1
|
Dhanasekaran S, Selvadoss PP, Manoharan SS, Jeyabalan S, Yaraguppi DA, Choudhury AA, Rajeswari VD, Ramanathan G, Thamaraikani T, Sekar M, Subramaniyan V, Shing WL. Regulation of NS5B Polymerase Activity of Hepatitis C Virus by Target Specific Phytotherapeutics: An In-Silico Molecular Dynamics Approach. Cell Biochem Biophys 2024; 82:2473-2492. [PMID: 39042185 DOI: 10.1007/s12013-024-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Chronic hepatitis caused by the hepatitis C virus (HCV) is closely linked with the advancement of liver disease. The research hypothesis suggests that the NS5B enzyme (non-structural 5B protein) of HCV plays a pivotal role in facilitating viral replication within host cells. Hence, the objective of the present investigation is to identify the binding interactions between the structurally diverse phytotherapeutics and those of the catalytic residue of the target NS5B polymerase protein. Results of our docking simulations reveal that compounds such as arjunolic acid, sesamin, arjungenin, astragalin, piperic acid, piperidine, piperine, acalyphin, adhatodine, amyrin, anisotine, apigenin, cuminaldehyde, and curcumin exhibit a maximum of three interactions with the catalytic residues (Asp 220, Asp 318, and Asp 319) present on the Hepatitis C virus NS5B polymerase of HCV. Molecular dynamic simulation, particularly focusing on the best binding lead compound, arjunolic acid (-8.78 kcal/mol), was further extensively analyzed using RMSD, RMSF, Rg, and SASA techniques. The results of the MD simulation confirm that the NS5B-arjunolic acid complex becomes increasingly stable from 20 to 100 ns. The orientation of both arjunolic acid and sofosbuvir triphosphate (standard) within the active site was investigated through DCCM, PCA, and FEL analysis, indicating highly stable interactions of the lead arjunolic acid with the catalytic region of the NS5B enzyme. The findings of our current investigation suggest that bioactive therapeutics like arjunolic acid could serve as promising candidates for limiting the NS5B polymerase activity of the hepatitis C virus, offering hope for the future of HCV treatment.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India.
| | - Pradeep Pushparaj Selvadoss
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Solomon Sundar Manoharan
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Srikanth Jeyabalan
- Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | | | | | - V Devi Rajeswari
- Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | | | - Mahendran Sekar
- Monash University, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | | | - Wong Ling Shing
- INTI International University, Nilai, Negeri Sembilan, 71800, Malaysia
| |
Collapse
|
2
|
Surendran VA, Ibrahim JM, Thodi RC, Nair AS, Sukumaran ST. Diterpenoid and C20 diterpenoid alkaloid as a potent inhibitor of SARS-CoV-2 main protease (M pro): from Piper barberi Gamble, an endemic and endangered species of Southern Western Ghats. J Biomol Struct Dyn 2024; 42:6997-7013. [PMID: 37482792 DOI: 10.1080/07391102.2023.2238075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The present study investigated the phytochemicals and in silico anti-nCoV properties of Piper barberi, an endangered and endemic species of Southern Western Ghats. Using conventional soxhlet extraction method, the leaf and stem were extracted separately with methanol (PBLM and PBSM). The bioactive compounds from the extracts were identified using HR-LCMS/MS-qTOF analysis. These compounds were subjected to various in silico analyses to identify potential drug candidates against nCoV. The HR LCMS/MS analysis of PBLM and PBSM revealed the presence of phenols, flavonoids, alkaloids, and terpenoids in it and this is the first report of the phytoconstituents present in the species P. barberi. All the identified bioactive compounds were subjected to predict ADMET. Out of 49 identified compounds, only 31 passed drug-likeness properties and toxicity tests. Molecular interaction studies were conducted using the AutoDockTools 4.2.6., which showed that only 13 compounds exhibited acceptable binding affinity with the nCoV target Mpro. Structural stability and binding free energy analyses of the five compounds with the higher binding affinity indicated that the bioactive compounds Hetisine and Ajaconine are stable with both hydrogen bonds and hydrophobic interactions. Hetisine shows stable binding among these two compounds with two hydrogen bond interactions with the crucial catalytic dyad residue (His41). Thus, this study concludes that these compounds might potentially be used as an alternative drug candidate for managing nCoV. However, further experimental validation, including in vitro and in vivo assays, is required to substantiate the results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Junaida M Ibrahim
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, India
| | | | - Achuthsankar S Nair
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, India
| | | |
Collapse
|
3
|
Lefin N, Herrera-Belén L, Farias JG, Beltrán JF. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol Divers 2024; 28:2365-2374. [PMID: 37626205 DOI: 10.1007/s11030-023-10718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
4
|
Mukhtar M, Khan HA, Ibisanmi TA, Faleti AI, Zaidi NUSS. Computational Exploration of Berberis lycium Royle: A Hidden Treasure Trove for Antiviral Development. Bioinform Biol Insights 2024; 18:11779322241264144. [PMID: 39072259 PMCID: PMC11283669 DOI: 10.1177/11779322241264144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Viral infections and associated illnesses account for approximately 3.5 million global fatalities and public health problems. Medicinal plants, with their wide therapeutic range and minimal side effects, have gained limelight particularly in response to growing concerns about drug resistance and sluggish development of antiviral drugs. This study computationally assessed 11 chemical compounds from Berberis lycium along with two antiviral drugs to inhibit SARS CoV 2 (coronavirus disease 2019 [COVID-19]) RNA-dependent RNA polymerase (RdRP), influenza virus RdRP, and two crucial dengue virus (DENV) enzymes (NS2B/NS3 protease and NS5 polymerase). Berberine and oxyberberine passed all pharmacokinetics analysis filters including Lipinski rule, blood-brain barrier permeant, and cytochrome suppression and demonstrated drug-likeness, bioavailability, and a non-toxic profile. Docking of phytochemicals from B lycium returned promising results with selected viral proteins, ie, DENV NS2BNS3 (punjabine -10.9 kcal/mol), DENV NS5 (punjabine -10.4 kcal/mol), COVID-19 RdRP (oxyacanthine -9.5 kcal/mol), and influenza RdRP (punjabine -10.4 kcal/mol). The optimal pharmacokinetics of berberine exhibited good binding energies with NS2BNS3 (-8.0 kcal/mol), NS5 (-8.3 kcal/mol), COVID RdRP (-7.7 kcal/mol), and influenza RdRP (-8.3 kcal/mol), while molecular dynamics simulation of a 50-ns time scale by GROMACS software package provided insights into the flexibility and stability of the complexes. A hidden treasure trove for antiviral research, berberine, berbamine, berbamunine, oxyberberine, oxyacanthine, baluchistanamine, and sindamine has showed encouraging findings as possible lead compounds. Pharmacological analyses provide credence for the proposed study; nevertheless, as the antiviral mechanisms of action of these phytochemicals are not well understood, additional research and clinical trials are required to demonstrate both their efficacy and toxicity through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamuna Mukhtar
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haris Ahmed Khan
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Biotechnology, University of Mianwali, Mianwali, Pakistan
| | - Tope Abraham Ibisanmi
- Department of Microbiology, School of Life Sciences, The Federal University of Technology Akure, Akure, Nigeria
| | - Ayodele Ifeoluwa Faleti
- Department of Chemistry, School of Physical Sciences, The Federal University of Technology Akure, Akure, Nigeria
| | - Najam us Sahar Sadaf Zaidi
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur-KPK, Pakistan
| |
Collapse
|
5
|
Yamin R, Ahmad I, Khalid H, Perveen A, Abbasi SW, Nishan U, Sheheryar S, Moura AA, Ahmed S, Ullah R, Ali EA, Shah M, Chandra Ojha S. Identifying plant-derived antiviral alkaloids as dual inhibitors of SARS-CoV-2 main protease and spike glycoprotein through computational screening. Front Pharmacol 2024; 15:1369659. [PMID: 39086396 PMCID: PMC11288853 DOI: 10.3389/fphar.2024.1369659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.
Collapse
Affiliation(s)
- Ramsha Yamin
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | | | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Sun L, Li L, Chen H, Han X, Liu L, Liu C. Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea ( Pisum sativum L.). Foods 2024; 13:1970. [PMID: 38998476 PMCID: PMC11240900 DOI: 10.3390/foods13131970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024] Open
Abstract
To learn more about the nutritional composition and health benefits for human consumers of peas, we used a widely targeted metabolomics-based approach to reveal the metabolite components from three main varieties, and a total of 1095 metabolites were identified. A comparison of 487 differentially accumulated metabolites shared among three varieties of fresh and dried peas found most of the amino acids and derivatives were downregulated and most of the lipids and flavonoids were upregulated in dried peas. Furthermore, comparing the main nutrient profiles exclusively showed that there were few differences in free fatty acids, sugars, vitamins, and alkaloids between dried and fresh peas. Peas are especially enriched with B-group vitamins. Through detailed identification and classification, the flavonoid pathway of peas was revealed; a variety of glycosylated derivatives from kaempferol, quercetin, and luteolin were confirmed to be abundant in peas. It was also found that isoflavones are richer in peas than in many other plants, and putatively the isoflavone synthesis pathway originates from liquiritigenin and naringenin. Our study not only offers guidance for understanding the nutritional components of peas, but also provides the basis for healthy diet analysis of the edible value and health benefits of peas.
Collapse
Affiliation(s)
- Longqing Sun
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Li Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongwei Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xuesong Han
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liangjun Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Changyan Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
7
|
Tahir I, Alsayeqh AF. Phytochemicals: a promising approach to control infectious bursal disease. Front Vet Sci 2024; 11:1421668. [PMID: 38919155 PMCID: PMC11197927 DOI: 10.3389/fvets.2024.1421668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Infectious bursal disease (IBD) is one of the dangerous diseases of poultry that affects the bursa of Fabricius, which is an important organ of the bird's immune system. IBD virus is resistant to many drugs, making its control difficult. Vaccination of IBD is in practice for a long time worldwide to control IBD, but secondary issues like vaccine failure and lower efficacy lead to their reduced use in the field. Multiple medicines are currently used, but the phytochemicals have emerged as promising agents for controlling IBD. The drugs to be developed should possess direct antiviral properties by targeting viral entry mechanisms, enhancing the host immune response, and inhibiting viral protein synthesis. Phytochemicals have potential to contribute to food security by minimizing the possibility of disease outbreaks and ensuring that consumers worldwide obtain healthy poultry products. It has been now claimed that direct and indirect activities of phytochemicals can be effective in the control of IBDV. Although available evidence suggest that the phytochemicals can contribute in controlling occurrence IBDV, there is a definite need of focused studies to gain more insight and develop rational strategies for their practical use. This review highlights the disease caused by IBDV, inhibition of viral replication, boosting the immune system, disruption of viral membrane, and important phytochemicals showing antiviral activities against IBDV.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
8
|
Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108674. [PMID: 38705044 DOI: 10.1016/j.plaphy.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
10
|
Ma YY, Pu G, Liu HY, Yao S, Kong GH, Wu YP, Li YK, Wang WG, Zhou M, Hu QF, Yang FX. Indole alkaloids isolated from the Nicotiana tabacum-derived Aspergillus fumigatus 0338 as potential inhibitors for tobacco powdery mildew and their mode of actions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105814. [PMID: 38582586 DOI: 10.1016/j.pestbp.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 04/08/2024]
Abstract
To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 μg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.
Collapse
Affiliation(s)
- Yue-Yu Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Gui Pu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Hua-Yin Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Sui Yao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Guang-Hui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Yu-Ping Wu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Yin-Ke Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China; Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Wei-Guang Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Min Zhou
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China.
| | - Feng-Xian Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China.
| |
Collapse
|
11
|
Naderi M, Salavatiha Z, Gogoi U, Mohebbi A. An overview of anti-Hepatitis B virus flavonoids and their mechanisms of action. Front Cell Infect Microbiol 2024; 14:1356003. [PMID: 38487354 PMCID: PMC10937540 DOI: 10.3389/fcimb.2024.1356003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids, a diverse group of polyphenolic compounds found in various plant-based foods, have garnered attention for their potential in combating Hepatitis B Virus (HBV) infection. Flavonoids have demonstrated promising anti-HBV activities by interfering with multiple stages of the HBV life cycle, making them promising candidates for novel antiviral agents. Certain plant families, such as Theaceae, Asteraceae, Lamiaceae, and Gentianaceae, are of particular interest for their flavonoid-rich members with anti-HBV activities. Evidences, both in vitro and in vivo, supports the anti-HBV potential of flavonoids. These subsets of compound exert their anti-HBV effects through various mechanisms, including inhibiting viral entry, disrupting viral replication, modulating transcription factors, enhancing the immune response, and inducing autophagy. The antioxidant properties of flavonoids play a crucial role in modulating oxidative stress associated with HBV infection. Several flavonoids like epigallocatechin gallate (EGCG), proanthocyanidin (PAC), hexamethoxyflavone, wogonin, and baicalin have shown significant anti-HBV potential, holding promise as therapeutic agents. Synergistic effects between flavonoids and existing antiviral therapies offer a promising approach to enhance antiviral efficacy and reduce drug resistance. Challenges, including limited bioavailability, translation from preclinical studies to clinical practice, and understanding precise targets, need to be addressed. Future research should focus on clinical trials, combination therapies, and the development of flavonoid derivatives with improved bioavailability, and optimizing their effectiveness in managing chronic HBV infections.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Salavatiha
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
| |
Collapse
|
12
|
Adeosun WB, Loots DT. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024; 16:218. [PMID: 38399995 PMCID: PMC10892737 DOI: 10.3390/v16020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants' defense against pathogens, they also possess therapeutic properties against diseases, and their use by humans predates written history. Viruses are a unique class of submicroscopic agents, incapable of independent existence outside a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral agents has been widely reported in literature in the past decades. Metabolomics is a powerful research tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral disease progression. This review discusses the use of medicinal plants as antiviral agents, with a special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the optimization of various metabolomics methods of characterizing the bioactive compounds in plants and subsequently understanding the mechanisms of their operation.
Collapse
Affiliation(s)
- Wilson Bamise Adeosun
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa;
| | | |
Collapse
|
13
|
Dos Santos Arraes DR, Rodrigues ABL, Sanches PR, Costa Campos CE, Moreira da Silva de Almeida SS, Reis Ferreira Lima J, Dias Lima J, da Silva GA. Bioactive alkaloids from the venom of Dendrobatoidea Cope, 1865: a scoping review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:1-20. [PMID: 37889647 DOI: 10.1080/10937404.2023.2270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaina Reis Ferreira Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Jucivaldo Dias Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | | |
Collapse
|
14
|
Lian Y, Huang Z, Liu X, Deng Z, Gao D, Wang X. Discovery of Ten Anti-HIV Hit Compounds and Preliminary Pharmacological Mechanisms Studies. Curr HIV Res 2024; 22:82-90. [PMID: 38532605 DOI: 10.2174/011570162x301289240320082840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The research and development of HIV drugs is very important, but at the same time it is a long cycle and expensive system project. High-throughput drug screening systems and molecular libraries of potential hit compounds remain the main ways for the discovery of hit compounds with anti-HIV activity. OBJECTIVE The aim of this study was to screen out the hit compounds against HIV-1 in the natural product molecule library and the antiviral molecule library, and elucidate the molecular mechanism of their inhibition of HIV-1, so as to provide a new choice for AIDS drug research. METHODS In this study, a drug screening system using HIV Rev-dependent indicator cell line (Rev-A3R5-GFP reporter cells) with pseudoviruses (pNL4-3) was used. The natural drug molecule library and antiviral molecule library were screened, and preliminary drug mechanism studies were performed. RESULTS Ten promising hit compounds were screened. These ten molecules and their drug inhibitory IC50 were as follows: Cephaeline (0.50 μM), Yadanziolide A (8.82 μM), Bruceine D (2.48 μM), Astragaloside IV (4.30 μM), RX-3117 (1.32 μM), Harringtonine (0.63 μM), Tubercidin (0.41 μM), Theaflavine-3, 3'-digallate (0.41 μM), Ginkgetin (10.76 μM), ZK756326 (5.97 μM). The results of the Time of additions showed that except for Astragaloside IV and Theaflavine-3, 3'-digallate had a weak entry inhibition effect, and it was speculated that all ten compounds had an intracellular inhibition effect. Cephaeline, Harringtonine, Astragaloside IV, Bruceine D, and Tubercidin may have pre-reverse transcriptional inhibition. Yadanziolide A, Theaflavine-3, 3'-digallate, Ginkgetin and RX-3117 may be in the post-reverse transcriptional inhibition. The inhibitory effect of ZK 75632 may be in the reverse transcriptional process. CONCLUSION A drug screening system using Rev-A3R5-GFP reporter cells with pseudoviruses (pNL4-3) is highly efficient. This study provided potential hit compounds for new HIV drug research.
Collapse
Affiliation(s)
- Yushan Lian
- Department of Prevention and control of infectious diseases, School of public health, Southern Medical University, Guangzhou, Guangdong, China
- Department of HIV/AIDS Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhimin Huang
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xinyi Liu
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhicheng Deng
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dan Gao
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaohui Wang
- Department of Prevention and control of infectious diseases, School of public health, Southern Medical University, Guangzhou, Guangdong, China
- Department of HIV/AIDS Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Merchán-Gaitán JB, Mendes JHL, Nunes LEC, Buss DS, Rodrigues SP, Fernandes PMB. The Role of Plant Latex in Virus Biology. Viruses 2023; 16:47. [PMID: 38257746 PMCID: PMC10819414 DOI: 10.3390/v16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
At least 20,000 plant species produce latex, a capacity that appears to have evolved independently on numerous occasions. With a few exceptions, latex is stored under pressure in specialized cells known as laticifers and is exuded upon injury, leading to the assumption that it has a role in securing the plant after mechanical injury. In addition, a defensive effect against insect herbivores and fungal infections has been well established. Latex also appears to have effects on viruses, and laticifers are a hostile environment for virus colonization. Only one example of successful colonization has been reported: papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2) in Carica papaya. In this review, a summary of studies that support both the pro- and anti-viral effects of plant latex compounds is provided. The latex components represent a promising natural source for the discovery of new pro- and anti-viral molecules in the fields of agriculture and medicine.
Collapse
Affiliation(s)
| | - João H. L. Mendes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - Lucas E. C. Nunes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - David S. Buss
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK;
| | - Silas P. Rodrigues
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | | |
Collapse
|
16
|
Zou Q, Chen Y, Qin H, Tang R, Han T, Guo Z, Zhao J, Xu D. The role and mechanism of TCM in the prevention and treatment of infectious diseases. Front Microbiol 2023; 14:1286364. [PMID: 38033575 PMCID: PMC10682724 DOI: 10.3389/fmicb.2023.1286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The constant presence of infectious diseases poses an everlasting threat to the entire world. In recent years, there has been an increased attention toward the application of traditional Chinese medicine (TCM) in the treatment of emerging infectious diseases, as it has played a significant role. The aim of this article is to provide a concise overview of the roles and mechanisms of TCM in treating infectious diseases. TCM possesses the ability to modulate relevant factors, impede signaling pathways, and inhibit microbial growth, thereby exhibiting potent antiviral, antibacterial, and anti-inflammatory effects that demonstrate remarkable efficacy against viral and bacterial infections. This article concludes that the comprehensive regulatory features of Chinese herbal medicines, with their various components, targets, and pathways, result in synergistic effects. The significance of Chinese herbal medicines in the context of infectious diseases should not be underestimated; however, it is crucial to also acknowledge their underutilization. This paper presents constructive suggestions regarding the challenges and opportunities faced by Chinese medicines. Particularly, it emphasizes the effectiveness and characteristics of Chinese medicines in the treatment of infectious diseases, specifying how these medicines' active substances can be utilized to target infectious diseases. This perspective is advantageous in facilitating researchers' pharmacological studies on Chinese medicines, focusing on the specific points of action. The mechanism of action of Chinese herbal medicines in the treatment of infectious diseases is comprehensively elucidated in this paper, providing compelling evidence for the superior treatment of infectious diseases through Chinese medicine. This information is favorable for advancing the development of TCM and its potential applications in the field of infectious diseases.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yitong Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huanxin Qin
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Tang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Taojian Han
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
17
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
18
|
Di Sotto A, Valipour M, Azari A, Di Giacomo S, Irannejad H. Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges. Biomedicines 2023; 11:2619. [PMID: 37892993 PMCID: PMC10603990 DOI: 10.3390/biomedicines11102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ongoing viral research, essential for public health due to evolving viruses, gains significance owing to emerging viral infections such as the SARS-CoV-2 pandemic. Marine and plant alkaloids show promise as novel potential pharmacological strategies. In this narrative review, we elucidated the potential of tylophorine and lycorine, two naturally occurring plant-derived alkaloids with a shared benzoindolizidine scaffold, as antiviral agents to be potentially harnessed against respiratory viral infections. Possible structure-activity relationships have also been highlighted. The substances and their derivatives were found to be endowed with powerful and broad-spectrum antiviral properties; moreover, they were able to counteract inflammation, which often underpins the complications of viral diseases. At last, their anticancer properties hold promise not only for advancing cancer research but also for mitigating the oncogenic effects of viruses. This evidence suggests that tylophorine and lycorine could effectively counteract the pathogenesis of respiratory viral disease and its harmful effects. Although common issues about the pharmacologic development of natural substances remain to be addressed, the collected evidence highlights a possible interest in tylophorine and lycorine as antiviral and/or adjuvant strategies and encourages future more in-depth pre-clinical and clinical investigations to overcome their drawbacks and harness their power for therapeutic purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aala Azari
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
| |
Collapse
|
19
|
Salim R, Nehvi IB, Mir RA, Tyagi A, Ali S, Bhat OM. A review on anti-nutritional factors: unraveling the natural gateways to human health. Front Nutr 2023; 10:1215873. [PMID: 37720376 PMCID: PMC10501406 DOI: 10.3389/fnut.2023.1215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Humans are constantly facing multiple health challenges from both communicable and non-communicable diseases that significantly affect their health. Additionally, drug resistance or failure has made the situation even worse and poses serious challenges for researchers to develop new drugs. Hence, to address these problems, there is an urgent need to discover and develop timely and long-term-based therapeutic treatments from different sources. One such approach is harnessing the potential of plant secondary metabolites. Plants have been utilized for therapeutic purposes in addition to being used for nutritional benefits. In the last two decades, plant-based drug developments have been one of the effective means of treating human diseases owing to their multiple functions. More recently, anti-nutritional factors (ANFs) have emerged as one of the important targets for novel plant-based drug development due to their multifaceted and potential pharmacological properties. However, their anti-nutritional properties have been the major setback for their limited success in the pharmacological sector. In this review, we provide an overview of ANFs and their beneficial roles in preventing human diseases with multiple case studies. We also highlight the recent developments and applications of ANFs in the food industry, agriculture, and pharmaceutics with future perspectives. Furthermore, we evaluate meta-analyses on ANFs from the last 30 years in relation to their function in human health benefits. This review is an endeavor to reevaluate the merit of these natural compounds and explore their potential for both human and animal health.
Collapse
Affiliation(s)
- Rehana Salim
- Division of Food Science and Technology, SKUAST, Shalimar, India
| | | | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Owais M. Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
20
|
Akash S, Baeza J, Mahmood S, Mukerjee N, Subramaniyan V, Islam MR, Gupta G, Rajakumari V, Chinni SV, Ramachawolran G, Saleh FM, Albadrani GM, Sayed AA, Abdel-Daim MM. Development of a new drug candidate for the inhibition of Lassa virus glycoprotein and nucleoprotein by modification of evodiamine as promising therapeutic agents. Front Microbiol 2023; 14:1206872. [PMID: 37497547 PMCID: PMC10366616 DOI: 10.3389/fmicb.2023.1206872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
The Lassa virus (LASV), an RNA virus prevalent in West and Central Africa, causes severe hemorrhagic fever with a high fatality rate. However, no FDA-approved treatments or vaccines exist. Two crucial proteins, LASV glycoprotein and nucleoprotein, play vital roles in pathogenesis and are potential therapeutic targets. As effective treatments for many emerging infections remain elusive, cutting-edge drug development approaches are essential, such as identifying molecular targets, screening lead molecules, and repurposing existing drugs. Bioinformatics and computational biology expedite drug discovery pipelines, using data science to identify targets, predict structures, and model interactions. These techniques also facilitate screening leads with optimal drug-like properties, reducing time, cost, and complexities associated with traditional drug development. Researchers have employed advanced computational drug design methods such as molecular docking, pharmacokinetics, drug-likeness, and molecular dynamics simulation to investigate evodiamine derivatives as potential LASV inhibitors. The results revealed remarkable binding affinities, with many outperforming standard compounds. Additionally, molecular active simulation data suggest stability when bound to target receptors. These promising findings indicate that evodiamine derivatives may offer superior pharmacokinetics and drug-likeness properties, serving as a valuable resource for professionals developing synthetic drugs to combat the Lassa virus.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Javiera Baeza
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Boora S, Yadav S, Soniya K, Kaushik S, Yadav JP, Seth M, Kaushik S. Monkeypox virus is nature's wake-up call: a bird's-eye view. Virusdisease 2023:1-13. [PMID: 37363364 PMCID: PMC10214339 DOI: 10.1007/s13337-023-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Several infections have emerged in humans, domestic animals, wildlife, and plant populations, causing a severe problem for humanity. Since the discovery of the Monkeypox virus (Mpox) in 1958 in Copenhagen, Denmark, it has resurfaced several times, producing severe infections in humans and resulting in a significant fatality rate. Mpox is an Orthopoxvirus of the Poxviridae family. This family contains various medically important viruses. The natural reservoir of Mpox is unknown yet. Mpox might be carried by African rodents and nonhuman primates (such as monkeys). The role of monkeys has been confirmed by its various outbreaks. The infection may be transferred from unidentified wild animals to monkeys, who can then spread it to humans by crossing species barriers. In close contact, human-to-human transmission is also possible. Mpox outbreaks have been documented regularly in Central and Western Africa, but recently in 2022, it has spread to over one hundred-six countries. There is no specific treatment for it, although the smallpox vaccine, antivirals, and vaccinia immune globulin help in the effective management of Mpox. In conclusion: Monkeypox poses a severe threat to public health due to the lack of specific vaccinations and effective antivirals. Surveillance studies in affected regions can assist in the early diagnosis of disease and help to control significant outbreaks. The present review provides information on epidemiology, clinical symptoms, risk factors, diagnosis, and preventive measures of Mpox.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Suman Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Kumari Soniya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak, Hr India
| | | | - Mihir Seth
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Hr India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
22
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
23
|
Rizaldi G, Hafid AF, Wahyuni TS. Promising alkaloids and flavonoids compounds as anti-hepatitis c virus agents: a review. J Public Health Afr 2023. [PMID: 37492538 PMCID: PMC10365654 DOI: 10.4081/jphia.2023.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Virus infections are presently seen as a major public health problem. Hepatitis C Virus (HCV) is recognized as a “silent killer” because the acute infection has no symptoms, and it develops as a chronic infection that causes hepatocellular carcinoma and liver damage. The World Health Organization (WHO) predicts that between 130-170 million people are estimated to have chronic Hepatitis C. Plants have various phytochemical compounds such as alkaloids and flavonoids that have prominent antiviral effects especially anti-HCV. The current HCV treatment still has limitations related to side effects and can lead to viral resistance. Therefore, it is necessary for the discovery and development of novel anti-HCV drugs for alternative and complementary medicine.
Objective: This review intends to evaluate the alkaloids and flavonoids that have the potential to be used against HCV by looking at their classification and their mechanism of action.
Methods: Twenty-one articles from 2010 to 2022 obtained from PUBMED database using keywords such as isolated compounds, alkaloids, flavonoids, hepatitis C virus.
Results: 21 alkaloids and 37 flavonoids reported active against HCV. Alkaloids include quinoline, quinolizidine and isoquinoline. In addition, flavanone, flavonol, flavone, flavan-3-ol, flavonolignan, anthocyanidin and proanthocyanidin comprise flavonoids. The berberine alkaloids and eriodictyol 7-O-(6′′-caffeoyl)-β-D- glucopyranoside flavonoids had the lowest IC50 with values of 0.49 mM and 0.041 nM.
Conclusions: Alkaloids and flavonoids compound had good activity against HCV with various mechanisms. Our results provide information of alkaloids and flavonoids to the researcher for the development of alternative and complementary medicine of hepatitis C.
Collapse
|
24
|
Hegazy A, Mahmoud SH, Elshaier YAMM, Shama NMA, Nasr NF, Ali MA, El-Shazly AM, Mostafa I, Mostafa A. Antiviral activities of plant-derived indole and β-carboline alkaloids against human and avian influenza viruses. Sci Rep 2023; 13:1612. [PMID: 36709362 PMCID: PMC9883826 DOI: 10.1038/s41598-023-27954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The persistent evolution of drug-resistant influenza strains represents a global concern. The innovation of new treatment approaches through drug screening strategies and investigating the antiviral potential of bioactive natural-based chemicals may address the issue. Herein, we screened the anti-influenza efficacy of some biologically active indole and β-carboline (βC) indole alkaloids against two different influenza A viruses (IAV) with varied host range ranges; seasonal influenza A/Egypt/NRC098/2019(H1N1) and avian influenza A/chicken/Egypt/N12640A/2016(H5N1). All compounds were first assessed for their half-maximal cytotoxic concentration (CC50) in MDCK cells and half-maximal inhibitory concentrations (IC50) against influenza A/H5N1. Intriguingly, Strychnine sulfate, Harmalol, Harmane, and Harmaline showed robust anti-H5N1 activities with IC50 values of 11.85, 0.02, 0.023, and 3.42 µg/ml, respectively, as compared to zanamivir and amantadine as control drugs (IC50 = 0.079 µg/ml and 17.59 µg/ml, respectively). The efficacy of the predefined phytochemicals was further confirmed against influenza A/H1N1 and they displayed potent anti-H1N1 activities compared to reference drugs. Based on SI values, the highly promising compounds were then evaluated for antiviral efficacy through plaque reduction assay and consistently they revealed high viral inhibition percentages at non-toxic concentrations. By studying the modes of antiviral action, Harmane and Harmalol could suppress viral infection via interfering mainly with the viral replication of the influenza A/H5N1 virus, whilst Harmaline exhibited a viricidal effect against the influenza A/H5N1 virus. Whereas, Strychnine sulfate elucidated its anti-influenza potency by interfering with viral adsorption into MDCK cells. Consistently, chemoinformatic studies showed that all studied phytochemicals illustrated HB formations with essential peptide cleft through the NH of indole moiety. Among active alkaloids, harmalol displayed the best lipophilicity metrics including ligand efficiency (LE) and ligand lipophilic efficiency (LLE) for both viruses. Compounds geometry and their ability to participate in HB formation are very crucial.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Nasr Fawzy Nasr
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - M A Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.,Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Sharkia, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
25
|
Sharma D, Sharma N, Manchanda N, Prasad SK, Sharma PC, Thakur VK, Rahman MM, Dhobi M. Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight. Biomolecules 2022; 13:17. [PMID: 36671402 PMCID: PMC9856122 DOI: 10.3390/biom13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca2+-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Neetika Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Namish Manchanda
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Prabodh Chander Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, 11 West Mains Road, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - M. Mukhlesur Rahman
- Pharmaceutical and Natural Products Chemistry, School of Health, Sports and Bioscience, University of East London, Stratford Campus, London E15 4LZ, UK
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
26
|
Synthesis and Biological Activity of N-acyl Anabasine and Cytisine Derivatives with Adamantane, Pyridine and 1,2-Azole Fragments. Molecules 2022; 27:molecules27217387. [DOI: 10.3390/molecules27217387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
A series of N-acyl derivatives of anabasine and cytisine were prepared, to discover novel, natural product-based medicinal agents. All synthesized compounds were tested for antimicrobial, antifungal, antiviral and analgesic activity. The most pronounced antibacterial activity was shown by the compounds with isoxazole fragments, while the adamantane derivatives showed the greatest antiviral effect. It was found that the majority of anabasine derivatives showed significant analgesic activity, reducing the pain response of animals to the irritating effect of acetic acid. The presence of a high level of antimicrobial and antiviral activity in newly synthesized compounds makes it possible to consider them promising for further study of their pharmacological properties.
Collapse
|
27
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
28
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
29
|
A Review on Herbal Secondary Metabolites Against COVID-19 Focusing on the Genetic Variants of SARS-CoV-2. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: An outbreak of the new coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 2019, subsequently affecting countries worldwide and causing a pandemic. Although several vaccines, such as mRNA vaccines, inactivated vaccines, and adenovirus vaccines, have been licensed in several countries, the danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants persists. To date, Alpha (B.1.1.7), Beta (B.1.351, B.1.351.2, B.1.351.3), Delta (B.1.617.2, AY.1, AY.2, AY. 3), Gamma (P.1, P.1.1, P.1.2), and Iota (B.1 .526) circulating in the United States, Kappa (B.1.617.1) in India, Lambda (C.37) in Peru and Mu (B.1.621) in Colombia are considered the variants of concern and interest. Evidence Acquisition: Data were collected through the end of August 2021 by searching PubMed, Scopus, and Google Scholar databases. There were findings from in silico, in vitro cell-based, and non-cell-based investigations. Results: The potential and safety profile of herbal medicines need clarification to scientifically support future recommendations regarding the benefits and risks of their use. Conclusions: Current research results on natural products against SARS-CoV-2 and variants are discussed, and their specific molecular targets and possible mechanisms of action are summarized.
Collapse
|
30
|
Sandenon Seteyen AL, Girard-Valenciennes E, Septembre-Malaterre A, Gasque P, Guiraud P, Sélambarom J. Anti-Alphaviral Alkaloids: Focus on Some Isoquinolines, Indoles and Quinolizidines. Molecules 2022; 27:molecules27165080. [PMID: 36014321 PMCID: PMC9416297 DOI: 10.3390/molecules27165080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery and the development of safe and efficient therapeutics against arthritogenic alphaviruses (e.g., chikungunya virus) remain a continuous challenge. Alkaloids are structurally diverse and naturally occurring compounds in plants, with a wide range of biological activities including beneficial effects against prominent pathogenic viruses and inflammation. In this short review, we discuss the effects of some alkaloids of three biologically relevant structural classes (isoquinolines, indoles and quinolizidines). Based on various experimental models (viral infections and chronic diseases), we highlight the immunomodulatory effects of these alkaloids. The data established the capacity of these alkaloids to interfere in host antiviral and inflammatory responses through key components (antiviral interferon response, ROS production, inflammatory signaling pathways and pro- and anti-inflammatory cytokines production) also involved in alphavirus infection and resulting inflammation. Thus, these data may provide a convincing perspective of research for the use of alkaloids as immunomodulators against arthritogenic alphavirus infection and induced inflammation.
Collapse
Affiliation(s)
- Anne-Laure Sandenon Seteyen
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, 97400 Saint-Denis, France
| | - Axelle Septembre-Malaterre
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
| | - Jimmy Sélambarom
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
31
|
Freitas TR, Novais RM, Santos IA, Martins DOS, Danuello A, da Silva Bolzani V, Jardim ACG, Pivatto M. In vitro antiviral activity of piperidine alkaloids from Senna spectabilis flowers on Chikungunya virus infection. Pharmacol Rep 2022; 74:752-758. [PMID: 35882766 DOI: 10.1007/s43440-022-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV). To date there is no antiviral treatment against this infection or licensed vaccine to prevent it. Our study aims to evaluate whether (-)-cassine (1) and (-)-spectaline (2), the main alkaloids of Senna spectabilis, display anti-CHIKV activity. Both compounds have been described to be biologically active against neglected tropical diseases, including malaria, leishmaniasis, and schistosomiasis, which emphasizes that these molecules could be repurposed for chikungunya fever treatment. METHODS The structures of the isolated compounds 1 and 2 were identified by NMR and HRESIMS analyses, and their antiviral activity against CHIKV was assessed by a dose-response assay employing BHK-21 cells and CHIKV-nanoluc, a recombinant virus carrying the nanoluciferase gene reporter. RESULTS Compound 1 presented CC50 of 126.5 µM and EC50 of 14.9 µM, while compound 2 presented CC50 of 91.9 µM and EC50 of 8.3 µM. The calculated selectivity index (SI) was 8.5 for 1 and 11.3 for 2. CONCLUSION The data presented herein show that compounds 1 and 2 have potential for being repurposed as anti-CHIKV drug. Our promising in vitro results encourage further in vitro and in vivo assays. This is the first description of the antiviral activity of compounds 1 and 2 against CHIKV infection, which can impact the development of antiviral drug candidates against chikungunya fever, which sometimes can be debilitating.
Collapse
Affiliation(s)
- Thamires Rodrigues Freitas
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Raul Marques Novais
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Igor Andrade Santos
- Laboratório de Pesquisa em Antivirais, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia, MG, 38405-317, Uberlândia, Brazil
| | - Daniel Oliveira Silva Martins
- Laboratório de Pesquisa em Antivirais, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia, MG, 38405-317, Uberlândia, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho", São José Do Rio Preto, SP, 15054-000, Brazil
| | - Amanda Danuello
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Vanderlan da Silva Bolzani
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, Araraquara, SP, 14801-970, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratório de Pesquisa em Antivirais, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia, MG, 38405-317, Uberlândia, Brazil. .,Universidade Estadual Paulista "Júlio de Mesquita Filho", São José Do Rio Preto, SP, 15054-000, Brazil.
| | - Marcos Pivatto
- Núcleo de Pesquisa em Compostos Bioativos (NPCBio), Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
32
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|