1
|
Schadich E, Kaczorová D, Béres T, Džubák P, Hajdúch M, Tarkowski P, Ćavar Zeljković S. Secondary metabolite profiles and anti-SARS-CoV-2 activity of ethanolic extracts from nine genotypes of Cannabis sativa L. Arch Pharm (Weinheim) 2024:e2400607. [PMID: 39543317 DOI: 10.1002/ardp.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
This study deals with the comprehensive phytochemical composition and antiviral activity against SARS-CoV-2 of acidic (non-decarboxylated) and neutral (decarboxylated) ethanolic extracts from seven high-cannabidiol (CBD) and two high-Δ9-tetrahydrocannabinol (Δ9-THC) Cannabis sativa L. genotypes. Their secondary metabolite profiles, phytocannabinoid, terpenoid, and phenolic, were determined by LC-UV, GC-MS, and LC-MS/MS analyses, respectively. All three secondary metabolite profiles, cannabinoid, terpenoid, and phenolic, varied significantly among cannabinoid extracts of different genotypes. The dose-response analyses of their antiviral activity against SARS-CoV-2 showed that only the single predominant phytocannabinoids (CBD or THC) of the neutral extracts exhibited antiviral activity (all IC50 < 10.0 μM). The correlation matrix between phytoconstituent levels and antiviral activity revealed that the phenolic acids, salicylic acid and its glucoside, chlorogenic acid, and ferulic acid, and two flavonoids, abietin, and luteolin, in different cannabinoid extracts from high-CBD genotypes are implicated in the genotype-distinct antagonistic effects on the predominant phytocannabinoid. On the other hand, these analyses also suggested that the other phytocannabinoids and the flavonoid orientin can enrich the extract's pharmacological profiles. Thus, further preclinical studies on cannabinoid extract formulations with adjusted non-phytocannabinoid compositions are warranted to develop supplementary antiviral treatments.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Dominika Kaczorová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Tibor Béres
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| |
Collapse
|
2
|
Žugić A, Martinović M, Tadić V, Rajković M, Racić G, Nešić I, Koren A. Comprehensive Insight into Cutaneous Application of Hemp. Pharmaceutics 2024; 16:748. [PMID: 38931870 PMCID: PMC11207338 DOI: 10.3390/pharmaceutics16060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Known for its natural bio-compounds and therapeutic properties, hemp is being utilized in the development of skin products. These products offer a wide range of applications and benefits in the fields of natural bio-compounds, pharmaceutical technology, topical delivery systems, and cosmeceuticals. This manuscript deals with hemp actives, such as cannabinoids, terpenes, and flavonoids, and their diverse biological properties relative to topical application, including anti-inflammatory, antimicrobial, and antioxidant effects. Also, the paper reviews strategies to overcome poor penetration of hemp actives, as well as the integration of hemp actives in cosmeceuticals that provide natural and sustainable alternatives to traditional skincare products offering a range of benefits, including anti-aging, moisturizing, and soothing properties. The review aims to provide a comprehensive understanding of the development and manufacturing processes of skin products containing hemp actives. By delving into the science behind hemp-based products, the paper provides valuable insights into the potential of hemp as a versatile ingredient in the pharmaceutical and cosmetic industries. The utilization of hemp in these innovative products not only offers therapeutic benefits but also promotes natural and sustainable approaches to skincare.
Collapse
Affiliation(s)
- Ana Žugić
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Milica Martinović
- Faculty of Medicine, University of Nis, Zorana Đinđića Boulevard 81, 18000 Niš, Serbia; (M.M.); (I.N.)
| | - Vanja Tadić
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Miloš Rajković
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Gordana Racić
- Faculty of Ecological Agriculture, University Educons, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Ivana Nešić
- Faculty of Medicine, University of Nis, Zorana Đinđića Boulevard 81, 18000 Niš, Serbia; (M.M.); (I.N.)
| | - Anamarija Koren
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Czauderna M, Taubner T, Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules 2024; 29:2165. [PMID: 38792027 PMCID: PMC11124110 DOI: 10.3390/molecules29102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Tomáš Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, CZ-104 00 Praha, Czech Republic;
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
4
|
Puttharak P, Wangnai P, Puttharak J, Baisaeng N. Optimizing medicinal hemp production with synergistic light-enhanced technologies and organic biorefinery approaches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112890. [PMID: 38507943 DOI: 10.1016/j.jphotobiol.2024.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
This study explores the application of sustainable organic and biorefinery methods to increase the production of therapeutic hemp. Specifically, it focuses on Solodiol, Carmagnola, and Doctor Seedman strains. The study was carried out for 60 days in a highly controlled setting. It employed a unique combination of Murashige and Skoog (MS) media, supplemented with 2,4-D (0.5 mg/L) and kinetin (0.5 mg/L), and augmented with organic additions such as coconut water. This distinctive amalgamation facilitated extraordinary expansion across all varieties. The Solodiol strain demonstrated remarkable growth characteristics in terms of the number of branches, leaves, shoots, and height, whilst Carmagnola and Doctor Seedman indicated significant differences in diameter. Carmagnola, specifically, flourished in specific conditions: a strict 16-h period of light followed by 8 h of darkness, particularly when exposed to blue light. The Carmagnola strain, grown using MS feed (2StemMS), produced a hemp oil extract with a high concentration of 3.85%, compared to the Solodiol and Doctor Seedman strains, and also showcases their potential in promoting an environmentally friendly and therapeutically helpful medicinal hemp industry.
Collapse
Affiliation(s)
- Phopgao Puttharak
- Department of Biology, School of Science, University of Phayao, Phayao Province 56000, Thailand.
| | - Patthamaporn Wangnai
- Department of Biology, School of Science, University of Phayao, Phayao Province 56000, Thailand
| | - Jarucha Puttharak
- School of Dentistry, University of Phayao, Phayao Province 56000, Thailand
| | - Nuttakorn Baisaeng
- School of Pharmaceutical Sciences, University of Phayao, Phayao Province 56000, Thailand
| |
Collapse
|
5
|
Marittimo N, Grasselli G, Arigò A, Famiglini G, Agostini M, Renzoni C, Palma P, Cappiello A. Liquid electron ionization-mass spectrometry as a novel strategy for integrating normal-phase liquid chromatography with low and high-resolution mass spectrometry. Analyst 2024; 149:2664-2670. [PMID: 38363103 DOI: 10.1039/d3an02109b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Normal-phase liquid chromatography (NPLC) plays a pivotal role in the rapid separation of non-polar compounds, facilitating isomer separation and finding applications in various crucial areas where aprotic solvents are necessary. Similar to reversed-phase liquid chromatography (RPLC), NPLC requires a robust and sensitive detector to unequivocally identify the analytes, such as a mass spectrometer. However, coupling NPLC with mass spectrometry (MS) poses challenges due to the incompatibility between the non-polar solvents used as the mobile phase and the primary ionization techniques employed in MS. Several analytical methods have been developed to combine NPLC with electrospray ionization (ESI), but these methods are restricted to the analysis of polar compounds. In most cases, atmospheric pressure chemical ionization (APCI) becomes necessary to expand the range of analysis applications. To overcome these limitations and fully realize the potential of NPLC-MS coupling, a technique termed liquid electron ionization-mass spectrometry (LEI-MS) can be used. LEI-MS offers a straightforward solution by enabling the effective coupling of NPLC with both low and high-resolution MS. LEI allows for the comprehensive analysis of non-polar compounds and provides a powerful tool for isomer separation and precise identification of analytes. Optimal separations, mass spectral qualities, and matches with the NIST library were obtained in both configurations, demonstrating the potential of the proposed approach.
Collapse
Affiliation(s)
- Nicole Marittimo
- University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Piazza Rinascimento 6, 61029 Urbino, Italy.
| | - Genny Grasselli
- University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Piazza Rinascimento 6, 61029 Urbino, Italy.
| | - Adriana Arigò
- University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Piazza Rinascimento 6, 61029 Urbino, Italy.
| | - Giorgio Famiglini
- University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Piazza Rinascimento 6, 61029 Urbino, Italy.
| | - Marco Agostini
- Laboratorio di Tossicologia, A.S.T. AV1, Via Lombroso 15, 61122 Pesaro, Italy
| | - Caterina Renzoni
- Laboratorio di Tossicologia, A.S.T. AV1, Via Lombroso 15, 61122 Pesaro, Italy
| | - Pierangela Palma
- University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Piazza Rinascimento 6, 61029 Urbino, Italy.
- Vancouver Island University, Department of Chemistry, B360-R306, 900 Fifth St., Nanaimo, BC, Canada V9R 5S5
| | - Achille Cappiello
- University of Urbino Carlo Bo, Department of Pure and Applied Sciences, Piazza Rinascimento 6, 61029 Urbino, Italy.
- Vancouver Island University, Department of Chemistry, B360-R306, 900 Fifth St., Nanaimo, BC, Canada V9R 5S5
| |
Collapse
|
6
|
Blebea NM, Pricopie AI, Vlad RA, Hancu G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int J Mol Sci 2024; 25:4204. [PMID: 38673788 PMCID: PMC11050509 DOI: 10.3390/ijms25084204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.
Collapse
Affiliation(s)
- Nicoleta Mirela Blebea
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, “Ovidius” University from Constanța, 900470 Constanța, Romania;
| | - Andreea Iulia Pricopie
- Biochemistry and Chemistry of Environmental Factors Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
7
|
Pagano S, Valenti C, Negri P, Billi M, Di Michele A, Bruscoli S, Febo M, Coniglio M, Marinucci L. Acute and chronic cannabidiol treatment: In vitro toxicological aspects on human oral cells. Food Chem Toxicol 2024; 185:114513. [PMID: 38342230 DOI: 10.1016/j.fct.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Cannabidiol is gaining increasing interest for its potential anti-inflammatory, immunomodulatory, and antineoplastic effects. The purpose of this study is to investigate the biological effects of acute and chronic CBD administration on gingival fibroblasts and oral keratinocytes. Viability, morphology, migration, apoptosis and cell cycle, and expression of related genes (p53, BCL2, p21, and BAX) and of endocannabinoid system receptors (CB1, CB2 and GPR55) with real-time PCR and DNA damage with phospho-γ-H2AX immunofluorescence detection were analyzed. Concentrations between 100 μM and 0.001 μM were used: 50 μM (toxic dose), 25 μM (viability promoter), and 1 μM (nontoxic), were selected for subsequent chronic analysis. Acute treatment reveals significant effects than chronic, in particular in fibroblasts: concentrations ≥50 μM are highly cytotoxic, with increased apoptosis and reduced migration. Cell death correlates with increased p53 and BAX, followed by arrest in G0/G1 phase, with elevated p21 levels, suggesting a time- and dose-dependent damage. An increase in H2AX phosphorylation was observed with 25 μM and 50 μM, while 1 μM was biocompatible. Keratinocytes showed less cytotoxic effect than fibroblasts. Induced cell damage was dose- and time-related, with less damage after chronic treatment. Further investigations are needed with longer time frames to evaluate CBD dose- and time-dependent effects to identify an effective therapeutic dose.
Collapse
Affiliation(s)
- Stefano Pagano
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Chiara Valenti
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy; CISAS "Giuseppe Colombo", University of Padua, Via Venezia, 15, 35131, Padua, Italy.
| | - Paolo Negri
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Monia Billi
- Department of Medicine and Surgery, Section of General Pathology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy.
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Maddalena Coniglio
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Lorella Marinucci
- Department of Medicine and Surgery, Section of Biosciences and Medical Embryology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| |
Collapse
|
8
|
Kale R, Chaturvedi D, Dandekar P, Jain R. Analytical techniques for screening of cannabis and derivatives from human hair specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1133-1149. [PMID: 38314866 DOI: 10.1039/d3ay00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cannabis and associated substances are some of the most frequently abused drugs across the globe, mainly due to their anxiolytic and euphorigenic properties. Nowadays, the analysis of hair samples has been given high importance in forensic and analytical sciences and in clinical studies because they are associated with a low risk of infection, do not require complicated storage conditions, and offer a broad window of non-invasive detection. Analysis of hair samples is very easy compared to the analysis of blood, urine, and saliva samples. This review places particular emphasis on methodologies of analyzing hair samples containing cannabis, with a special focus on the preparation of samples for analysis, which involves screening and extraction techniques, followed by confirmatory assays. Through this manuscript, we have presented an overview of the available literature on the screening of cannabis using mass spectroscopy techniques. We have presented a detailed overview of the advantages and disadvantages of this technique, to establish it as a suitable method for the analysis of cannabis from hair samples.
Collapse
Affiliation(s)
- Rohit Kale
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
9
|
de Brito Siqueira AL, Cremasco PV, Bahú JO, Pioli da Silva A, Melo de Andrade LR, González PG, Crivellin S, Cárdenas Concha VO, Krambeck K, Lodi L, Severino P, Souto EB. Phytocannabinoids: Pharmacological effects, biomedical applications, and worldwide prospection. J Tradit Complement Med 2023; 13:575-587. [PMID: 38020546 PMCID: PMC10658372 DOI: 10.1016/j.jtcme.2023.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 12/01/2023] Open
Abstract
Scientific evidence exists about the association between neurological diseases (i.e., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, depression, and memory loss) and oxidative damage. The increasing worldwide incidence of such diseases is attracting the attention of researchers to find palliative medications to reduce the symptoms and promote quality of life, in particular, in developing countries, e.g., South America and Africa. Among potential alternatives, extracts of Cannabis Sativa L. are suitable for people who have neurological disorders, spasticity, and pain, nausea, resulting from diseases such as cancer and arthritis. In this review, we discuss the latest developments in the use of Cannabis, its subtypes and constituents, extraction methods, and relevant pharmacological effects. Biomedical applications, marketed products, and prospects for the worldwide use of Cannabis Sativa L. extracts are also discussed, providing the bibliometric maps of scientific literature published in representative countries from South America (i.e., Brazil) and Africa (i.e., South Africa). A lack of evidence on the effectiveness and safety of Cannabis, besides the concerns about addiction and other adverse events, has led many countries to act with caution before changing Cannabis-related regulations. Recent findings are expected to increase the social acceptance of Cannabis, while new technologies seem to boost the global cannabis market because the benefits of (-)-trans-delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) use have been proven in several studies in addition to the potential to general new employment.
Collapse
Affiliation(s)
- Ana L.G. de Brito Siqueira
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL), Poços de Caldas, 37715-400, Minas Gerais, Brazil
| | - Pedro V.V. Cremasco
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL), Poços de Caldas, 37715-400, Minas Gerais, Brazil
| | - Juliana O. Bahú
- National Institute of Science and Technology in Biofabrication (INCT-BIOFABRIS), School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, Campinas, 13083-852, SP, Brazil
| | - Aline Pioli da Silva
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema, 09913-030, SP, Brazil
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Paula G.A. González
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema, 09913-030, SP, Brazil
| | - Sara Crivellin
- National Institute of Science and Technology in Biofabrication (INCT-BIOFABRIS), School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, Campinas, 13083-852, SP, Brazil
| | - Viktor O. Cárdenas Concha
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema, 09913-030, SP, Brazil
| | - Karolline Krambeck
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Leandro Lodi
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL), Poços de Caldas, 37715-400, Minas Gerais, Brazil
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMed), Institute of Technology and Research (ITP), Murilo Dantas Ave., 300, Aracaju, 49010-390, Sergipe, Brazil
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Murilo Dantas Ave., 300, Aracaju, 49010-390, Sergipe, Brazil
| | - Eliana B. Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
10
|
Monari A, Cantalù S, Zanfrognini B, Brighenti V, Verri P, Zanardi C, Pellati F, Pigani L. An electrochemical approach for the prediction of Δ 9-tetrahydrocannabinolic acid and total cannabinoid content in Cannabis sativa L. Analyst 2023; 148:4688-4697. [PMID: 37602722 DOI: 10.1039/d3an01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Two electrochemical sensors are proposed here for the first time for the fast screening of cannabinoids in Cannabis sativa L. plant material (inflorescences). The accurate control of cannabinoid content is important for discriminating between recreational, i.e. illegal, and fibre-type C. sativa samples, which differ mainly according to the amount of Δ9-tetrahydrocannabinol (Δ9-THC) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA). Two screen printed electrodes obtained using different electrode materials were tested for the analysis of extracts from recreational and fibre-type C. sativa and their performance was compared with a consolidated method based on high-performance liquid chromatography (HPLC). The voltammetric responses recorded in the different samples reflected the compositional differences of the recreational and fibre-type extracts in accordance with the results of HPLC analyses. Moreover, the quantification of Δ9-THCA and the total cannabinoid content on the basis of the intensity of the peaks of the voltammograms was possible through a simple and fast electrochemical procedure.
Collapse
Affiliation(s)
- Alessandro Monari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Sara Cantalù
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Barbara Zanfrognini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, G. Campi 103, 41125 Modena, Italy.
| | - Patrizia Verri
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30170 Venice, Italy
- Institute for Organic Synthesis and Photoreactivity, National Research Council, 40129 Bologna, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, G. Campi 103, 41125 Modena, Italy.
- Interdepartmental Research Centre of the University of Modena and Reggio Emilia BIOGEST-SITEIA, Piazzale Europa 1, 42124 Reggio Emilia, Italy
| | - Laura Pigani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
- Interdepartmental Research Centre of the University of Modena and Reggio Emilia BIOGEST-SITEIA, Piazzale Europa 1, 42124 Reggio Emilia, Italy
| |
Collapse
|
11
|
Vernich F, Stefani L, Fiorelli D, Mineo F, Pallocci M, Treglia M, Marsella LT, Tittarelli R. Trends in Illicit Cannabis Potency based on the Analysis of Law Enforcement Seizures in the Southern Area of Rome. TOXICS 2023; 11:648. [PMID: 37624154 PMCID: PMC10458633 DOI: 10.3390/toxics11080648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Cannabis remains the most illicitly produced and consumed substance worldwide, and the average trans-Δ9-tetrahydrocannabinol (THC) content in cannabis products (marijuana, hashish) has increased over time. This paper presents data about THC concentration in cannabis resin samples seized by law enforcement from 2015 to 2022 in the southern area of Rome (Italy). From 2015 to 2022, more than 1000 hashish samples were analyzed; the average THC content was 18.0% and dramatically increased from 13.7% (2015) to 27.1% (2022). The potency of THC in some samples characterized by unusual shape and color was higher than 24% and, in a few cases, higher than 40%. The age group most involved in seizures of cannabis resin concerned males aged between 15 and 36 years old. The spread of this phenomenon increases the risk of adverse health outcomes. Many observational studies compare the increased cannabis potency with the onset of psychosis, depression, anxiety and cannabis use disorders (CUDs), mainly in young adults. THC-potency monitoring provides data that can be helpful to create a network of communication and interaction between universities, and legislative and public health institutions to support education, awareness and surveillance related to cannabis abuse.
Collapse
Affiliation(s)
- Francesca Vernich
- Laboratory of Forensic Toxicology, Section of Legal and Forensic Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Lucrezia Stefani
- Laboratory of Forensic Toxicology, Section of Legal and Forensic Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Denise Fiorelli
- Laboratory of Forensic Toxicology, Section of Legal and Forensic Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Federico Mineo
- Laboratory of Forensic Toxicology, Section of Legal and Forensic Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Margherita Pallocci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Michele Treglia
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Luigi Tonino Marsella
- Laboratory of Forensic Toxicology, Section of Legal and Forensic Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Roberta Tittarelli
- Laboratory of Forensic Toxicology, Section of Legal and Forensic Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Mhando HB, Sahini MG, Makangara JJ. Chemical profiling of Cannabis sativa from eleven Tanzanian regions. Heliyon 2023; 9:e15892. [PMID: 37215917 PMCID: PMC10192767 DOI: 10.1016/j.heliyon.2023.e15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The aim of this research was to investigate the chemical profiles of Cannabis sativa from 11 Tanzanian regions using preliminary tests as well as instrumental analyses with GC-MS and LC-MS. Generally, all the seized samples tested positive for the presence of (Δ9-THC. The preliminary test with Duquenois method followed by chloroform addition revealed the presence of Δ9-tetrahydrocannabinol (Δ9-THC) in all the samples. GC-MS analyses of the samples revealed the presence of nine cannabinoids including Δ9-THC, Δ8-THC, cannabidivarol, cannabidiol, Δ9-tetrahydrocannabivarin (Δ9-THCV), cannabichromene, cannabinol, caryophyllene, and cannabicouramaronone, whereas LC-MS chemical profiling revealed the presence 24 chemical substances, including 4 cannabinoids, 15 different types of drugs and 5 amino acids. The Pwani region had the highest percentage composition of Δ9-THC (13.45%), the main psychoactive ingredient of Cannabis sativa, followed by Arusha (10.92%) and Singida (10.08%). The sample from Kilimanjaro had the lowest percentage of Δ9-THC (6.72%). Apart from cannabinoids, the majority of other chemical substances were found in the Dar es Salaam region sample, which could be attributed to the fact that the city is the epicenter of business rather than the cultivation area, implying that the samples were obtained from different sources and blended as a single package.
Collapse
|
13
|
Siracusa L, Ruberto G, Cristino L. Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules 2023; 28:molecules28083387. [PMID: 37110621 PMCID: PMC10146690 DOI: 10.3390/molecules28083387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Cannabis sativa L. is a plant that humankind has been using for millennia. The basis of its widespread utilization is its adaptability to so many different climatic conditions, with easy cultivability in numerous diverse environments. Because of its variegate phytochemistry, C. sativa has been used in many sectors, although the discovery of the presence in the plant of several psychotropic substances (e.g., Δ9-tetrahydrocannabinol, THC) caused a drastic reduction of its cultivation and use together with its official ban from pharmacopeias. Fortunately, the discovery of Cannabis varieties with low content of THC as well as the biotechnological development of new clones rich in many phytochemical components endorsed with peculiar and many important bioactivities has demanded the reassessment of these species, the study and use of which are currently experiencing new and important developments. In this review we focus our attention on the phytochemistry, new matrices, suitable agronomic techniques, and new biological activities developed in the five last years.
Collapse
Affiliation(s)
- Laura Siracusa
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Luigia Cristino
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
14
|
Ding Z, Jiang F, Shi J, Wang Y, He M, Tan CP, Liu Y, Xu YJ. Foodomics Reveals Anti-Obesity Properties of Cannabinoids from Hemp Oil. Mol Nutr Food Res 2023; 67:e2200508. [PMID: 36382382 DOI: 10.1002/mnfr.202200508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Indexed: 11/18/2022]
Abstract
SCOPE Molecular networking (MN) analysis intends to provide chemical insight of untargeted mass spectrometry (MS) data to the user's underlying biological questions. Foodomics is the study of chemical compounds in food using advanced omics methods. In this study, an MS-MN-based foodomics approach is developed to investigate the composition and anti-obesity activity of cannabinoids in hemp oil. METHODS AND RESULTS A total of 16 cannabinoids are determined in optimized microwave pretreatment of hemp oil using the developed approach. Untargeted metabolomics analysis reveals that cannabinoid extract (CE) and its major constituent (cannabidiol, CBD), can alleviate high glucose-induced increases in lipids and carbohydrates, and decreases in amino acid and nucleic acid. Moreover, CE and CBD are also found to suppress the expression levels of mdt-15, sbp-1, fat-5, fat-6, fat-7, daf-2, and elevate the expression level of daf-1, daf-7, daf-16, sod-3, gst-4, lipl-4, resulting in the decrease of lipid synthesis and the enhance of kinetism. Canonical correspondence analysis (CCA) uncovers strong associations between specific metabolic alterations and gene expression levels. CONCLUSION These findings from this exploratory study offer a new insight into the roles of cannabinoids in the treatment of obesity and related complications.
Collapse
Affiliation(s)
- Ziwen Ding
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, 43400, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Gjorgjievska J, Stefkov D, Stoilkovska Gjorgievska V, Cvetkovikj Karanfilova I, Trajkovska A, Karapandzova M, Kulevanova S, Stefkov G. Revealing wild Cannabis at the territory of North Macedonia. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Jovana Gjorgjievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Dimitar Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Gjose Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
16
|
Belazelkoska A, Stoilkovska A, Stoilkovska Gjorgievska V, Trajkovska A, Cvetkovikj Karanfilova I, Karapandzova M, Kulevanova S, Stefkov G. Individual variability of the cannabinoids' content in outdoor cultivated Bubba Kush x OG Kush Cannabis strain. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Andrea Belazelkoska
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Ana Stoilkovska
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Veronika Stoilkovska Gjorgievska
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Ana Trajkovska
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Ivana Cvetkovikj Karanfilova
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Marija Karapandzova
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Svetlana Kulevanova
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| | - Gjose Stefkov
- Institute of pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000, Skopje, R. North Macedonia
| |
Collapse
|
17
|
Development and Validation of the LC-MS/MS Method for Determination of 130 Natural and Synthetic Cannabinoids in Cannabis Oil. Molecules 2022; 27:molecules27238601. [PMID: 36500694 PMCID: PMC9736437 DOI: 10.3390/molecules27238601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary supplements are widely available products used by millions of people around the world. Unfortunately, the procedure of adding pharmaceutical and psychoactive substances has recently been observed, in order to increase the effectiveness of supplements in the form of hemp oils. For this reason, it is extremely important to develop analytical methods for the detection of substances prohibited in dietary supplements and food products. In the present study, using the LC-MS/MS technique, an innovative method for the detection and quantification of 117 synthetic cannabinoids and 13 natural cannabinoids in dietary supplements and food products in the form of oils during one 13-min chromatographic run was developed. Each method was fully validated by characterization of the following parameters: The limit of detection was set to 0.1 ng/mL (100 µg/g, 0.01%). The limit of quantification ranged from 0.05 ng/mL to 50 ng/mL. The criteria assumed for systematic error caused by methodological bias (±20%) resulting from the recovery of analytes after the extraction process, as well as the coefficient of variation (CV) (≤20%), were met for all 130 tested compounds. The positive results of the validation confirmed that the developed methods met the requirements related to the adequacy of their application in a given scope. Additionally, methods developed using the LC-MS/MS technique were verified via proficiency tests. The developed analytical procedure was successfully used in the analysis of hemp oils and capsules containing them in the studied dietary supplements.
Collapse
|
18
|
Preliminary evaluation of the use of a disposable electrochemical sensor for selective identification of Δ9-tetrahydrocannabinol and cannabidiol by multivariate analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Xu J, Bai M, Song H, Yang L, Zhu D, Liu H. Hemp (Cannabis sativa subsp. sativa) Chemical Composition and the Application of Hempseeds in Food Formulations. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:504-513. [PMID: 36112300 DOI: 10.1007/s11130-022-01013-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Owing to its nutritional and medicinal value, hemp has been cultivated to provide since ancient times. This review aims to map the scientific literature concerning the main functional components and the chemical composition of hemp plant. It is generally acknowledged that each organ of the hemp plant embodies a valuable source, and among them the most pivotal part is the edible fruits hempseeds. Hempseeds are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber, which are of high nutritional value. Furthermore, the beneficial effects have increased researchers' interests in hempseeds-containing foods. Developed as an indispensable ingredient, hempseed is also a significant supplement in various products, such as bakery food, drinks, snacks and culinary products. Overall, this review intends to promote the further in-depth investigation of approved hemp plants and expand the range of hempseeds adoption in the functional foods field.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, 19 Keji Road, Songshan New Region, Jinzhou, Liaoning, People's Republic of China, 121013
| | - Miao Bai
- College of Food Science and Technology, Bohai University, 19 Keji Road, Songshan New Region, Jinzhou, Liaoning, People's Republic of China, 121013
| | - Hong Song
- College of Food Science and Technology, Bohai University, 19 Keji Road, Songshan New Region, Jinzhou, Liaoning, People's Republic of China, 121013
| | - Lina Yang
- College of Food Science and Technology, Bohai University, 19 Keji Road, Songshan New Region, Jinzhou, Liaoning, People's Republic of China, 121013
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, 19 Keji Road, Songshan New Region, Jinzhou, Liaoning, People's Republic of China, 121013
| | - He Liu
- College of Food Science and Technology, Bohai University, 19 Keji Road, Songshan New Region, Jinzhou, Liaoning, People's Republic of China, 121013.
| |
Collapse
|
20
|
Lamtha T, Tabtimmai L, Songtawee N, Tansakul N, Choowongkomon K. Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100132. [PMID: 36568260 PMCID: PMC9780064 DOI: 10.1016/j.crphar.2022.100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a member of the ErbB family of proteins and are involved in downstream signal transduction, plays prominent roles in cell growth regulation, proliferation, and the differentiation of many cell types. They are correlated with the stage and severity of cancer. Therefore, EGFRs are targeted proteins for the design of new drugs to treat cancers that overexpress these proteins. Currently, several bioactive natural extracts are being studied for therapeutic purposes. Cannabis has been reported in many studies to have beneficial medicinal effects, such as anti-inflammatory, analgesic, antibacterial, and anti-inflammatory effects, and antitumor activity. However, it is unclear whether cannabinoids reduce intracellular signaling by inhibiting tyrosine kinase phosphorylation. In this study, cannabinoids (CBD, CBG, and CBN) were simulated for binding to the EGFR-intracellular domain to evaluate the binding energy and binding mode based on molecular docking simulation. The results showed that the binding site was almost always located at the kinase active site. In addition, the compounds were tested for binding affinity and demonstrated their ability to inhibit kinase enzymes. Furthermore, the compounds potently inhibited cellular survival and apoptosis induction in either of the EGFR-overexpressing cell lines.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Laboratory of Protein Engineering and Bioinformatics (PROTEB), Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand,Spectroscopic and Sensing Devices Research Group (SSDRG), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Laboratory of Protein Engineering and Bioinformatics (PROTEB), Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand,Corresponding author.
| |
Collapse
|
21
|
Salehi A, Puchalski K, Shokoohinia Y, Zolfaghari B, Asgary S. Differentiating Cannabis Products: Drugs, Food, and Supplements. Front Pharmacol 2022; 13:906038. [PMID: 35833025 PMCID: PMC9271575 DOI: 10.3389/fphar.2022.906038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
“Hemp” refers to non-intoxicating, low delta-9 tetrahydrocannabinol (Δ9-THC) cultivars of Cannabis sativa L. “Marijuana” refers to cultivars with high levels of Δ9-THC, the primary psychoactive cannabinoid found in the plant and a federally controlled substance used for both recreational and therapeutic purposes. Although marijuana and hemp belong to the same genus and species, they differ in terms of chemical and genetic composition, production practices, product uses, and regulatory status. Hemp seed and hemp seed oil have been shown to have valuable nutritional capacity. Cannabidiol (CBD), a non-intoxicating phytocannabinoid with a wide therapeutic index and acceptable side effect profile, has demonstrated high medicinal potential in some conditions. Several countries and states have facilitated the use of THC-dominant medical cannabis for certain conditions, while other countries continue to ban all forms of cannabis regardless of cannabinoid profile or low psychoactive potential. Today, differentiating between hemp and marijuana in the laboratory is no longer a difficult process. Certain thin layer chromatography (TLC) methods can rapidly screen for cannabinoids, and several gas and liquid chromatography techniques have been developed for precise quantification of phytocannabinoids in plant extracts and biological samples. Geographic regulations and testing guidelines for cannabis continue to evolve. As they are improved and clarified, we can better employ the appropriate applications of this uniquely versatile plant from an informed scientific perspective.
Collapse
Affiliation(s)
- Arash Salehi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keely Puchalski
- Ric Scalzo Institute for Botanical Research, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Yalda Shokoohinia
- Ric Scalzo Institute for Botanical Research, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Sedigheh Asgary,
| |
Collapse
|
22
|
Mass Spectrometry-Based Metabolomics of Phytocannabinoids from Non-Cannabis Plant Origins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103301. [PMID: 35630777 PMCID: PMC9147514 DOI: 10.3390/molecules27103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.
Collapse
|
23
|
Feeney W, Moorthy AS, Sisco E. Spectral trends in GC-EI-MS data obtained from the SWGDRUG mass spectral library and literature: A resource for the identification of unknown compounds. Forensic Chem 2020; 31:10.1016/j.forc.2022.100459. [PMID: 36578315 PMCID: PMC9793444 DOI: 10.1016/j.forc.2022.100459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rapid identification of new or emerging psychoactive substances remains a critical challenge in forensic drug chemistry laboratories. Current analytical protocols are well-designed for confirmation of known substances yet struggle when new compounds are encountered. Many laboratories initially attempt to classify new compounds using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS). Though there is a large body of research focused on the analysis of illicit substances with GC-EI-MS, there is little high-level discussion of mass spectral trends for different classes of drugs. This manuscript compiles literature information and performs simple exploratory analyses on evaluated GC-EI-MS data to investigate mass spectral trends for illicit substance classes. Additionally, this work offers other important aspects: brief discussions of how each class of drugs is used; illustrations of EI mass spectra with proposed structures of commonly observed ions; and summaries of mass spectral trends that can help an analyst classify new illicit compounds.
Collapse
Affiliation(s)
- William Feeney
- Corresponding author at: Surface and Trace Chemical Analysis Group, Material Measurement Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899, USA. (W. Feeney)
| | | | | |
Collapse
|