1
|
Sekar S, Srikanth S, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Vellingiri B, Renu K, Madhyastha H. Biogenesis and functional implications of extracellular vesicles in cancer metastasis. Clin Transl Oncol 2024:10.1007/s12094-024-03815-8. [PMID: 39704958 DOI: 10.1007/s12094-024-03815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in the complex process of cancer metastasis by facilitating cellular communication and influencing the microenvironment to promote the spread and establishment of cancer cells in distant locations. This paper explores the process of EV biogenesis, explaining their various sources that range from endosomal compartments to plasma membrane shedding. It also discusses the complex mechanisms that control the sorting of cargo within EVs, determining their chemical makeup. We investigate the several functions of EVs in promoting the spread of cancer to other parts of the body. These functions include influencing the immune system, creating environments that support the formation of metastases before they occur, and aiding in the transformation of cells from an epithelial to a mesenchymal state. Moreover, we explore the practical consequences of EV cargo, such as nucleic acids, proteins, and lipids, in influencing the spread of cancer cells, from the beginning of invasion to the creation of secondary tumor sites. Examining recent progress in the field of EV-based diagnostics and treatments, we explore the potential of EVs as highly promising biomarkers for predicting the course of cancer and as targets for therapeutic intervention. This review aims to provide a complete understanding of the biology of EVs in the context of cancer metastasis. By unravelling the nuances of EV biology, it seeks to pave the way for new tactics in cancer detection, treatment, and management.
Collapse
Affiliation(s)
- Sneha Sekar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandhya Srikanth
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, 151401, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
2
|
Mansoori M, Solhjoo S, Palmerini MG, Nematollahi-Mahani SN, Ezzatabadipour M. Granulosa cell insight: unraveling the potential of menstrual blood-derived stem cells and their exosomes on mitochondrial mechanisms in polycystic ovary syndrome (PCOS). J Ovarian Res 2024; 17:167. [PMID: 39153978 PMCID: PMC11330151 DOI: 10.1186/s13048-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) presents a significant challenge in women's reproductive health, characterized by disrupted folliculogenesis and ovulatory dysfunction. Central to PCOS pathogenesis are granulosa cells, whose dysfunction contributes to aberrant steroid hormone production and oxidative stress. Mitochondrial dysfunction emerges as a key player, influencing cellular energetics, oxidative stress, and steroidogenesis. This study investigates the therapeutic potential of menstrual blood-derived stem cells (MenSCs) and their exosomes in mitigating mitochondrial dysfunction and oxidative stress in PCOS granulosa cells. METHODS Using a rat model of PCOS induced by letrozole, granulosa cells were harvested and cultured. MenSCs and their exosomes were employed to assess their effects on mitochondrial biogenesis, oxidative stress, and estrogen production in PCOS granulosa cells. RESULTS Results showed diminished mitochondrial biogenesis and increased oxidative stress in PCOS granulosa cells, alongside reduced estrogen production. Treatment with MenSCs and their exosomes demonstrated significant improvements in mitochondrial biogenesis, oxidative stress levels, and estrogen production in PCOS granulosa cells. Further analysis showed MenSCs' superior efficacy over exosomes, attributed to their sustained secretion of bioactive factors. Mechanistically, MenSCs and exosomes activated pathways related to mitochondrial biogenesis and antioxidative defense, highlighting their therapeutic potential for PCOS. CONCLUSIONS This study offers insights into granulosa cells mitochondria's role in PCOS pathogenesis and proposes MenSCs and exosomes as a potential strategy for mitigating mitochondrial dysfunction and oxidative stress in PCOS. Further research is needed to understand underlying mechanisms and validate clinical efficacy, presenting promising avenues for addressing PCOS complexity.
Collapse
Affiliation(s)
- Mahna Mansoori
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Sędzik M, Rakoczy K, Sleziak J, Kisiel M, Kraska K, Rubin J, Łuniewska W, Choromańska A. Comparative Analysis of Exosomes and Extracellular Microvesicles in Healing Pathways: Insights for Advancing Regenerative Therapies. Molecules 2024; 29:3681. [PMID: 39125084 PMCID: PMC11314465 DOI: 10.3390/molecules29153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes and microvesicles bear great potential to broaden therapeutic options in the clinical context. They differ in genesis, size, cargo, and composition despite their similarities. They were identified as participating in various processes such as angiogenesis, cell migration, and intracellular communication. Additionally, they are characterized by their natural biocompatibility. Therefore, researchers concluded that they could serve as a novel curative method capable of achieving unprecedented results. Indeed, in experiments, they proved remarkably efficient in enhancing wound regeneration and mitigating inflammation. Despite immense advancements in research on exosomes and microvesicles, the time for their large-scale application is yet to come. This article aims to gather and analyze current knowledge on those promising particles, their characteristics, and their potential clinical implementations.
Collapse
Affiliation(s)
- Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Wiktoria Łuniewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Wu H, Chen Q, Wang S, Yang C, Xu L, Xiao H, Xie T, Pan Q. Serum exosomes lncRNAs: TCONS_I2_00013502 and ENST00000363624 are new diagnostic markers for rheumatoid arthritis. Front Immunol 2024; 15:1419683. [PMID: 39044812 PMCID: PMC11263027 DOI: 10.3389/fimmu.2024.1419683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The lack of diagnostic markers limits the window of effectiveness for rheumatoid arthritis (RA) therapies. Here, we isolated exosomes of serum samples from four distinct groups RA patients, according to disease activity and with/without medication. Then, total RNA of exosomes was extracted for whole-transcriptome sequencing. Focusing on lncRNA sequencing, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed. We found that the number of upregulated lncRNAs were significantly higher than that of downregulated lncRNAs in each four RA groups. And most importantly, we identified two specific lncRNAs from differentially expressed lncRNAs, TCONS_I2_00013502 (up-regulated) and ENST00000363624 (down-regulated) in RA. Receiver Operating Characteristic (ROC) curve analysis showed that the two lncRNAs were promising biomarkers for RA diagnosis. These findings highlight lncRNAs of the serum exosome are important biomarkers and provide application potential for diagnosis of RA.
Collapse
Affiliation(s)
- Han Wu
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qiuhua Chen
- Department of Immunology and Rheumatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Sijie Wang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Xu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tong Xie
- Department of Immunology and Rheumatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingjun Pan
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Aresta AM, De Vietro N, Zambonin C. Analysis and Characterization of the Extracellular Vesicles Released in Non-Cancer Diseases Using Matrix-Assisted Laser Desorption Ionization/Mass Spectrometry. Int J Mol Sci 2024; 25:4490. [PMID: 38674075 PMCID: PMC11050240 DOI: 10.3390/ijms25084490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The extracellular vesicles (EVs) released by cells play a crucial role in intercellular communications and interactions. The direct shedding of EVs from the plasma membrane represents a fundamental pathway for the transfer of properties and information between cells. These vesicles are classified based on their origin, biogenesis, size, content, surface markers, and functional features, encompassing a variety of bioactive molecules that reflect the physiological state and cell type of origin. Such molecules include lipids, nucleic acids, and proteins. Research efforts aimed at comprehending EVs, including the development of strategies for their isolation, purification, and characterization, have led to the discovery of new biomarkers. These biomarkers are proving invaluable for diagnosing diseases, monitoring disease progression, understanding treatment responses, especially in oncology, and addressing metabolic, neurological, infectious disorders, as well as advancing vaccine development. Matrix-Assisted Laser Desorption Ionization (MALDI)/Mass Spectrometry (MS) stands out as a leading tool for the analysis and characterization of EVs and their cargo. This technique offers inherent advantages such as a high throughput, minimal sample consumption, rapid and cost-effective analysis, and user-friendly operation. This review is mainly focused on the primary applications of MALDI-time-of-flight (TOF)/MS in the analysis and characterization of extracellular vesicles associated with non-cancerous diseases and pathogens that infect humans, animals, and plants.
Collapse
Affiliation(s)
- Antonella Maria Aresta
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy; (N.D.V.)
| | | | | |
Collapse
|
6
|
Ma K, Luo C, Du M, Wei Q, Luo Q, Zheng L, Liao M. Advances in stem cells treatment of diabetic wounds: A bibliometric analysis via CiteSpace. Skin Res Technol 2024; 30:e13665. [PMID: 38558448 PMCID: PMC10982678 DOI: 10.1111/srt.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Diabetes is a chronic medical condition that may induce complications such as poor wound healing. Stem cell therapies have shown promise in treating diabetic wounds with pre-clinical and clinical studies. However, little bibliometric analysis has been carried out on stem cells in the treatment of diabetic wounds. In this study, we retrieved relevant papers published from January 1, 2003, to December 31, 2023, from Chinese and English databases. CiteSpace software was used to analyze the authors, institutions, and keywords by standard bibliometric indicators. Our analysis findings indicated that publications on stem cells in the treatment of diabetic wounds kept increasing. The most prolific author was Qian Cai (n = 7) and Mohammad Bayat (n = 16) in Chinese and English databases, respectively. Institutions distribution analysis showed that Chinese institutions conducted most publications, and the most prolific institution was the Chinese People's Liberation Army General Hospital (n = 9) and Shahid Beheshti University of Medical Sciences (n = 17) in Chinese and English databases, respectively. The highest centrality keyword in Chinese and English databases was "wound healing" (0.54) and "in vitro" (0.13), respectively. There were 8 and 11 efficient and convincing keyword clusters produced by a log-likelihood ratio in the Chinese and English databases, respectively. The strongest burst keyword was "exosome" (strength 3.57) and "endothelial progenitor cells" (strength 7.87) in the Chinese and English databases, respectively. These findings indicated a direction for future therapies and research on stem cells in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Ke Ma
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Chao Luo
- Shanghai Mental Health CenterShanghai Jiao Tong University, School of MedicineShanghaiChina
| | - Mindong Du
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Orthopaedics Trauma and Hand SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qiang Wei
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qianxuan Luo
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Mingde Liao
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
7
|
Ray R, Chowdhury SG, Karmakar P. A vivid outline demonstrating the benefits of exosome-mediated drug delivery in CNS-associated disease environments. Arch Biochem Biophys 2024; 753:109906. [PMID: 38272158 DOI: 10.1016/j.abb.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of drug delivery mechanisms has been improvised with time for different therapeutic purposes. In most cases, nano-sized delivery systems have been modeled over decades for the on-target applicability of the drugs. The use of synthetic drug delivery materials has been a common practice, although research has now focussed more on using natural vehicles, to avoid the side effects of synthetic delivery systems and easy acceptance by the body. Exosome is such a natural nano-sized vehicle that exceeds the efficiency of many natural vehicles, for being immune-friendly, due to its origin. Unlike, other natural drug delivery systems, exosomes are originated within the body's cells, and from there, they happen to travel through the extracellular matrices into neighboring cells. This capacity of exosomes has made them an efficient drug delivery system over recent years and now a large number of researches have been carried out to develop exosomes as natural drug delivery vehicles. Several experimental strategies have been practiced in this regard which have shown that exosomes are exclusively capable of carrying drugs and they can also be used in targeted delivery, for which they efficiently can reach and release the drug at their target cells for consecutive effects. One of the most interesting features of exosomes is they can cross the blood-brain barrier (BBB) in the body and hence, for the disease where other delivery vehicles are incapable of reaching the destination of the drug, exosomes can overcome the hurdle. This review particularly, focuses on the different aspects of using exosomes as a potential nano-sized drug delivery system for some of the severe diseases associated with the central nervous system of the human body.
Collapse
Affiliation(s)
- Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
8
|
Kisielewska M, Rakoczy K, Skowron I, Górczyńska J, Kacer J, Bocheńska A, Choromańska A. Utilizing Extracellular Vesicles for Eliminating 'Unwanted Molecules': Harnessing Nature's Structures in Modern Therapeutic Strategies. Molecules 2024; 29:948. [PMID: 38474460 DOI: 10.3390/molecules29050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are small phospholipid bilayer-bond structures released by diverse cell types into the extracellular environment, maintaining homeostasis of the cell by balancing cellular stress. This article provides a comprehensive overview of extracellular vesicles, their heterogeneity, and diversified roles in cellular processes, emphasizing their importance in the elimination of unwanted molecules. They play a role in regulating oxidative stress, particularly by discarding oxidized toxic molecules. Furthermore, endoplasmic reticulum stress induces the release of EVs, contributing to distinct results, including autophagy or ER stress transmission to following cells. ER stress-induced autophagy is a part of unfolded protein response (UPR) and protects cells from ER stress-related apoptosis. Mitochondrial-derived vesicles (MDVs) also play a role in maintaining homeostasis, as they carry damaged mitochondrial components, thereby preventing inflammation. Moreover, EVs partake in regulating aging-related processes, and therefore they can potentially play a crucial role in anti-aging therapies, including the treatment of age-related diseases such as Alzheimer's disease or cardiovascular conditions. Overall, the purpose of this article is to provide a better understanding of EVs as significant mediators in both physiological and pathological processes, and to shed light on their potential for therapeutic interventions targeting EV-mediated pathways in various pathological conditions, with an emphasis on age-related diseases.
Collapse
Affiliation(s)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Kacer
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agata Bocheńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Balbi C, Parisse P, Vondracek H, Lazzarini E, Bolis S, Fertig TE, Gherghiceanu M, Barile L, Vassalli G. Impact of Isolation Methods on Extracellular Vesicle Functionality In Vitro and In Vivo. Adv Biol (Weinh) 2024; 8:e2300185. [PMID: 37884455 DOI: 10.1002/adbi.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Indexed: 10/28/2023]
Abstract
This study compares the impact of two isolation methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), on small extracellular vesicles (sEVs) from primary human cardiac mesenchymal-derived progenitor cells (CPCs). sEV_UC and sEV_SEC exhibit similar size, marker expression, and miRNA cargo, but sEV_UC contains notably higher total protein levels. In vitro assays show that sEV_UC, despite an equal particle count, induces more robust ERK phosphorylation, cytoprotection, and proliferation in iPS-derived cardiomyocytes (iPS-CMs) compared to sEV_SEC. sEV_UC also contains elevated periostin (POSTN) protein levels, resulting in enhanced focal adhesion kinase (FAK) phosphorylation in iPS-CMs. Importantly, this effect persists with treatment with soluble free-sEV protein fraction from SEC (Prote_SEC), indicating that free proteins like POSTN in sEV_UC enhance FAK phosphorylation. In vivo, sEV contamination with soluble proteins doesn't affect cardiac targeting or FAK phosphorylation, underscoring the intrinsic tissue targeting properties of sEV. These findings emphasize the need for standardized sEV isolation methods, as the choice of method can impact experimental outcomes, particularly in vitro.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Zurich, 8952, Switzerland
| | - Pietro Parisse
- Elettra Sincrotrone Trieste, Trieste, 34149, Italy
- CNR-IOM, Trieste, 34149, Italy
| | | | - Edoardo Lazzarini
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland
| | - Sara Bolis
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland
| | - Tudor E Fertig
- Victor Babes National Institute of Pathology, Bucharest, 022322, Romania
| | | | - Lucio Barile
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland
- Faculty of Biomedicine, Università della Svizzera Italiana (USI), Lugano, 6900, Switzerland
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Giuseppe Vassalli
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Zurich, 8952, Switzerland
- Faculty of Biomedicine, Università della Svizzera Italiana (USI), Lugano, 6900, Switzerland
| |
Collapse
|
10
|
Saadh MJ, Alhuthali HM, Gonzales Aníbal O, Asenjo-Alarcón JA, Younus DG, Alhili A, Adhab ZH, Alsalmi O, Gharib AF, Pecho RDC, Akhavan-Sigari R. Mesenchymal stem cells and their extracellular vesicles in urological cancers: Prostate, bladder, and kidney. Cell Biol Int 2024; 48:3-19. [PMID: 37947445 DOI: 10.1002/cbin.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are recognized for their remarkable ability to differentiate into multiple cell types. They are also known to possess properties that can fight cancer, leading to attempts to modify MSCs for use in anticancer treatments. However, MSCs have also been found to participate in pathways that promote tumor growth. Many studies have been conducted to explore the potential of MSCs for clinical applications, but the results have been inconclusive, possibly due to the diverse nature of MSC populations. Furthermore, the conflicting roles of MSCs in inhibiting tumors and promoting tumor growth hinder their adaptation to anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in urological cancers such as bladder, prostate, and renal are not as well established, and data comparing them are still limited. MSCs hold significant promise as a vehicle for delivering anticancer agents and suicide genes to tumors. Presently, numerous studies have concentrated on the products derived from MSCs, such as extracellular vesicles (EVs), as a form of cell-free therapy. This work aimed to review and discuss the current knowledge of MSCs and their EVs in urological cancer therapy.
Collapse
Affiliation(s)
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | | | | | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
11
|
Nowak M, Górczyńska J, Kołodzińska K, Rubin J, Choromańska A. Extracellular Vesicles as Drug Transporters. Int J Mol Sci 2023; 24:10267. [PMID: 37373411 DOI: 10.3390/ijms241210267] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles. According to their size and synthesis pathway, EVs can be classified into exosomes, ectosomes (microvesicles), and apoptotic bodies. Extracellular vesicles are of great interest to the scientific community due to their role in cell-to-cell communication and their drug-carrying abilities. The study aims to show opportunities for the application of EVs as drug transporters by considering techniques applicable for loading EVs, current limitations, and the uniqueness of this idea compared to other drug transporters. In addition, EVs have therapeutic potential in anticancer therapy (especially in glioblastoma, pancreatic cancer, and breast cancer).
Collapse
Affiliation(s)
- Monika Nowak
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Katarzyna Kołodzińska
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
12
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Chen LY, Kao TW, Chen CC, Niaz N, Lee HL, Chen YH, Kuo CC, Shen YA. Frontier Review of the Molecular Mechanisms and Current Approaches of Stem Cell-Derived Exosomes. Cells 2023; 12:cells12071018. [PMID: 37048091 PMCID: PMC10093591 DOI: 10.3390/cells12071018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.
Collapse
|
14
|
Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int J Mol Sci 2023; 24:ijms24043888. [PMID: 36835295 PMCID: PMC9962639 DOI: 10.3390/ijms24043888] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities. Therefore, AD-MSCs have great potential in stem cell-based therapies in wound healing as well as in orthopedic, cardiovascular, or autoimmune diseases. There are many ongoing clinical trials on AD-MSC and in many cases their effectiveness has been proven. In this article, we present current knowledge about AD-MSCs based on our experience and other authors. We also demonstrate the application of AD-MSCs in selected pre-clinical models and clinical studies. Adipose-derived stromal cells can also be the pillar of the next generation of stem cells that will be chemically or genetically modified. Despite much research on these cells, there are still important and interesting areas to explore.
Collapse
|
15
|
Albrecht M, Hummitzsch L, Rusch R, Heß K, Steinfath M, Cremer J, Lichte F, Fändrich F, Berndt R, Zitta K. Characterization of large extracellular vesicles (L-EV) derived from human regulatory macrophages (Mreg): novel mediators in wound healing and angiogenesis? J Transl Med 2023; 21:61. [PMID: 36717876 PMCID: PMC9887800 DOI: 10.1186/s12967-023-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Large extracellular vesicles (L-EV) with a diameter between 1 and 10 µm are released by various cell types. L-EV contain and transport active molecules which are crucially involved in cell to cell communication. We have shown that secretory products of human regulatory macrophages (Mreg) bear pro-angiogenic potential in-vitro and our recent findings show that Mreg cultures also contain numerous large vesicular structures similar to L-EV with so far unknown characteristics and function. AIM OF THIS STUDY To characterize the nature of Mreg-derived L-EV (L-EVMreg) and to gain insights into their role in wound healing and angiogenesis. METHODS Mreg were differentiated using blood monocytes from healthy donors (N = 9) and L-EVMreg were isolated from culture supernatants by differential centrifugation. Characterization of L-EVMreg was performed by cell/vesicle analysis, brightfield/transmission electron microscopy (TEM), flow cytometry and proteome profiling arrays. The impact of L-EVMreg on wound healing and angiogenesis was evaluated by means of scratch and in-vitro tube formation assays. RESULTS Mreg and L-EVMreg show an average diameter of 13.73 ± 1.33 µm (volume: 1.45 ± 0.44 pl) and 7.47 ± 0.75 µm (volume: 0.22 ± 0.06 pl) respectively. Flow cytometry analyses revealed similarities between Mreg and L-EVMreg regarding their surface marker composition. However, compared to Mreg fewer L-EVMreg were positive for CD31 (P < 0.01), CD206 (P < 0.05), CD103 (P < 0.01) and CD45 (P < 0.05). Proteome profiling suggested that L-EVMreg contain abundant amounts of pro-angiogenic proteins (i.e. interleukin-8, platelet factor 4 and serpin E1). From a functional point of view L-EVMreg positively influenced in-vitro wound healing (P < 0.05) and several pro-angiogenic parameters in tube formation assays (all segment associated parameters, P < 0.05; number of meshes, P < 0.05). CONCLUSION L-EVMreg with regenerative and pro-angiogenic potential can be reproducibly isolated from in-vitro cultured human regulatory macrophages. We propose that L-EVMreg could represent a putative therapeutic option for the treatment of chronic wounds and ischemia-associated diseases.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Lars Hummitzsch
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105 Kiel, Germany
| | - Rene Rusch
- grid.412468.d0000 0004 0646 2097Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- grid.412468.d0000 0004 0646 2097Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105 Kiel, Germany
| | - Jochen Cremer
- grid.412468.d0000 0004 0646 2097Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Frank Lichte
- grid.9764.c0000 0001 2153 9986Department of Anatomy, University of Kiel, Kiel, Germany
| | - Fred Fändrich
- grid.412468.d0000 0004 0646 2097Clinic for Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- grid.412468.d0000 0004 0646 2097Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105 Kiel, Germany
| |
Collapse
|
16
|
Bhavsar SP. Recent advances in the roles of exosomal microRNAs in neuroblastoma. Front Oncol 2023. [DOI: 10.3389/fonc.2023.1091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exosomal miRNAs (exo-miRs), universally found in biofluids, tissues, and/or conditioned medium of the cell cultures play a significant role in cell - cell communication, thus driving cancer progression and metastasis. Very few studies have explored the role of exo-miRs in the progression of children’s cancer - neuroblastoma. In this mini review, I briefly summarize the existing literature on the role of exo-miRs in the pathogenesis of neuroblastoma.
Collapse
|
17
|
Bhavsar SP. Recent advances in the roles of exosomal microRNAs in neuroblastoma. Front Oncol 2023; 12:1091847. [PMID: 36793342 PMCID: PMC9923722 DOI: 10.3389/fonc.2022.1091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023] Open
Abstract
Exosomal miRNAs (exo-miRs), universally found in biofluids, tissues, and/or conditioned medium of the cell cultures play a significant role in cell - cell communication, thus driving cancer progression and metastasis. Very few studies have explored the role of exo-miRs in the progression of children's cancer - neuroblastoma. In this mini review, I briefly summarize the existing literature on the role of exo-miRs in the pathogenesis of neuroblastoma.
Collapse
|
18
|
Feng L, Guo L, Tanaka Y, Su L. Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. Int J Mol Sci 2022; 23:ijms232315236. [PMID: 36499561 PMCID: PMC9736664 DOI: 10.3390/ijms232315236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.
Collapse
Affiliation(s)
- Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| |
Collapse
|
19
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
20
|
Robert AW, Marcon BH, Angulski ABB, Martins SDT, Leitolis A, Stimamiglio MA, Senegaglia AC, Correa A, Alves LR. Selective Loading and Variations in the miRNA Profile of Extracellular Vesicles from Endothelial-like Cells Cultivated under Normoxia and Hypoxia. Int J Mol Sci 2022; 23:ijms231710066. [PMID: 36077462 PMCID: PMC9456085 DOI: 10.3390/ijms231710066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial-like cells may be obtained from CD133+ mononuclear cells isolated from human umbilical cord blood (hUCB) and expanded using endothelial-inducing medium (E-CD133 cells). Their use in regenerative medicine has been explored by the potential not only to form vessels but also by the secretion of bioactive elements. Extracellular vesicles (EVs) are prominent messengers of this paracrine activity, transporting bioactive molecules that may guide cellular response under different conditions. Using RNA-Seq, we characterized the miRNA content of EVs derived from E-CD133 cells cultivated under normoxia (N-EVs) and hypoxia (H-EVs) and observed that changing the O2 status led to variations in the selective loading of miRNAs in the EVs. In silico analysis showed that among the targets of differentially loaded miRNAs, there are transcripts involved in pathways related to cell growth and survival, such as FoxO and HIF-1 pathways. The data obtained reinforce the pro-regenerative potential of EVs obtained from E-CD133 cells and shows that fine tuning of their properties may be regulated by culture conditions.
Collapse
Affiliation(s)
- Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Bruna Hilzendeger Marcon
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Addeli Bez Batti Angulski
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Amanda Leitolis
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Marco Augusto Stimamiglio
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology-School of Medicine, Universidade Católica Paraná-PUCPR, Curitiba 80215-901, PR, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (A.C.); (L.R.A.)
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
- Correspondence: (A.C.); (L.R.A.)
| |
Collapse
|
21
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
22
|
MALDI-TOF/MS Analysis of Extracellular Vesicles Released by Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The direct shedding of extracellular vesicles (EVs) from the plasma membrane is a recognized fundamental method for the intercellular transfer of properties in both physiological and pathological conditions. EVs are classified according to origin, biogenesis, size, content, surface markers, and/or functional properties, and contain various bioactive molecules depending on the physiological state and the type of the cells of origin including lipids, nucleic acids, and proteins. The presence of tumor-derived EVs in body fluids such as blood, ascites, urine, and saliva, together with the important role played in the tumor microenvironment where they intervene at different levels from oncogenesis to metastasis, make EVs a priority target for cancer studies. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can play a leading role in the analysis and characterization of EVs and their load due to its intrinsic advantages such as high throughput, low sample consumption, speed, the cost-effectiveness of the analysis, and the ease of use. This work reviews the main MALDI-TOF applications for the analysis and characterization of extracellular vesicles in the tumor field.
Collapse
|
23
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|