of AVM, i.e., 15.86%, was found at a pH of 7.12, temperature of 80.04 °C, S/W ratio of 1/33.24 w/v, and S/W time of 8.73 h according to Design-Expert Software. The study of the pH-responsive behavior of AVM in tablet form (formulation AVT3) revealed that AVM is a pH-responsive material with significantly high swelling at pH 7.4. However, less swelling was witnessed at pH 1.2. Moreover, AVM was found to be a sustained release material for esomeprazole at pH 7.4 for 12 h. The drug release from AVT3 was according to the super case-II transport mechanism and zero-order kinetics.
Collapse
Affiliation(s)
- Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Arshad Ali
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Tariq G Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nadia Khan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Ahsan Sharif
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | | | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Muhammad Tayyab
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
5
|
Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Molecules 2023; 28:4828. [PMID: 37375383 DOI: 10.3390/molecules28124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ye Ruan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
6
|
New Inonotus Polysaccharides: Characterization and Anticomplementary Activity of Inonotus rheades Mycelium Polymers. Polymers (Basel) 2023; 15:polym15051257. [PMID: 36904498 PMCID: PMC10007321 DOI: 10.3390/polym15051257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inonotus is a small genus of xylotrophic basidiomycetes and a source of bioactive fungochemicals among which a special place is occupied by polymeric compounds. In this study, polysaccharides that are widespread in Europe, Asia, and North America and a poorly understood fungal species, I. rheades (Pers.) Karst. (fox polypore), were investigated. Water-soluble polysaccharides of I. rheades mycelium were extracted, purified, and studied using chemical reactions, elemental and monosaccharide analysis, UV-Vis and FTIR spectroscopy, gel permeation chromatography, and linkage analysis. Five homogenic polymers (IRP-1-IRP-5) with molecular weights of 110-1520 kDa were heteropolysaccharides that consist mainly of galactose, glucose, and mannose. The dominant component, IRP-4, was preliminary concluded to be a branched (1→3,6)-linked galactan. Polysaccharides of I. rheades inhibited the hemolysis of sensitized sheep erythrocytes by complement from human serum, signifying anticomplementary activity with the greatest effects for the IRP-4 polymer. These findings suggest that I. rheades mycelium is a new source of fungal polysaccharides with potential immunomodulatory and anti-inflammatory properties.
Collapse
|
7
|
Microfibrillated Cellulose with a Lower Degree of Polymerization; Synthesis via Sulfuric Acid Hydrolysis under Ultrasonic Treatment. Polymers (Basel) 2023; 15:polym15040904. [PMID: 36850188 PMCID: PMC9967114 DOI: 10.3390/polym15040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
A new approach is being considered for obtaining microfibrillated cellulose with a low degree of polymerization by sulfuric acid hydrolysis with simultaneous ultrasonic treatment under mild conditions (temperature 25 °C, 80% power control). Samples of initial cellulose, MCC, and MFC were characterized by FTIR, XRF, SEM, DLS, and TGA. It was found that a high yield of MFC (86.4 wt.%) and a low SP (94) are observed during hydrolysis with ultrasonic treatment for 90 min. It was shown that the resulting microfibrillated cellulose retains the structure of cellulose I and has an IC of 0.74. It was found that MFC particles are a network of fibrils with an average size of 91.2 nm. ζ-potential of an aqueous suspension of MFC equal to -23.3 mV indicates its high stability. It is noted that MFC has high thermal stability, the maximum decomposition temperature is 333.9 °C. Simultaneous hydrolysis process with ultrasonic treatment to isolate MFC from cellulose obtained by oxidative delignification of spruce wood allows to reduce the number of stages, reduce energy costs, and expand the scope.
Collapse
|
8
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
9
|
Sassi Aydi S, Aydi S, Ben Khadher T, Ktari N, Merah O, Bouajila J. Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:229. [PMID: 36678943 PMCID: PMC9863075 DOI: 10.3390/plants12020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Phytochemical properties have recently increased the popularity of plant polysaccharides as wound dressing materials. This work aims at studying the structural characteristics of polysaccharides extracted from Moringa leaves (Moringa Leaves Water Soluble Polysaccharide: MLWSP), and its antioxidant activities, cytotoxic effects, and laser burn wound healing effects in rats. This MLWSP was structurally characterized. Results showed 175.21 KDa and 18.6%, respectively, for the molecular weight and the yield of the novel extracted polysaccharide. It is a hetero-polysaccharide containing arabinose, rhamnose, and galactose. XRD suggested a semi-crystalline structure of the studied polymer and FT-IR results revealed a typical polysaccharide structure. It is composed of 50 to 500 µm rocky-shaped units with rough surfaces and it was found to inhibit the proliferation of the human colon (HCT-116) (IC50 = 36 ± 2.5 µg/mL), breast (MCF-7) (IC50 = 48 ± 3.2), and ovary cancers (IC50 = 24 ± 8.1). The MLWSP showed significant antioxidant effects compared to Trolox (CI50 = 0.001 mg/g). Moreover, promising wound healing results were displayed. The effect of MLWSP hydrogel application on laser burn injuries stimulated wound contraction, re-epithelization, and remodeling phases 8 days after treatment. The wound healing potential of MLWSP may be due to its significant antioxidant activity and/or the huge amount of monosaccharide molecules.
Collapse
Affiliation(s)
- Sameh Sassi Aydi
- Laboratory of Biodiversity and Valorisation of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
| | - Samir Aydi
- Laboratory of Biodiversity and Valorisation of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
| | - Talel Ben Khadher
- Laboratory of Biodiversity and Valorisation of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, Sfax 3038, Tunisia
- Department of Life Sciences, Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAe, INPT, F-31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier, IUT A, F-32000 Auch, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
| |
Collapse
|
10
|
Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248932. [PMID: 36558062 PMCID: PMC9782067 DOI: 10.3390/molecules27248932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Sophora japonica L. (SJL) and Robinia pseudoacacia L. (RPL) are widely cultivated in China. However, the utilization of their main by-products are limited due to a lack of comprehensive nutritional attributes. Herein, the proximate composition, mineral elements, fatty acids, amino acids, monosaccharides, and phenolics were analyzed to investigate the nutritional attributes of SJL and RPL. Dietary fiber was the main ingredient in SJL and RPL, followed by protein and lipids. The content of Fe in SJL and RPL was highest, especially in flowers of SJL, reaching about 1179.51 mg/kg. The total unsaturated fatty acids accounted for 89.67% of the bud of SJL. Meanwhile, the essential amino acids contents of the flower and bud of SJL and RPL accounted for 35.95-40.59% of total amino acids. The flower of SJL (373.75 mg/g) exhibited the most abundant monosaccharides. Meanwhile, the total phenolics and flavonoid contents in the buds of SJL and RPL were significantly higher than that of the flower, implying the buds possessed better biological activity. Moreover, the bud of SJL possessed the most abundant phenolics. The results provided a reference for the development of functional food derived from SJL and RPL.
Collapse
|
11
|
Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248756. [PMID: 36557889 PMCID: PMC9788004 DOI: 10.3390/molecules27248756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Arabinogalactan depolymerization over solid Zr-containing SBA-15-based catalyst was studied via HPLC, GPC, and theoretical modeling. Arabinogalactans (AG) are hemicelluloses mainly present in larch wood species, which can be extracted on an industrial scale. The application of solid acid catalysts in the processes of hemicellulose conversion can exclude serious drawbacks such as equipment corrosion, etc. Characterization of 5%Zr-SBA-15 confirmed the successful formation of the mesoporous structure inherent to SBA-15 with fine Zr distribution and strong acidic properties (XRD, XPS, FTIR, pHpzc). Carrying out the process at 130 °C allowed us to achieve total products yield of up to 59 wt%, which is represented mainly by galactose (51 wt%) and minor (less than 9 wt%) presence of arabinose, furfural, 5-HMF, and levulinic acid. The temperature increases up to 150 °C resulted in a total product yield drop down to 37 wt%, making temperature elevation above 130 °C obsolete. According to the theoretical investigations, arabinogalactan depolymerization follows the primary cleavage of the β(1→3) bonds between the D-galactose units of the main chain, which is also confirmed by GPC.
Collapse
|
12
|
Hu Z, Wang J, Jin L, Zong T, Duan Y, Sun J, Zhou W, Li G. Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris. Polymers (Basel) 2022; 14:4636. [PMID: 36365633 PMCID: PMC9658675 DOI: 10.3390/polym14214636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 10/15/2023] Open
Abstract
This investigation focuses on the three novel polysaccharides from Cordyceps militaris and then discusses their characterization and anti-complementary activity. The three polysaccharides from C. militaris (CMP-1, CMP-2 and CMP-3) were prepared using a DEAE-52 cellulose column. The HPLC, HPGPC, FT-IR and Congo red analyses were used to characterize their monosaccharides, molecular weight and stereo conformation, which demonstrated that the three polysaccharides were homogenous polysaccharides with different molecular weights and were composed of at least ten monosaccharides with different molar ratios, and all had a triple-helix conformation. The evaluation of anti-complementary activity demonstrated that the three polysaccharides significantly inhibited complement activation through the classical pathway and alternative pathway. Preliminary mechanism studies indicated that CMP-1, CMP-2 and CMP-3 acted with C2, C5, C9, factor B, factor B, and P components in the overactivation cascade of the complement system. The analysis of the Pearson correlation and network confirmed that the ribose, glucuronic acid and galacturonic acid composition were negatively correlated with the anti-complementary activity of polysaccharides. These results suggested that the three novel polysaccharides are potential candidates for anti-complementary drugs.
Collapse
Affiliation(s)
- Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Jiaming Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
13
|
Shi S, Chang M, Liu H, Ding S, Yan Z, Si K, Gong T. The Structural Characteristics of an Acidic Water-Soluble Polysaccharide from Bupleurum chinense DC and Its In Vivo Anti-Tumor Activity on H22 Tumor-Bearing Mice. Polymers (Basel) 2022; 14:polym14061119. [PMID: 35335457 PMCID: PMC8952506 DOI: 10.3390/polym14061119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study explored the preliminary structural characteristics and in vivo anti-tumor activity of an acidic water-soluble polysaccharide (BCP) separated purified from Bupleurum chinense DC root. The preliminary structural characterization of BCP was established using UV, HPGPC, FT-IR, IC, NMR, SEM, and Congo red. The results showed BCP as an acidic polysaccharide with an average molecular weight of 2.01 × 103 kDa. Furthermore, we showed that BCP consists of rhamnose, arabinose, galactose, glucose, and galacturonic acid (with a molar ratio of 0.063:0.788:0.841:1:0.196) in both α- and β-type configurations. Using the H22 tumor-bearing mouse model, we assessed the anti-tumor activity of BCP in vivo. The results revealed the inhibitory effects of BCP on H22 tumor growth and the protective actions against tissue damage of thymus and spleen in mice. In addition, the JC-1 FITC-AnnexinV/PI staining and cell cycle analysis have collectively shown that BCP is sufficient to induce apoptosis and of H22 hepatocarcinoma cells in a dose-dependent manner. The inhibitory effect of BCP on tumor growth was likely attributable to the S phase arrest. Overall, our study presented significant anti-liver cancer profiles of BCP and its promising therapeutic potential as a safe and effective anti-tumor natural agent.
Collapse
|
14
|
Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev EV. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int J Mol Sci 2022. [DOI: doi.org/10.3390/ijms23031602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835–841 cm−1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10–6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Collapse
|
15
|
Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev EV. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int J Mol Sci 2022; 23:1602. [PMID: 35163526 PMCID: PMC8836291 DOI: 10.3390/ijms23031602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/18/2023] Open
Abstract
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10-6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey;
| | - Natalya Yu. Vasilieva
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| | - Yuriy N. Malyar
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Aleksandr A. Kondrasenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Valentina S. Borovkova
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Angelina V. Miroshnikova
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Institute of Nonferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (V.S.B.); (A.V.M.); (A.S.K.)
| | - Omar Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Marek J. Wojcik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland;
| | - Yaroslava D. Berezhnaya
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
- Institute of Chemical Technologies, Siberian State University of Science and Technology, pr. Mira 82, 660049 Krasnoyarsk, Russia
| | - Evgeniy V. Elsuf’ev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld. 24, 660036 Krasnoyarsk, Russia; (A.A.K.); (Y.D.B.); (E.V.E.)
| |
Collapse
|