1
|
Yu Liu X, Ying Mao H, Hong S, Jin CH, Jiang HL, Guan Piao M. Dual-targeting galactose-functionalized hyaluronic acid modified lipid nanoparticles delivering silybin for alleviating alcoholic liver injury. Int J Pharm 2024; 666:124662. [PMID: 39241932 DOI: 10.1016/j.ijpharm.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
Collapse
Affiliation(s)
- Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - He Ying Mao
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Shuai Hong
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Cheng-Hua Jin
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Hu-Lin Jiang
- School of Pharmacy, Yanbian University, Yanji 133002, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024; 61:10747-10769. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
3
|
Zheng Y, Meng L, Qu L, Zhao C, Wang L, Ma J, Liu C, Shou C. Co-targeting TMEM16A with a novel monoclonal antibody and EGFR with Cetuximab inhibits the growth and metastasis of esophageal squamous cell carcinoma. J Transl Med 2024; 22:1046. [PMID: 39563381 DOI: 10.1186/s12967-024-05830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The chloride channel transmembrane protein 16A (TMEM16A) possesses a calcium-activated property linked to tumor-promoting malignant phenotype and electrophysiological stability. Numerous studies have shown that TMEM16A exhibits aberrant amplification in various squamous cell carcinomas such as esophageal squamous cell carcinoma (ESCC) and is correlated with unfavorable outcomes of ESCC patients. Therefore, TMEM16A is considered as a promising therapeutic target for ESCC. Because of its intricate structure, the development of therapeutic antibodies directed against TMEM16A has not been documented. In this study, we produced a series of novel monoclonal antibodies targeting TMEM16A and identified mT16#5 as an antibody capable of inhibiting ESCC cells migration, invasion and TMEM16A ion channel activity. Additionally, based on the validation that TMEM16A was positively correlated with expression of EGFR and the interaction between them, the mT16#5 exhibited a synergistic inhibitory effect on ESCC metastasis and growth when administered in combination with Cetuximab in vivo. In terms of mechanism, we found that mT16A#5 inhibited the phosphorylation of PI3K, AKT and JNK. These results highlight the anti-growth and anti-metastasis capacity of the combination of mT16A#5 and Cetuximab in the treatment of ESCC by targeting TMEM16A and EGFR, and provide a reference for combinational antibody treatment in ESCC.
Collapse
Affiliation(s)
- Yutian Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Pathology, National Center for Children's Health (NCCH), Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayi Ma
- Beijing National Day School, Beijing, 100039, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
4
|
Zhao Y, Zhou Y, Gong T, Liu Z, Yang W, Xiong Y, Xiao D, Cifuentes A, Ibáñez E, Lu W. The clinical anti-inflammatory effects and underlying mechanisms of silymarin. iScience 2024; 27:111109. [PMID: 39507256 PMCID: PMC11539592 DOI: 10.1016/j.isci.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Inflammatory conditions are key mediators in the progression of various diseases. Silymarin, derived from Silybum marianum seeds and fruits, has shown efficacy in treating a range of liver diseases. The expanding corpus of research on silymarin highlights its promising role in preventing and managing inflammatory conditions and autoimmune without adverse effects. This review discusses the absorption, metabolism, and anti-inflammatory mechanisms of silymarin, exploring its impact on the secretion of inflammatory factors, such as nuclear factor kappa B (NF-κB) pathway, mitogen-activated protein kinase (MAPK) pathway, and antioxidant pathway. We delve into its disease-modifying potential for clinical applications, thereby laying a theoretical foundation for further silymarin research and clinical studies.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Yingyu Zhou
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Gong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Zhiting Liu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Wanying Yang
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Yi Xiong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| |
Collapse
|
5
|
Ben-Azu B, Fokoua AR, Annafi OS, Adebayo OG, Del Re EC, Okuchukwu N, Aregbesola GJ, Ejenavi AEC, Isiwele DM, Efezino AJ, Okpu ID. Effective action of silymarin against ketamine-induced schizophrenia in male mice: Insight into the biochemical and molecular mechanisms of action. J Psychiatr Res 2024; 179:141-155. [PMID: 39293119 DOI: 10.1016/j.jpsychires.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neurochemical dysregulations resulting from N-methyl-D-aspartate hypofunction (NMDA), are exacerbated by neuroimmune and oxidative stress and are known risk factors for neuropsychiatric disorders like schizophrenia-like diseases. Here, we investigate the protective and curative effects, and mechanisms of silymarin, a polyphenolic flavonoid with neuroprotective functions in preventive-reversal model of ketamine, an NMDA antagonist in mice. METHODS Mice were grouped into 6 cohorts (n = 9). In the pre-treatment, groups 1 and 2 received saline (10 mL/kg/p.o.), groups 3 and 4 (silymarin, 50 and 100 mg/kg/p.o.), and group 5 (risperidone, 0.5 mg/kg/p.o.) consecutively for 14 days, then combined with ketamine (20 mg/kg/i.p.) injection in groups 2-5 from days 8-14. However, mice in reversal study received intraperitoneal injection of ketamine for 14 days before silymarin (50 and 100 mg/kg, p.o) and risperidone (0.5 mg/kg, p.o.) treatment between days 8-14. The consequences on schizophrenia-like behavior, neurochemistry, inflammation, and oxidative/nitrergic stress markers were evaluated in critical brain regions of the disease. RESULTS Silymarin prevented and reversed ketamine-induced increase in dopamine, 5-hydroxyltryptamine, acetylcholinesterase, malondialdehyde and nitrite levels in the striatum, prefrontal-cortex and hippocampus. These were accompanied by improvement in hyperlocomotion, stereotypy, memory, and social impairments, notably devoid of cataleptogenic potential. Complementarily, silymarin reduced myeloperoxidase, tumor-necrosis factor-α, and interleukin-6 concentrations relative to the ketamine group. Moreover, ketamine-induced decreased brain-derived neurotrophic factor, glutathione, catalase, superoxide-dismutase levels were normalized by silymarin in the brain regions relative to ketamine. CONCLUSIONS Overall, these findings suggest that silymarin's antipsychotic effect might be primarily associated, among other mechanisms, with the normalization of neurochemical and neurotrophic changes in the mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Division of Medical Sciences, University of Victoria, Canada.
| | - Aliance R Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Research Unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Olajide S Annafi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Elisabetta C Del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton, MA, United States; Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nneka Okuchukwu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gbemileke J Aregbesola
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Akpor-Esiri C Ejenavi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - David M Isiwele
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Arausi J Efezino
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ifelunwa D Okpu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
6
|
Valadi M, Doostan M, Khoshnevisan K, Doostan M, Maleki H. Enhanced healing of burn wounds by multifunctional alginate-chitosan hydrogel enclosing silymarin and zinc oxide nanoparticles. Burns 2024; 50:2029-2044. [PMID: 39181767 DOI: 10.1016/j.burns.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Multifunctional wound dressings have been applied for burn injuries to avoid complications and promote tissue regeneration. In the present study, we fabricated a natural alginate-chitosan hydrogel comprising silymarin and green-synthesized zinc oxide nanoparticles (ZnO NPs). Then, the physicochemical attributes of ZnO NPs and loaded hydrogels were analyzed. Afterward, wound healing efficacy was evaluated in a rat model of full-thickness dermal burn wounds. The findings indicated that ZnO NPs were synthesized via reduction with phytochemicals from Elettaria cardamomum seeds extract. The microscopic images exhibited fairly spherical ZnO NPs (35-45 nm), and elemental analysis verified the relevant composition. The hydrogel, containing silymarin and biosynthesized ZnO NPs, displayed a uniform appearance, smooth surfaces, and a porous structure. Moreover, infrared spectroscopy identified functional groups, confirming the successful loading without adverse interactions. The obtained hydrogel exhibited great water absorption, high porosity, sustainable degradation for several days, and enhanced antioxidant capability of the combined loaded component. In vivo studies revealed faster and superior wound healing, achieving nearly complete closure by day 21. Histopathology confirmed improved cell growth, tissue regeneration, collagen deposition, and neovascularization. It is believed that this multifunctional hydrogel-based wound dressing can be applied for effective burn wound treatment.
Collapse
Affiliation(s)
- Moein Valadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
El-Gendy HF, Khalifa HK, Omran A, Korany RMS, Selim S, Hussein E, Alhotan RA, Ayyoub A, Masoud SR. Unveiling the Potential of Silymarin, Spirulina platensis, and Chlorella vulgaris towards Cardiotoxicity via Modulating Antioxidant Activity, Inflammation, and Apoptosis in Rats. Life (Basel) 2024; 14:1289. [PMID: 39459589 PMCID: PMC11509764 DOI: 10.3390/life14101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study assessed the possible pharmacological effects of Chlorella vulgaris (Cg), Spirulina platensis (St), and silymarin (Sl) against thioacetamide (TA)-induced cardiotoxicity in rats, with a focus on their antioxidant, cardioprotective, and anti-inflammatory properties. The following is the random grouping of sixty male rats into six groups of ten animals each: the control (negative control), TA-intoxicated group (positive control; 300 mg/kg body weight (BW)), Sl + TA group (100 mg Sl/kg BW + TA), St + TA group (400 mg St/kg BW + TA), Cg + TA (400 mg Cg/kg BW + TA), and St + Cg + TA group (400 St + 400 Cg mg/kg BW + TA) were all administered for 30 days. At the start of the study, groups 2 through 6 were administered TA intraperitoneally at a dosage of 300 mg/kg BW for two consecutive days, with a 24 h gap between each dose, to induce cardiac damage. Blood samples were obtained to measure hematological parameters and perform biochemical assays, including lipid profiles and cardiac enzymes. For histopathology and immunohistochemistry determination, tissue samples were acquired. The current findings showed that TA injection caused hematological alterations and cardiac injury, as evidenced by greater serum levels of troponin I, creatine kinase-MB, and total creatine kinase (p < 0.05), as well as significantly elevated serum malondialdehyde and decreased serum total antioxidant capacity (p < 0.05) concentrations. Moreover, an increase in blood low-density lipoprotein and total cholesterol concentration (p < 0.05) was recorded in the TA group. There were alterations in the heart tissue's histological structure of the TA group compared to the control ones. These alterations were characterized by vacuolar degeneration of myocytes, loss of cross striation, coagulative necrosis, and fibrosis of interstitial tissue, which was ameliorated by the supplementation of SI, St, and Cg. The TA-intoxicated group showed weak expression of B-cell lymphoma protein 2 (p < 0.05) and strong immunoreactivity of tumor necrosis factor-α and B-cell lymphoma protein 2-associated X (p < 0.05). However, the groups receiving Sl, St, and Cg experienced the opposite. The administration of Sl, St, Cg, and St + Cg along with TA significantly improved and restored (p < 0.05) erythrogram indices, including RBCs, hemoglobin, total leukocytic count, lymphocytes, and monocyte, to the normal control values. The administration of Sl, St, and Cg alleviated the cardiotoxicity caused by TA via reducing oxidative stress, inflammatory markers, and apoptosis in heart tissue. In summary, the current findings suggest that the treatment with Sl, St, and Cg was beneficial in ameliorating and reducing the cardiotoxicity induced by TA in rats.
Collapse
Affiliation(s)
- Hanem F. El-Gendy
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Ahmed Omran
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Reda M. S. Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
- Department of Pathology, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo 11765, Egypt
| | - Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, University of Menoufia, Shibin El-Kom 32514, Egypt;
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Anam Ayyoub
- College of Life Sciences, Northwest A & F University, Yangling District, Xianyang 712100, China;
| | - Shimaa R. Masoud
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| |
Collapse
|
9
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Hajinezhad MR, Roostaee M, Nikfarjam Z, Rastegar S, Sargazi G, Barani M, Sargazi S. Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7017-7036. [PMID: 38630254 DOI: 10.1007/s00210-024-03099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Zahra Nikfarjam
- Department of Physical & Computational Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
11
|
Vahabi A, Öztürk AM, Kılıçlı B, Birim D, Kaftan Öcal G, Dağcı T, Armağan G. Silibinin promotes healing in spinal cord injury through anti-ferroptotic mechanisms. JOR Spine 2024; 7:e1344. [PMID: 38957164 PMCID: PMC11217020 DOI: 10.1002/jsp2.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Study Design Pre-clinical animal experiment. Objective In this study, we investigated therapeutic effects of silibinin in a spinal cord injury (SCI) model. In SCI, loss of cells due to secondary damage mechanisms exceeds that caused by primary damage. Ferroptosis, which is iron-dependent non-apoptotic cell death, is shown to be influential in the pathogenesis of SCI. Methods The study was conducted as an in vivo experiment using a total of 78 adult male/female Sprague Dawley rats. Groups were as follows: Sham, SCI, deferoxamine (DFO) treatment, and silibinin treatment. There were subgroups with follow-up periods of 24 h, 72 h, and 6 weeks in all groups. Malondialdehyde (MDA), glutathione (GSH), and Fe2+ levels were measured by spectrophotometry. Glutathione peroxidase-4 (GPX4), ferroportin (FPN), transferrin receptor (TfR1), and 4-hydroxynonenal (4-HNE)-modified protein levels were assessed by Western blotting. Functional recovery was assessed using Basso-Beattie-Bresnahan test. Results Silibinin achieved significant suppression in MDA and 4-HNE levels compared to the SCI both in 72-h and 6 weeks group (p < 0.05). GSH, GPX4, and FNP levels were found to be significantly higher in the silibinin 24 h, 72 h, and 6 weeks group compared to corresponding SCI groups (p < 0.05). Significant reduction in iron levels was observed in silibinin treated rats in 72 h and 6 weeks group (p < 0.05). Silibinin substantially suppressed TfR1 levels in 24 h and 72 h groups (p < 0.05). Significant difference among recovery capacities was observed as follows: Silibinin > DFO > SCI (p < 0.05). Conclusion Impact of silibinin on iron metabolism and lipid peroxidation, both of which are features of ferroptosis, may contribute to therapeutic activity. Within this context, our findings posit silibinin as a potential therapeutic candidate possessing antiferroptotic properties in SCI model. Therapeutic agents capable of effectively and safely mitigating ferroptotic cell death hold the potential to be critical points of future clinical investigations.
Collapse
Affiliation(s)
- Arman Vahabi
- Department of Orthopaedics and TraumatologyEge University School of MedicineIzmirTurkey
| | - Anıl Murat Öztürk
- Department of Orthopaedics and TraumatologyEge University School of MedicineIzmirTurkey
| | - Bünyamin Kılıçlı
- Department of Orthopaedics and TraumatologyEge University School of MedicineIzmirTurkey
| | - Derviş Birim
- Faculty of Pharmacy, Department of BiochemistryEge UniversityIzmirTurkey
| | - Gizem Kaftan Öcal
- Faculty of Pharmacy, Department of BiochemistryAfyonkarahisar Health Sciences UniversityAfyonkarahisarTurkey
| | - Taner Dağcı
- Department of PhysiologyEge University School of MedicineIzmirTurkey
| | - Güliz Armağan
- Faculty of Pharmacy, Department of BiochemistryEge UniversityIzmirTurkey
| |
Collapse
|
12
|
El-Hashash S, Gaballah WA, Faramawy AA, Rizk NI, Alsuwat MA, Alshehri MA, Sayed SM, Shukry M. Mitigating Acetaminophen-Induced Kidney Injury: The Protective Role of Grape Seed and Peanut Skin Extracts through the iNOS/CYP2E1 Pathway. ACS OMEGA 2024; 9:35154-35169. [PMID: 39157129 PMCID: PMC11325491 DOI: 10.1021/acsomega.4c05534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
The rising number of acute kidney injury cases worldwide due to acetaminophen (APAP) emphasizes the critical need for effective prevention strategies to counteract APAP's detrimental effects. This study examined the kidney-protective capabilities of ethanolic extracts from grape seeds and peanut skins (GSEE and PSEE, respectively) in comparison with silymarin in rats that experienced an APAP overdose. The phenolic compounds in these extracts were measured by using high-performance liquid chromatography (HPLC). In the experiment, Sixty adult male albino rats were divided into five groups of 12. The Control group received 0.5 mL of saline via a gastric tube. Group II received acetaminophen (APAP, 640 mg/kg per day via a gastric tube) to induce renal injury, following Ucar et al. and Islam et al. Groups III, IV, and V received silymarin (50 mg/kg), grape seed extract (200 mg/kg), and peanut skin extract (200 mg/kg), respectively, along with 640 mg of APAP/kg per day for 21 days. Post APAP treatment, significant increases in serum urea and creatinine levels were noted, along with notable decreases in the percentage of body weight gain. Furthermore, there were increases in oxidative stress and inflammatory markers in the kidney tissues, including heightened mRNA expressions of renal iNOS and CYP2E1, which were confirmed through histological studies. The administration of GSEE, PSEE, and silymarin mitigated these adverse effects, likely due to their high phenolic content, which is recognized for its antioxidant and anti-inflammatory effects. GSEE, in particular, showed efficacy comparable to that of silymarin. Molecular docking studies revealed that APAP impeded critical enzymes essential for cellular antioxidant defense, whereas the bioactive compounds in the grape seed and peanut skin extracts effectively inhibited key enzymes and receptors involved in inflammation and oxidative stress. These findings suggest that GSEE and PSEE could serve as viable alternative treatments for kidney damage induced by APAP. Further research to isolate and identify these effective compounds is recommended.
Collapse
Affiliation(s)
- Samah
A. El-Hashash
- Department
of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Wafaa A. Gaballah
- Department
of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Asmaa Antar Faramawy
- Department
of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Nermin I. Rizk
- Medical
Physiology Department, Faculty of Medicine, Menoufia University, Shebin
el Kom 32511, Egypt
| | - Meshari A. Alsuwat
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Samy M. Sayed
- Department
of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mustafa Shukry
- Department
of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
13
|
Jin Y, Wang X, Chen K, Chen Y, Zhou L, Zeng Y, Zhou Y, Pan Z, Wang D, Li Z, Liang Y, Ling W, Li D. Silymarin decreases liver stiffness associated with gut microbiota in patients with metabolic dysfunction-associated steatotic liver disease: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2024; 23:239. [PMID: 39097726 PMCID: PMC11297656 DOI: 10.1186/s12944-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Despite centuries of traditional use of silymarin for hepatoprotection, current randomized controlled trial (RCT) studies on the effectiveness of silymarin in managing metabolic dysfunction-associated steatotic liver disease (MASLD) are limited and inconclusive, particularly when it is administered alone. The low bioavailability of silymarin highlights the possible influence of gut microbiota on the effectiveness of silymarin; however, no human studies have investigated this aspect. OBJECTIVE To determine the potential efficacy of silymarin in improving MASLD indicators and to investigate the underlying mechanisms related to gut microbiota. METHOD In this 24-week randomized, double-blind, placebo-controlled trial, 83 patients with MASLD were randomized to either placebo (n = 41) or silymarin (103.2 mg/d, n = 42). At 0, 12, and 24 weeks, liver stiffness and hepatic steatosis were assessed using FibroScan, and blood samples were gathered for biochemical detection, while faecal samples were collected at 0 and 24 weeks for 16S rRNA sequencing. RESULTS Silymarin supplementation significantly reduced liver stiffness (LSM, -0.21 ± 0.17 vs. 0.41 ± 0.17, P = 0.015) and serum levels of γ-glutamyl transpeptidase (GGT, -8.21 ± 3.01 vs. 1.23 ± 3.16, P = 0.042) and ApoB (-0.02 ± 0.03 vs. 0.07 ± 0.03, P = 0.023) but had no significant effect on the controlled attenuation parameter (CAP), other biochemical indicators (aminotransferases, total bilirubin, glucose and lipid parameters, hsCRP, SOD, and UA), physical measurements (DBP, SBP, BMI, WHR, BF%, and BMR), or APRI and FIB-4 indices. Gut microbiota analysis revealed increased species diversity and enrichment of Oscillospiraceae in the silymarin group. CONCLUSION These findings suggest that silymarin supplementation could improve liver stiffness in MASLD patients, possibly by modulating the gut microbiota. TRIAL REGISTRATION The trial was registered at the Chinese Clinical Trial Registry (ChiCTR2200059043).
Collapse
Affiliation(s)
- Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Ke Chen
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Lixin Zhou
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Di Wang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou, 510663, China
| | - Yongqian Liang
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China.
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China.
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China.
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China.
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Sweilam SH, Ali DE, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. A First Metabolite Analysis of Norfolk Island Pine Resin and Its Hepatoprotective Potential to Alleviate Methotrexate (MTX)-Induced Hepatic Injury. Pharmaceuticals (Basel) 2024; 17:970. [PMID: 39065818 PMCID: PMC11279851 DOI: 10.3390/ph17070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-β/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1β and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-β/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Dalia E. Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt;
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Ali M. Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Aya M. Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Manar M. Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
15
|
Yan B, Zheng X, Chen X, Hao H, Shen S, Yang J, Wang S, Sun Y, Xian J, Shao Z, Fu T. Silibinin Targeting Heat Shock Protein 90 Represents a Novel Approach to Alleviate Nonalcoholic Fatty Liver Disease by Simultaneously Lowering Hepatic Lipotoxicity and Enhancing Gut Barrier Function. ACS Pharmacol Transl Sci 2024; 7:2110-2124. [PMID: 39022366 PMCID: PMC11249643 DOI: 10.1021/acsptsci.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological condition characterized by intrahepatic ectopic steatosis. Due to the increase in high-calorie diets and sedentary lifestyles, NAFLD has surpassed viral hepatitis and become the most prevalent chronic liver disease globally. Silibinin, a natural compound, has shown promising therapeutic potential for the treatment of liver diseases. Nevertheless, the ameliorative effects of silibinin on NAFLD have not been completely understood, and the underlying mechanism is elusive. Therefore, in this study, we used high-fat diet (HFD)-induced mice and free fatty acid (FFA)-stimulated HepG2 cells to investigate the efficacy of silibinin for the treatment of NAFLD and elucidate the underlying mechanisms. In vivo, silibinin showed significant efficacy in inhibiting adiposity, improving lipid profile levels, ameliorating hepatic histological aberrations, healing the intestinal epithelium, and restoring gut microbiota compositions. Furthermore, in vitro, silibinin effectively inhibited FFA-induced lipid accumulation in HepG2 cells. Mechanistically, we reveal that silibinin possesses the ability to ameliorate hepatic lipotoxicity by suppressing the heat shock protein 90 (Hsp90)/peroxisome proliferator-activated receptor-γ (PPARγ) pathway and alleviating gut dysfunction by inhibiting the Hsp90/NOD-like receptor pyrin domain-containing 3 (NLRP3) pathway. Altogether, our findings provide evidence that silibinin is a promising candidate for alleviating the "multiple-hit" in the progression of NAFLD.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Jiangsu
Engineering, Research Center for Evaluation and Transformation of
Classic TCM Prescriptions, Jiangsu Health
Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Xi Chen
- Institute
of Medical technology, Jiangsu College of
Nursing, Huaian 223003, China
| | - Huihui Hao
- Department
of Pharmacology, Jiangsu College of Nursing, Huaian 223003, China
| | - Shen Shen
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Siting Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yuping Sun
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jiaqi Xian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Zhitao Shao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| |
Collapse
|
16
|
Wang K, Chen X. Protective effect of flavonoids on oxidative stress injury in Alzheimer's disease. Nat Prod Res 2024:1-28. [PMID: 38910339 DOI: 10.1080/14786419.2024.2345760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which is mainly caused by the damage of the structure and function of the central nervous system. At present, there are many adverse reactions in market-available drugs, which can't significantly inhibit the occurrence of AD. Therefore, the current focus of research is to find safe and effective therapeutic drugs to improve the clinical treatment of AD. Oxidative stress bridges different mechanism hypotheses of AD and plays a key role in AD. Numerous studies have shown that natural flavonoids have good antioxidant effects. They can directly or indirectly resist -oxidative stress, inhibit Aβ aggregation and Tau protein hyperphosphorylation by activating Nrf2 and other oxidation-antioxidation-related signals, regulating synaptic function-related pathways, promoting mitochondrial autophagy, etc., and play a neuroprotective role in AD. In this review, we summarised the mechanism of flavonoids inhibiting oxidative stress injury in AD in recent years. Moreover, because of the shortcomings of poor biofilm permeability and low bioavailability of flavonoids, the advantages and recent research progress of nano-drug delivery systems such as liposomes and solid lipid nanoparticles were highlighted. We hope this review provides a useful way to explore safe and effective AD treatments.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinmei Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
17
|
Dinić S, Arambašić Jovanović J, Uskoković A, Jovanović A, Grdović N, Rajić J, Đorđević M, Sarić A, Bugarski B, Vidaković M, Mihailović M. Liposome Encapsulation Enhances the Antidiabetic Efficacy of Silibinin. Pharmaceutics 2024; 16:801. [PMID: 38931922 PMCID: PMC11207473 DOI: 10.3390/pharmaceutics16060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Silibinin has considerable therapeutic potential for the treatment of diabetes through anti-inflammatory, antioxidant, and immunomodulatory properties. However, the therapeutic application of silibinin is quite limited due to its poor bioavailability. In the present study, an attempt was made to improve the antidiabetic efficacy of silibinin by its encapsulation in liposomal vesicles. The liposomes with a high encapsulation efficiency of silibinin (96%) and a zeta potential of -26.2 ± 0.6 mV were developed and studied using nicotinamide/streptozotocin-induced diabetic rats. Administration of silibinin-loaded liposomes to diabetic rats lowered glucose levels, increased insulin levels, and improved pancreatic islet architecture. The anti-inflammatory effect of silibinin-loaded liposomes was demonstrated by a decrease in serum C-reactive protein (CRP) levels and a reduced deposition of collagen fibers in the islets of diabetic rats. Furthermore, silibinin-loaded liposomes were more efficient in lowering glucose, alanine transaminase, triglyceride, and creatinine levels in diabetic rats than pure silibinin. In addition, silibinin-loaded liposomes had a significantly better effect on beta-cell mass and Glut2 glucose receptor distribution in diabetic islets than pure silibinin. The present results clearly show that liposome encapsulation of silibinin enhances its antidiabetic efficacy, which may contribute to the therapeutic benefit of silibinin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Ana Sarić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| |
Collapse
|
18
|
Chen Z, Gao W, Feng X, Zhou G, Zhang M, Zeng L, Hu X, Liu Z, Song H. A comparative study on the preparation and evaluation of solubilizing systems for silymarin. Drug Deliv Transl Res 2024; 14:1616-1634. [PMID: 37964172 DOI: 10.1007/s13346-023-01476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-β-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-β-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Guizhi Zhou
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou, 350108, China
| | - Minxin Zhang
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| |
Collapse
|
19
|
Jaffar HM, Al‐Asmari F, Khan FA, Rahim MA, Zongo E. Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases-A comprehensive narrative review. Food Sci Nutr 2024; 12:3097-3111. [PMID: 38726410 PMCID: PMC11077231 DOI: 10.1002/fsn3.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Liver diseases, encompassing conditions such as cirrhosis, present a substantial global health challenge with diverse etiologies, including viral infections, alcohol consumption, and non-alcoholic fatty liver disease (NAFLD). The exploration of natural compounds as therapeutic agents has gained traction, notably the herbal remedy milk thistle (Silybum marianum), with its active extract, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations. It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity. Silymarin, a natural compound with antioxidant properties, anti-inflammatory effects, and antifibrotic activity, has shown potential in treating liver damage caused by alcohol, NAFLD, drug-induced toxicity, and viral hepatitis. Legalon® is a top-rated medication with excellent oral bioavailability, effective absorption, and therapeutic effectiveness. Its active component, silymarin, has antioxidant and hepatoprotective properties, Eurosil 85® also, a commercial product, has lipophilic properties enhanced by special formulation processes. Silymarin, during clinical trials, shows potential improvements in liver function, reduced mortality rates, and alleviation of symptoms across various liver disorders, with safety assessments showing low adverse effects. Overall, silymarin emerges as a promising natural compound with multifaceted hepatoprotective properties and therapeutic potential in liver diseases.
Collapse
Affiliation(s)
- Hafiza Madiha Jaffar
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Fahad Al‐Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food SciencesKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Faima Atta Khan
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Eliasse Zongo
- Laboratoire de Recherche et d'Enseignement en Santé et Biotechnologies AnimalesUniversité Nazi BONIBobo DioulassoBurkina Faso
| |
Collapse
|
20
|
Mohammadi S, Ashtary-Larky D, Asbaghi O, Farrokhi V, Jadidi Y, Mofidi F, Mohammadian M, Afrisham R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose-response meta-analysis. Phytother Res 2024; 38:2572-2593. [PMID: 38475999 DOI: 10.1002/ptr.8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
It is suggested that supplementation with silymarin (SIL) has beneficial impacts on kidney and liver functions. This systematic review and dose-response meta-analysis assessed the impact of SIL administration on certain hepatic, renal, and oxidative stress markers. A systematic search was conducted in various databases to identify relevant trials published until January 2023. Randomized controlled trials (RCTs) that evaluated the effects of SIL on kidney and liver markers were included. A random-effects model was used for the analysis and 41 RCTs were included. The pooled results indicated that SIL supplementation led to a significant reduction in serum levels of alkaline phosphatase, alanine transaminase, creatinine, and aspartate aminotransferase, along with a substantial elevation in serum glutathione in the SIL-treated group compared to their untreated counterparts. In addition, there was a nonsignificant decrease in serum levels of gamma-glutamyl transferase, malondialdehyde (MDA), total bilirubin, albumin (Alb), total antioxidant capacity, and blood urea nitrogen. Sub-group analyses revealed a considerable decline in MDA and Alb serum values among SIL-treated participants with liver disease in trials with a longer duration (≥12 weeks). These findings suggest that SIL may ameliorate certain liver markers with potential hepatoprotective effects, specifically with long-term and high-dose supplementation. However, its nephroprotective effects and impact on oxidative stress markers were not observed. Additional high-quality RCTs with longer durations are required to determine the clinical efficacy of SIL supplementation on renal and oxidative stress markers.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mohammadian
- Department of Exercise Physiology, Islamic Azad University of Ahvaz, Ahvaz, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang X, Jin Y, Di C, Zeng Y, Zhou Y, Chen Y, Pan Z, Li Z, Ling W. Supplementation of Silymarin Alone or in Combination with Salvianolic Acids B and Puerarin Regulates Gut Microbiota and Its Metabolism to Improve High-Fat Diet-Induced NAFLD in Mice. Nutrients 2024; 16:1169. [PMID: 38674860 PMCID: PMC11053752 DOI: 10.3390/nu16081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Can Di
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
22
|
Khawaja G, El-Orfali Y. Silibinin's Effects against Methotrexate-Induced Hepatotoxicity in Adjuvant-Induced Arthritis Rat Model. Pharmaceuticals (Basel) 2024; 17:431. [PMID: 38675395 PMCID: PMC11054686 DOI: 10.3390/ph17040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is the first drug of choice to treat several diseases, including rheumatoid arthritis. However, its administration is accompanied by severe side effects, most commonly hepatotoxicity. Hence, alternative therapies with a lower toxicity and fewer side effects are needed. This study aimed to investigate the antioxidant and hepatoprotective effects of silibinin (SIL, natural agent) against MTX-induced hepatotoxicity in an adjuvant-induced arthritis (AIA) rat model. Arthritic rats were treated with SIL (100 mg/kg) and/or methotrexate (2 mg/kg). Non-arthritic rats, arthritic untreated rats, and arthritic rats who received the vehicle were followed in parallel. SIL alleviated the systemic consequences of arthritis by restoring lost weight, decreasing the erythrocyte sedimentation rate, and ameliorating joint damage, which was evident both micro- and macroscopically. Additionally, SIL prevented the histopathological alterations in the liver and significantly reduced the liver damage caused by MTX and AIA, as shown by a decrease in the markers of liver damage (ALT and AST). Furthermore, SIL relieved the oxidative stress induced by AIA and MTX in liver tissue by decreasing the lipid peroxidation (MDA) levels and enhancing the antioxidant defense system (GSH levels; catalase and superoxide dismutase (SOD) activities). In conclusion, our results suggest that SIL is a potent antioxidant and hepatoprotective agent in arthritic rats. It markedly attenuated the progression and severity of the arthritic disease and eased the oxidative stress in liver tissue by improving the pro-oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
23
|
Hamed RA, Talib WH. Targeting cisplatin resistance in breast cancer using a combination of Thymoquinone and Silymarin: an in vitro and in vivo study. PHARMACIA 2024; 71:1-19. [DOI: 10.3897/pharmacia.71.e117997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Background: Breast cancer (BC) is considered the most diagnosed cancer among women globally. This is because of its high possibility of metastasis and high resistance to chemotherapy. Cisplatin is a platinum-based antitumor agent that is used to treat various types of cancer. However, the main obstacle to using this drug is drug resistance. Drug resistance is a cause of most relapses of cancer which eventually lead to death. Nowadays, combining natural products is a trend to overcome drug resistance. Thymoquinone (TQ) is a natural phytochemical that exists mainly in blackseed. It has been used in medicine for decades, especially as an anticancer agent. Silymarin is a milk thistle compound that exhibits anticancer, hepatoprotective, and neuroprotective activity. Hence, the combination of TQ and silymarin could be a probable solution to treat cancer and reduce chemoresistance.
Methods: This study tested this combination on cisplatin-sensitive (EMT6/P) and cisplatin-resistant (EMT6/CPR) mouse mammary cell lines. Apoptotic and antiproliferative activity was assessed for TQ and silymarin in vitro using caspase-3 and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays, respectively. An in vivo study was performed to evaluate the effect of TQ and silymarin combination in mice inoculated with EMT6/P and EMT6/CPR cells. The safety profile was also examined using creatinine and liver enzyme assays.
Results: In vitro, the TQ and silymarin combination synergized in both cell lines. Also, this combination caused apoptosis induction at a higher rate than the single treatment in both cell lines. In vivo, TQ and silymarin combination resulted in a remarkable reduction in tumor size and enhanced the cure rate in mice implanted with EMT6/P and EMT6/CPR cell lines. According to the safety profile results, TQ and silymarin combination was safe.
Conclusion: In conclusion, the combination of TQ and silymarin provides a promising solution in treating BC resistant to cisplatin by inducing apoptosis. Further studies are needed to define the exact anticancer mechanisms of this combination.
Collapse
|
24
|
Luo Z, Yin F, Wang X, Kong L. Progress in approved drugs from natural product resources. Chin J Nat Med 2024; 22:195-211. [PMID: 38553188 DOI: 10.1016/s1875-5364(24)60582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/02/2024]
Abstract
Natural products (NPs) have consistently played a pivotal role in pharmaceutical research, exerting profound impacts on the treatment of human diseases. A significant proportion of approved molecular entity drugs are either directly derived from NPs or indirectly through modifications of NPs. This review presents an overview of NP drugs recently approved in China, the United States, and other countries, spanning various disease categories, including cancers, cardiovascular and cerebrovascular diseases, central nervous system disorders, and infectious diseases. The article provides a succinct introduction to the origin, activity, development process, approval details, and mechanism of action of these NP drugs.
Collapse
Affiliation(s)
- Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
25
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
26
|
Pan E, Xin Y, Li X, Ping K, Li X, Sun Y, Xu X, Dong J. Immunoprotective effect of silybin through blocking p53-driven caspase-9-Apaf-1-Cyt c complex formation and immune dysfunction after difenoconazole exposure in carp spleen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19396-19408. [PMID: 38358624 DOI: 10.1007/s11356-024-32392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.
Collapse
Affiliation(s)
- Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
27
|
Singla RK, Singh D, Verma R, Kaushik D, Echeverría J, Garg V, Gupta P, Rahman MA, Sharma A, Mittal V, Shen B. Fermented formulation of Silybum marianum seeds: Optimization, heavy metal analysis, and hepatoprotective assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155286. [PMID: 38241906 DOI: 10.1016/j.phymed.2023.155286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Fermented formulations are extensively used in Ayurveda due to several benefits like improved palatability, bioavailability, pharmacological potential, and shelf life. These formulations can also quench the heavy metals from the plant material and thus reduce the toxicity. Seeds of Silybum marianum (L.) Gaertn. are widely used for the management of many liver diseases. STUDY DESIGN AND METHODS In the present study, we developed a novel fermented formulation of S. marianum seeds and evaluated parameters like safety (heavy metal analysis) and effectiveness (hepatoprotective). As the developed formulation's validation is crucial, the critical process variables (time, pH, and sugar concentration) are optimized for alcohol and silybin content using the Box-Behnken design (BBD). RESULTS The response surface methodology coupled with BBD predicted the optimized conditions (fermentation time (28 days), pH 5.6, and sugar concentration (22.04%)) for the development of a fermented formulation of the selected herb. Moreover, the alcohol content (6.5 ± 0.9%) and silybin concentration (26.1 ± 2.1%) were confirmed in optimized formulation by GC-MS and HPTLC analysis. The optimized formulation was also analyzed for heavy metals (Pb, As, Hg, and Cd); their concentration is significantly less than the decoction of herbs. Further, the comparative evaluation of the developed formulation with the marketed formulation also confirmed that the fermented formulation's silybin concentration and percentage release were significantly enhanced. In addition, the developed fermented formulation's percentage recovery of HepG2 cell lines after treatment with CCl4 was significantly improved compared with the marketed formulation. CONCLUSION It can be summarized that the developed fermented formulation improves safety and effectiveness compared to other market formulations. Finally, it can be concluded that the developed fermented formulation could be further explored as a better alternative for developing Silybum marianum preparation.
Collapse
Affiliation(s)
- Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Digvijay Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Javier Echeverría
- Departamento de Ciencias Del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Pankaj Gupta
- School of Medical and Allied Sciences, K.R. Manglam University, Gurugram
| | | | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China.
| |
Collapse
|
28
|
Zhang Z, Shi B, Lv X, Dong Y, Li L, Xia Z. Effects of silybin supplementation on growth performance, serum indexes and liver transcriptome of Peking ducks. Front Vet Sci 2024; 10:1325115. [PMID: 38239743 PMCID: PMC10795170 DOI: 10.3389/fvets.2023.1325115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
As an emerging feed additive extracted from the traditional herb milk thistle, silybin has few applications and studies in Peking ducks. The aim of this study was to explore the practical significance of silymarin application in Peking ducks and to provide more theoretical support for the application of silymarin in livestock and poultry production. A total of 156 1-day-old healthy Peking ducks were randomly divided into four groups and supplemented with 0 mg/kg (control group), 400 mg/kg (S400), 800 mg/kg (S800) and 1,600 mg/kg (S1600) of silybin in the diets at day 14, to investigate the effects of silymarin on the growth, serum indexes and liver transcriptome of Peking ducks. The whole experiment lasted until day 42, and the sample collection was scheduled to take place in the morning. A substantial inprovement in average daily gain (ADG) and a decrease in feed conversion ratio (FCR) occurred in the S1600 group on days 14-28 compared to the control group (p < 0.05). The FCRs of other additive groups in the same period showed the same results. Supplementation of diets with silybin significantly increased serum IgA levels and when 1,600 mg/kg of silybin was given, levels of TNF-α and IL-6 were also significantly decreased (p < 0.05). In addition, we observed that the S1600 group had a significantly lower (p < 0.05) glutamine transaminase and an increased (p < 0.05) T-SOD level in the S400 group (p < 0.05). Liver transcriptome sequencing showed that 71 and 258 differentially expressed genes (DEGs) were identified in the S400 and S1600 groups, respectively, compared with the control group. DEGs related to cell composition and function, antigen processing and presentation were up-regulated, while DEGs related to insulin resistance and JAK-STAT were down-regulated. Conclusively, silybin can be used as a feed additive to improve the growth performance and health status of Peking ducks.
Collapse
Affiliation(s)
- Ziyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueze Lv
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing General Animal Husbandry Station, Beijing, China
| | - Yingchao Dong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar M, Mittal V, Kaushik D. Exploring the Prospective of Curcumin-loaded Nanomedicine in Brain Cancer Therapy: An Overview of Recent Updates and Patented Nanoformulations. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:278-294. [PMID: 37904561 DOI: 10.2174/1872210517666230823155328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
Cancer is a complex, one of the fatal non-communicable diseases, and its treatment has enormous challenges, with variable efficacy of traditional anti-cancer agents. By 2025, it is expected that 420 million additional cases of cancer will be diagnosed yearly. However, among various types of cancer, brain cancer treatment is most difficult due to the presence of blood-brain barriers. Nowadays, phytoconstituents are gaining popularity because of their biosafety and low toxicity to healthy cells. This article reviews various aspects related to curcumin for brain cancer therapeutics, including epidemiology, the role of nanotechnology, and various challenges for development and clinical trials. Furthermore, it elaborates on the prospects of curcumin for brain cancer therapeutics. In this article, our objective is to illuminate the anti-cancer potential of curcumin for brain cancer therapy. Moreover, it also explores how to defeat its constraints of clinical application because of poor bioavailability, stability, and rapid metabolism. This review also emphasizes the possibility of curcumin for the cure of brain cancer using cuttingedge biotechnological methods based on nanomedicine. This review further highlights the recent patents on curcumin-loaded nanoformulations for brain cancer. Overall, this article provides an overview of curcumin's potential in brain cancer therapy by considering challenges to be overwhelmed and future prospective. Moreover, this review summarizes the reported literature on the latest research related to the utility of curcumin in brain cancer therapy and aims to provide a reference for advanced investigation on brain cancer treatment.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
30
|
Rahimi-Dehkordi N, Heidari-Soureshjani S, Sherwin CMT. The Effects and Safety of Silymarin on β-thalassemia in Children and Adolescents: A Systematic Review based on Clinical Trial Studies. Rev Recent Clin Trials 2024; 19:242-255. [PMID: 38818907 DOI: 10.2174/0115748871305325240511122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND β-thalassemia imposes significant complications on affected patients. Silymarin, a natural flavonoid complex, has potential therapeutic properties. OBJECTIVE This systematic review aims to comprehensively evaluate the literature on the mechanistic effects of Silymarin on β-thalassemia outcomes in children and adolescents. METHODS A systematic search of electronic databases, including MEDLINE/PubMed, Embase, Scopus, Cochrane Library, and Web of Science (WOS), was done to identify relevant clinical trials before January 2024. Various data were extracted, including study characteristics, outcomes measured (hematological parameters, oxidative stress markers, iron metabolism, and other outcomes), proposed mechanisms, and safety. RESULTS By iron chelation effects, Silymarin can reduce reactive oxygen species (ROS) production, increase intracellular antioxidant enzyme glutathione (GSH), and insert antioxidant effects. It also attenuated inflammation through reduced tumor necrosis factor-alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interferon-gamma (IFNγ), C-reactive protein (CRP), interleukin 6 (IL-6), IL-17, and IL-23 levels and increase in IL-4 and IL-10 levels. By reducing iron overload conditions, Silymarin indicates modulatory effects on immune abnormalities, inhibits red blood cell (RBC) hemolysis, increases RBC count, and minimizes the need for a transfusion. Moreover, it reduces myocardial and hepatic siderosis, improves liver function tests, and modifies abnormal enzymes, particularly for aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, and total protein levels. Silymarin also reduces iron overload, increases antioxidant and anti-inflammatory capacity in cardiomyocytes, and reveals antioxidant effects. CONCLUSION Silymarin indicates promising effects on various aspects of children and adolescents with β-thalassemia and has no serious side effects on the investigated dosage.
Collapse
Affiliation(s)
- Nasim Rahimi-Dehkordi
- Department of Pediatrics, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Catherine M T Sherwin
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| |
Collapse
|
31
|
Zhang G, Wang L, Zhao L, Yang F, Lu C, Yan J, Zhang S, Wang H, Li Y. Silibinin Induces Both Apoptosis and Necroptosis with Potential Anti-tumor Efficacy in Lung Cancer. Anticancer Agents Med Chem 2024; 24:1327-1338. [PMID: 39069713 DOI: 10.2174/0118715206295371240724092314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incidence of lung cancer is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substances and elucidating their mechanism have been the focus of anti-tumor research. OBJECTIVE Silibinin (SiL) has been shown to be a natural product with a wide range of pharmacological activities, including anti-tumour activity. In our work, SiL was chosen as a possible substance that could inhibit lung cancer. Moreover, its effects on inducing tumor cell death were also studied. METHODS CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3, and MLKL were analyzed using the co-immunoprecipitation (co-IP) technique. Necrosulfonamide (Nec, an MLKL inhibitor) was used to carry out experiments to assess the changes in apoptosis following the blockade of cell necroptosis. in vitro, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer. RESULTS With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. There was an increase in cleaved caspase-9, caspase-3, and PARP, with a down-regulation of Bcl-2 and an up-regulation of Bax. In addition, the amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins (MLKL, RIPK1, and RIPK3), and the co-IP assay further confirmed the interactions among these three proteins, indicating the necrosome formation induced by SiL. Furthermore, Nec increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth, and H&E staining showed significant damage to the tumour tissue. The results of the IHC showed that the expression of RIPK1, RIPK3, and MLKL was more pronounced in the tumor tissue. CONCLUSIONS This study confirmed the dual effect of SiL, as it can induce both biological processes, apoptosis and necroptosis, in lung cancer. SiL-induced apoptosis involved the mitochondrial pathway, as indicated by changes in caspase-9, Bcl-2, and Bax. Necroptosis may be activated due to the changes in the expression of associated proteins in tumour cells and tissues. It has been observed that blocking necroptosis by SiL increased cell death efficiency. This study helps clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in the dual induction of apoptosis and necroptosis. Our work provides an experimental basis for the research on cell death induced by SiL and reveals its possible applications for improving the management of lung cancer.
Collapse
Affiliation(s)
- Guoqing Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Li Wang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Limei Zhao
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Fang Yang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Chunhua Lu
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning, Guangxi, 530021, P.R. China
| | - Jianhua Yan
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, P.R. China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Yixiang Li
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| |
Collapse
|
32
|
Rani J, Dhull SB, Rose PK, Kidwai MK. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: a metabolic mechanism perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155142. [PMID: 37913641 DOI: 10.1016/j.phymed.2023.155142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the most challenging and thought-provoking liver problem for hepatologists owing to unregulated medication usage in medical practices, nutritional supplements, and botanicals. Due to underreporting, analysis, and identification issues, clinically evaluated medication hepatotoxicity is prevalent yet hard to quantify. PURPOSE This review's primary objective is to thoroughly compare pharmaceutical drugs and herbal compounds that have undergone clinical trials, focusing on their metabolic mechanisms contributing to the onset of liver illnesses and their hepatoprotective effects. METHODS The data was gathered from several online sources, such as PubMed, Scopus, Google Scholar, and Web of Science, using appropriate keywords. RESULTS The prevalence of conventional and herbal medicine is rising. A comprehensive understanding of the metabolic mechanism is necessary to mitigate the hepatotoxicity induced by drugs and facilitate the incorporation or substitution of herbal medicine instead of pharmaceuticals. Moreover, pre-clinical pharmacological research has the potential to facilitate the development of natural products as therapeutic agents, displaying promising possibilities for their eventual clinical implementation. CONCLUSIONS Acetaminophen, isoniazid, rifampicin, diclofenac, and pyrogallol have been identified as the most often reported synthetic drugs that produce hepatotoxicity by oxidative stress, inflammation, apoptosis, and fibrosis during the last several decades. Due to their ability to downregulate many factors (such as cytokines) and activate several enzyme/enzyme systems, herbal substances (such as Gingko biloba extract, curcumin, resveratrol, and silymarin) provide superior protection against harmful mechanisms which induce hepatotoxicity with fewer adverse effects than their synthetic counterparts.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Mohd Kashif Kidwai
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| |
Collapse
|
33
|
Ramírez-Carreto RJ, Zaldívar-Machorro VJ, Pérez-Ramírez DJ, Rodríguez-López BE, Meza C, García E, Santamaría A, Chavarría A. Oral Administration of Silybin Protects Against MPTP-Induced Neurotoxicity by Reducing Pro-inflammatory Cytokines and Preserving BDNF Levels in Mice. Mol Neurobiol 2023; 60:6774-6788. [PMID: 37480498 PMCID: PMC10657796 DOI: 10.1007/s12035-023-03485-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease associated with motor dysfunction secondary to the loss of dopaminergic neurons in the nigrostriatal axis. Actual therapy consists mainly of levodopa; however, its long-term use promotes secondary effects. Consequently, finding new therapeutic alternatives, such as neuroprotective molecules, is necessary. Among these alternatives is silybin (Sb), the major bioactive flavonolignan in silymarin. Both exert neuroprotective effects, preserving dopamine levels and dopaminergic neurons when administered in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model, being probably Sb the potential therapeutic molecule behind this effect. To elucidate the role of Sb in the PD model, we determined the dose-dependent conservation of striatal dopamine content following Sb oral administration. Then, we evaluated motor deficit tests using the best dopamine conservative dose of Sb and determined a cytokine-dependent inflammatory profile status, malondialdehyde as an oxidative stress product, and neurotrophic factors content in the MPTP-induced mouse PD model. Our results show that oral Sb at 100 mg/kg dose conserved about 60% dopamine levels. Also, Sb improved motor deficits, preserved neurotrophic factors content and mitochondrial function, reduced lipid peroxidation, diminished proinflammatory cytokines to basal levels, enhanced fractalkine production in the striatum and substantia nigra, and increased IL-10 and IL-4 levels in the substantia nigra in the MPTP mice. Thus, oral Sb may be a potential pharmacological PD treatment alternative.
Collapse
Affiliation(s)
- Ricardo J Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Víctor J Zaldívar-Machorro
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Dafne J Pérez-Ramírez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
| | - Blanca E Rodríguez-López
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
| | - Claudia Meza
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México
| | - Esperanza García
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S, Ciudad de México, 14269, México
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, S.S, Ciudad de México, 04510, México
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Ciudad de México, México.
| |
Collapse
|
34
|
Calderon Martinez E, Herrera D, Mogan S, Hameed Z, Jangda AA, Khan TJ, Mroke P, Sajid S, Shah YR, Baig I. Impact of Silymarin Supplements on Liver Enzyme Levels: A Systematic Review. Cureus 2023; 15:e47608. [PMID: 38021897 PMCID: PMC10667129 DOI: 10.7759/cureus.47608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Silymarin, extracted from milk thistle (Silybum marianum), is esteemed for its antioxidative, anti-inflammatory, and antifibrotic properties, notably within liver-related contexts. Nevertheless, a comprehensive grasp of its effects on liver enzymes remains elusive. This systematic review aims to scrutinize the influence of silymarin supplements on liver enzyme levels, elucidating its potential for hepatoprotection. Following PRISMA 2020 guidelines, we systematically reviewed pertinent studies in PubMed/MEDLINE (Medical Literature Analysis and Retrieval System Online). Our inclusion criteria comprised randomized clinical trials (RCTs) published between 1992 and 2023, accessible in English, with a primary focus on liver enzyme levels. Non-original research, ambiguously defined studies, and those lacking essential data were excluded. Of the 1,707 initially identified articles, 29 RCTs met the inclusion criteria, encompassing 3,846 participants with diverse underlying conditions. Silymarin dosages ranged from 140 mg to 420 mg, administered for various durations. Results revealed that 65.5% of the studies reported reduced liver enzyme levels, 20.7% exhibited no significant change, and 13.8% observed elevated liver enzymes. The systematic review implies a potential advantageous influence of silymarin on liver enzyme levels, indicating its hepatoprotective potential. Nevertheless, outcome disparities may stem from comorbidities, suboptimal doses, and underlying diseases. Notably, silymarin's impact on liver enzymes could be context-dependent, with varying responses among different conditions, with the decrease of liver enzyme levels in patients with non-alcoholic fatty liver disease. Silymarin supplements exhibit potential for hepatoprotection by ameliorating liver enzyme levels across diverse conditions. Further research should ascertain optimal dosages and contexts, accounting for individual patient characteristics and underlying diseases.
Collapse
Affiliation(s)
| | - Domenica Herrera
- Internal Medicine, Pontificia Universidad Católica del Ecuador, Quito, ECU
| | - Saruveish Mogan
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kuching, MYS
| | - Zainab Hameed
- Internal Medicine, Shifa College of Medicine, Islamabad, PAK
| | | | - Tayyaba J Khan
- Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | - Palvi Mroke
- Internal Medicine, Caribbean Medical University School of Medicine, Willemstad, CUW
| | - Samar Sajid
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Yash R Shah
- Medicine, GMERS (Gujarat Medical Education and Research Society) Medical College and Civil Hospital, Sola, Ahmedabad, IND
| | - Imran Baig
- Internal Medicine, Houston Methodist Hospital, Houston, USA
| |
Collapse
|
35
|
Jabbari A, Alani B, Arjmand A, Mazoochi T, Kheiripour N, Ardjmand A. Silymarin pretreatment protects against ethanol-induced memory impairment: Biochemical and histopathological evidence. J Chem Neuroanat 2023; 132:102310. [PMID: 37429530 DOI: 10.1016/j.jchemneu.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Ethanol (Eth.) abuse induces memory impairment. Oxidative damage and apoptosis are considered the likely causes of memory impairment. Silymarin (Sil.) is a flavonoid isolated from the plant Silymarin marianum (milk thistle). While studies have reported the neuroprotective effect of Sil. against neurodegenerative processes, the precise mechanism of action of Sil. in Eth.-induced memory impairment remains unclear. METHODS Twenty-eight rats were equally divided into four groups: Control (saline 1 ml/rat); Sil. (200 mg/kg for 30 days); Eth. (2 g/kg/day for 30 days); and Sil. + Eth. Behavioral tests including inhibitory avoidance and open field were used to investigate memory and locomotion. Brain antioxidant parameters, including catalase, superoxide dismutase, total antioxidant capacity and total thiol group, plus oxidative parameters, including malondialdehyde and total oxidant status, followed by hippocampal apoptosis (Bax/Bcl2, cleaved caspase) and histopathological changes were evaluated in the groups. RESULTS While the administration of Eth. impaired memory, Sil. significantly reversed Eth-induced memory deficits. Eth. administration also augmented brain oxidative and hippocampal apoptosis parameters. In contrast, a marked reduction in brain antioxidant and anti-apoptotic parameters was observed in the Eth. group. At the tissue level, hippocampal sections from Eth.-treated animals revealed severe neuronal damage. The administration of Sil. to Eth.-treated rats remarkably alleviated all the said Eth.-induced biochemical and histopathological effects. On the contrary, Sil. alone did not change the behavior and biochemical/molecular parameters. CONCLUSION The memory-enhancing effect of Sil. in Eth.-induced demented rats may be partly mediated by the augmented antioxidant effects and amelioration of apoptotic and histopathological changes.
Collapse
Affiliation(s)
- A Jabbari
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - B Alani
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - A Arjmand
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Islamic Republic of Iran
| | - T Mazoochi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - N Kheiripour
- Biochemistry and Nutrition Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - A Ardjmand
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
36
|
Bai Y, Wang L, TingYang, Wang L, Ge W. Silymarin ameliorates peritoneal fibrosis by inhibiting the TGF-β/Smad signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2379-2391. [PMID: 37052642 DOI: 10.1007/s00210-023-02450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023]
Abstract
Peritoneal dialysis (PD) is the mainstay of treatment for renal failure replacement therapy. Although PD has greatly improved the quality of life of end-stage renal disease (ESRD) patients, long-term PD can lead to ultrafiltration failure, which in turn causes peritoneal fibrosis (PF). Silymarin (SM) is a polyphenolic flavonoid isolated from the milk thistle (Silybum marianum) species that has a variety of pharmacological actions, including antioxidant, anti-inflammatory, antiviral, and anti-fibrotic pharmacological activities. However, the effect of SM on PF and its potential mechanisms have not been clarified. The aim of this study was to investigate the preventive effect of SM on PF in vitro and in vivo as well as elucidate the underlying mechanisms. We established PF mouse models and human pleural mesothelial cell fibrosis in vitro by intraperitoneal injection of high-glucose peritoneal dialysis solution (PDS) or transforming growth factor-β1 (TGF-β1), and evaluated the effect of SM on peritoneal fibrosis in vivo and in vitro. We found that SM alleviated peritoneal dysfunction. Meanwhile, SM inhibited the expression of fibrotic markers (TGF-β1, collagen I, fibronectin) and restored the expression of E-cadherin, BMP-7 in PF mice and TGF-β1-treated Met-5A cells. Furthermore, SM markedly down-regulated the expression of TGF-β1, p-Smad2, and p-Smad3 and up-regulated the expression of smad7. In conclusion, these findings suggested that SM may be an efficient and novel therapy for the prevention of PF through inhibition of TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Yingwen Bai
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Lulu Wang
- Nanjing Drum Tower Hospital, Nanjing, 210008, Jiangsu Province, China
| | - TingYang
- Nanjing Drum Tower Hospital, Nanjing, 210008, Jiangsu Province, China
| | - Lingyun Wang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Weihong Ge
- Nanjing Drum Tower Hospital, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
37
|
Abbasinia H, Heshmati M, Yousefi M, Najjar N, Sadeghi H. Silymarin-Loaded Tin(IV) Nanoparticles Exhibit Enhanced Bioavailability and Antiproliferative Effects on Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:3768-3777. [PMID: 37608575 DOI: 10.1021/acsabm.3c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Silymarin (SM) exhibits potential therapeutic effects due to having antioxidant activity. However, the low solubility and bioavailability of SM restrict its biological performance. To overcome this limitation, this study aimed to develop a nanoformulation composed of SM and dimethyltindichloride and investigate the effect of SM-loaded Sn nanoparticles on cancer cell growth and survival. An SM-Sn complex was synthesized and then characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), EDS-MAP, dynamic light scattering (DLS), and ζ-potential analysis. After that, the SW480 colorectal cancer cell line was treated with different concentrations of SM and the SM-Sn complex. Cell viability was examined through the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, analyzing apoptosis, and live-dead assay. The lipid peroxidation rate was assessed through the measurement of thiobarbituric acid (TBA). Intracellular reactive oxygen species (ROS) level and cell population in the cell cycle were measured using a flow cytometry instrument. To evaluate the colonization ability of SW480 cells, a colony formation assay was performed. Gene expression analysis was also conducted using a real-time polymerase chain reaction (PCR) technique. The findings of this study revealed the effectiveness of the SM-Sn complex in decreasing SW480 cell viability by inducing cell death-associated mechanisms. We found that the SM-Sn complex increases intracellular ROS level and malondialdehyde (MDA) content. It was also revealed that the SM-Sn complex induces cell cycle arrest and the expression of apoptotic genes. In addition, the SM-Sn complex could effectively hinder SW480 cells from constituting colonies. We conclude that the use of tin(IV) as a scaffold for enhanced delivery of SM could be considered an efficient option for inhibiting cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Hossein Abbasinia
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, 1949635881 Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, 1949635881 Tehran, Iran
| | - Mohammad Yousefi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, 1913674711 Tehran, Iran
| | - Nabaa Najjar
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, 1449614535 Tehran, Iran
| | - Hanieh Sadeghi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1648745854 Tehran, Iran
| |
Collapse
|
38
|
Azam I, Benson JD. Silymarin mediated osmotic responses and damage in HepG2 cell suspensions and monolayers. Cryobiology 2023; 112:104552. [PMID: 37301358 DOI: 10.1016/j.cryobiol.2023.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Maintenance of cells within a volume range compatible with their functional integrity is a critical determinant of cell survival after cryopreservation, and quantifying this osmotically induced damage is a part of the rational design of improved cryopreservation protocols. The degree that cells tolerate osmotic stress significantly impacts applicable cryoprotocols, but there has been little research on the time dependence of this osmotic stress. Additionally, the flavonoid silymarin has been shown to be hepatoprotective. Therefore, here we test the hypotheses that osmotic damage is time-dependent and that flavonoid inclusion reduces osmotic damage. In our first experiment, cells were exposed to a series of anisosmotic solutions of graded hypo- and hypertonicity for 10-40 min, resulting in a conclusion that osmotically induced damage is time dependent. In the next experiment, adherent cells preincubated with silymarin at the concentration of 10-4 mol/L and 10-5 mol/L showed a significant increase in cell proliferation and metabolic activity after osmotic stress compared to untreated matched controls. For instance, when adherent cells preincubated with 10-5 mol/L silymarin were tested, resistance to osmotic damage and a significant increase (15%) in membrane integrity was observed in hypo-osmotic media and a 22% increase in hyperosmotic conditions. Similarly, significant protection from osmotic damage was observed in suspended HepG2 cells in the presence of silymarin. Our study concludes that osmotic damage is time dependent, and the addition of silymarin leads to elevated resistance to osmotic stress and a potential increase in the cryosurvival of HepG2 cells.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Canada.
| |
Collapse
|
39
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
40
|
Alharthy KM, Balaha MF, Devi S, Altharawi A, Yusufoglu HS, Aldossari RM, Alam A, di Giacomo V. Ameliorative Effects of Isoeugenol and Eugenol against Impaired Nerve Function and Inflammatory and Oxidative Mediators in Diabetic Neuropathic Rats. Biomedicines 2023; 11:1203. [PMID: 37189822 PMCID: PMC10135797 DOI: 10.3390/biomedicines11041203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetic polyneuropathy is characterized by structural abnormalities, oxidative stress, and neuroinflammation. The current study aimed to determine the antinociceptive effects of isoeugenol and eugenol and their combinations in neuropathic pain resulting from streptozotocin (STZ)-induced diabetes and neuroinflammation. Female SD rats were categorized into normal control, diabetic control, and treatment groups. On the 28th day and 45th day, behavioral studies (allodynia and hyperalgesia) were performed to analyze the development and protection of diabetic polyneuropathy. The levels of inflammatory and oxidative mediators, such as superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), catalase, reduced glutathione, and thiobarbituric acid reactive substances (TBARS), were estimated. In addition, the level of nerve growth factor (NGF) was estimated at the end of the study in different groups. The anti-NGF treatment decreased its upregulation in the dorsal root ganglion significantly. The results showed that isoeugenol, eugenol, and their combination have therapeutic potential against neuronal and oxidative damage induced by diabetes. In particular, both compounds significantly affected behavioral function in treated rats and showed neuroprotection against diabetic neuropathy, and their combination had synergistic effects.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.M.A.); (R.M.A.)
| | - Mohamed F. Balaha
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Rana M. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.M.A.); (R.M.A.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Viviana di Giacomo
- Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
41
|
Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. EGYPTIAN LIVER JOURNAL 2023. [DOI: 10.1186/s43066-023-00248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Natural bioactive components derived from plant secondary metabolites have been pronounced as valuable alternatives for anticipating and subsiding hepatotoxic effects and its chronic complications based on experimental verification. The focus of this review is to elucidate the commonly used modern medicine for the treatment of liver disease and how major phytoconstituents have been tested for hepatoprotective activity, mechanism of action of some promising agents from natural sources, and clinical trial data for treating in patients with different liver diseases by the aid of natural phytoconstituents.
Main text
The review shows fifteen major isolated phytoconstituents, their biological sources, chemical structures, utilized plant parts, type of extracts used, hepatoprotective assay method, and their possible mechanism of action on the hepatoprotection. Nine promising hepatoprotective leads from natural sources with their chemistry and hepatoprotective mechanism are mentioned briefly. The review further includes the recent clinical trial studies of some hepatoprotective leads and their clinical outcome with different liver disease patients. Scientific studies revealed that antioxidant properties are the central mechanism for the phytoconstituents to subside different disease pathways by upsurging antioxidant defense system of cells, scavenging free radicals, down surging lipid peroxidation, improving anti-inflammatory potential, and further protecting the hepatic cell injury. In this review, we summarize recent development of natural product-based hepatoprotective leads and their curative potential for various sort of liver diseases. Furthermore, the usefulness of hit and lead molecules from natural sources for significant clinical benefit to discover new drug molecule and downsizing the problems of medication and chemical-induced hepatotoxic effects is extrapolated.
Conclusion
Further research are encouraged to elucidate the pharmacological principle of these natural-based chemical agents which will stimulate future pharmaceutical development of therapeutically beneficial hepatoprotective regimens.
Collapse
|
42
|
Tomou EM, Papakyriakopoulou P, Skaltsa H, Valsami G, Kadoglou NPE. Bio-Actives from Natural Products with Potential Cardioprotective Properties: Isolation, Identification, and Pharmacological Actions of Apigenin, Quercetin, and Silibinin. Molecules 2023; 28:molecules28052387. [PMID: 36903630 PMCID: PMC10005323 DOI: 10.3390/molecules28052387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. As a result, pharmaceutical and non-pharmaceutical interventions modifying risk factors for CVDs are a top priority of scientific research. Non-pharmaceutical therapeutical approaches, including herbal supplements, have gained growing interest from researchers as part of the therapeutic strategies for primary or secondary prevention of CVDs. Several experimental studies have supported the potential effects of apigenin, quercetin, and silibinin as beneficial supplements in cohorts at risk of CVDs. Accordingly, this comprehensive review focused critically on the cardioprotective effects/mechanisms of the abovementioned three bio-active compounds from natural products. For this purpose, we have included in vitro, preclinical, and clinical studies associated with atherosclerosis and a wide variety of cardiovascular risk factors (hypertension, diabetes, dyslipidemia, obesity, cardiac injury, and metabolic syndrome). In addition, we attempted to summarize and categorize the laboratory methods for their isolation and identification from plant extracts. This review unveiled many uncertainties which are still unexplored, such as the extrapolation of experimental results to clinical practice, mainly due to the small clinical studies, heterogeneous doses, divergent constituents, and the absence of pharmacodynamic/pharmacokinetic analyses.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | |
Collapse
|
43
|
Effects of Dietary Milk Thistle ( Silybum marianum) Supplementation in Ducks Fed Mycotoxin-Contaminated Diets. Vet Sci 2023; 10:vetsci10020100. [PMID: 36851404 PMCID: PMC9967284 DOI: 10.3390/vetsci10020100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
The medicinal plant milk thistle (Silybum marianum) has been widely used due to its hepatoprotective properties. The main objective of our study was to investigate the health protective effects of dietary milk thistle seed (MS), oil (MO), and seed cake (MSC) in ducks fed diets naturally contaminated with deoxynivalenol (DON; 3.43-3.72 mg/kg feed) and zearalenone (ZEN; 0.46-0.50 mg/kg feed). Female White Hungarian ducks were randomly allocated to four dietary treatments consisting of the control diet (C), the control diet supplemented with 0.5% MS, 0.5% MSC, or 0.1% MO. The feeding of experimental diets did not result in mortality cases, clinical signs of mycotoxicosis, or in differences of clinical chemistry values of blood serum. The positive effect of MO on vacuolar hepatocyte degeneration exceeded that of the MSC on d14 and both MS and MSC on d42. Each treatment was equally effective in the decrease of the severity of solitary cell death and infiltration of lympho- and histiocytes in the liver on d28 as well as in the prevention of lymphocyte depletion in the spleen and bursa of Fabricius on d14. In conclusion, the applied treatments have been proven effective in the prevention of histopathological changes caused by DON and ZEN.
Collapse
|
44
|
Ghodousi M, Karbasforooshan H, Arabi L, Elyasi S. Silymarin as a preventive or therapeutic measure for chemotherapy and radiotherapy-induced adverse reactions: a comprehensive review of preclinical and clinical data. Eur J Clin Pharmacol 2023; 79:15-38. [PMID: 36450892 DOI: 10.1007/s00228-022-03434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Thus far, silymarin has been examined in several studies for prevention or treatment of various chemotherapy or radiotherapy-induced adverse reactions. In this review, we try to collect all available human, animal, and pre-clinical data in this field. METHODS The search was done in Scopus, PubMed, Medline, and systematic reviews in the Cochrane database, using the following keywords: "Cancer," "Chemotherapy," "Radiotherapy," "Mucositis," "Nephrotoxicity," "Dermatitis," "Ototoxicity," "Cardiotoxicity," "Nephrotoxicity," "Hepatotoxicity," "Reproductive system," "Silybum marianum," "Milk thistle," and "Silymarin" and "Silybin." We included all relevant in vitro, in vivo, and human studies up to the date of publication. RESULTS Based on 64 included studies in this review, silymarin is considered a safe and well-tolerated compound, with no known clinical drug interaction. Notably, multiple adverse reactions of chemotherapeutic agents are effectively managed by its antioxidant, anti-apoptotic, anti-inflammatory, and anti-immunomodulatory properties. Clinical trials suggest that oral silymarin may be a promising adjuvant with cancer treatments, particularly against hepatotoxicity (n = 10), nephrotoxicity (n = 3), diarrhea (n = 1), and mucositis (n = 3), whereas its topical formulation can be particularly effective against radiodermatitis (n = 2) and hand-foot syndrome (HFS) (n = 1). CONCLUSION Further studies are required to determine the optimal dose, duration, and the best formulation of silymarin to prevent and/or manage chemotherapy and radiotherapy-induced complications.
Collapse
Affiliation(s)
- Mahsa Ghodousi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedyieh Karbasforooshan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Liu P, Wang C, Chen W, Kang Y, Liu W, Qiu Z, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Inhibition of GluN2B pathway is involved in the neuroprotective effect of silibinin on streptozotocin-induced Alzheimer's disease models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154594. [PMID: 36610115 DOI: 10.1016/j.phymed.2022.154594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Over-activation of N-methyl-D-aspartate receptors (NMDARs) is involved in sporadic Alzheimer's disease. Silibinin, a natural flavonoid gained from the seeds of Silybum marianum, exerts neuroprotective effects on sporadic AD models, but its impacts on NMDARs remain unknown. PURPOSE To study silibinin's regulatory effects on NMDARs pathway in sporadic AD models. METHODS MTT assay, western blotting, confocal microscopy, flow cytometry, RT-PCR, and siRNA transfection etc. were used for cellular and molecular studies. The direct interactions between silibinin and NMDAR subunits were evaluated by computational molecular docking, drug affinity responsive target stability (DARTS) assay and cellular thermal shift assay (CETSA). Y maze test, novel objects recognition test and Morris water maze test were conducted to examine the learning and memory ability of rats. RESULTS An in vitro AD model was established by treating HT22 murine hippocampal neurons with streptozotocin (STZ), as evidenced by the amyloid β (Aβ) deposition and hyperphosphorylation of tau proteins. Silibinin shows protection of neurons against STZ-induced cell damage. It is noteworthy that STZ-induced cellular calcium influx is inhibited by silibinin-treatment, indicating the possible modulation of calcium channels. Studies on NMDARs, the most widely distributed calcium channel, by using molecular docking, DARTS and CESTA, reveal that the GluN2B subunit, but not GluN2A, is the potential target of silibinin. Further studies using the pharmacological agonist (NMDA) and the GluN2B-specific inhibitor (Ifenprodil) or siRNA, indicate that the protection by silibinin treatment from STZ-induced cytotoxicity is medicated through interference with GluN2B-containing NMDARs, followed by the upregulation of CaMKIIα/ BDNF/ TrkB signaling pathway and improved levels of synaptic proteins (SYP and PSD-95). The results in vivo using rats intracerebroventricularly injected with STZ (ICV-STZ), a well-established sporadic AD model, confirm that silibinin improves learning and memory ability in association with modulation of the GluN2B/CaMKIIα/ BDNF/TrkB signaling pathway. CONCLUSION Inhibiting over-activation of GluN2B-containing NMDARs is involved in the neuroprotective effect of silibinin on STZ-induced sporadic AD models.
Collapse
Affiliation(s)
- Panwen Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chenkang Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wenhui Chen
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu Kang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhiyue Qiu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Department of Chemistry and Life science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Liaoning, China.
| |
Collapse
|
46
|
Role of Oxidative Stress in Peyronie's Disease: Biochemical Evidence and Experiences of Treatment with Antioxidants. Int J Mol Sci 2022; 23:ijms232415969. [PMID: 36555611 PMCID: PMC9781573 DOI: 10.3390/ijms232415969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Peyronie's disease (PD) is a chronic inflammatory condition affecting adult males, involving the tunica albuginea of the corpora cavernosa of the penis. PD is frequently associated with penile pain, erectile dysfunction, and a secondary anxious-depressive state. The etiology of PD has not yet been completely elucidated, but local injury is generally recognized to be a triggering factor. It has also been widely proven that oxidative stress is an essential, decisive component in all inflammatory processes, whether acute or chronic. Current conservative medical treatment comprises oral substances, penile injections, and physical therapy. AIM This article intends to show how antioxidant therapy is able to interfere with the pathogenetic mechanisms of the disease. METHOD This article consists of a synthetic narrative review of the current scientific literature on antioxidant therapy for this disease. RESULTS The good results of the antioxidant treatment described above also prove that the doses used were adequate and the concentrations of the substances employed did not exceed the threshold at which they might have interacted negatively with the mechanisms of the redox regulation of tissue. CONCLUSIONS We believe new, randomized, controlled studies are needed to confirm the efficacy of treatment with antioxidants. However, we consider the experiences of antioxidant treatment which can already be found in the literature useful for the clinical practice of urologists in the treatment of this chronic inflammatory disease.
Collapse
|
47
|
Abdulmajeed AM, Alharbi BM, Alharby HF, Abualresh AM, Badawy GA, Semida WM, Rady MM. Simultaneous Action of Silymarin and Dopamine Enhances Defense Mechanisms Related to Antioxidants, Polyamine Metabolic Enzymes, and Tolerance to Cadmium Stress in Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:3069. [PMID: 36432798 PMCID: PMC9692805 DOI: 10.3390/plants11223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Silymarin (Sm) and dopamine (DA) act synergistically as potential antioxidants, mediating many physiological and biochemical processes. As a first report, we investigated the synergistic effect of Sm and DA in mitigating cadmium stress in Phaseolus vulgaris plants. Three experiments were conducted simultaneously using 40 cm diameter pots to elucidate how Sm and DA affect cadmium tolerance traits at morphological, physiological, and biochemical levels. Cadmium stress triggered a marked reduction in growth, productivity, and physio-biochemical characteristics of common bean plants compared to unstressed plants. Seed priming (SP) and foliar spraying (FS) with silymarin (Sm) or dopamine (DA) ((DA (SP) + Sm (FS) and Sm (SP) + DA (FS)) ameliorated the damaging effects of cadmium stress. Sm seed priming + DA foliar spraying (Sm (SP) + DA (FS)) was more efficient. The treated stressed common bean plants showed greater tolerance to cadmium stress by diminishing oxidative stress biomarkers (i.e., O2•-, H2O2, and MDA) levels through enhanced enzymatic (SOD, CAT, POD, APX) and non-enzymatic (ascorbic acid, glutathione, α-tocopherol, choline, phenolics, flavonoids) antioxidant activities and osmoprotectants (proline, glycine betaine, and soluble sugars) contents, as well as through improved photosynthetic efficiency (total chlorophyll and carotenoids contents, photochemical activity, and efficiencies of carboxylation (iCE) and PSII (Fv/Fm)), polyamines (Put, Spd, and Spm), and polyamine metabolic enzymes (ADC and ODC) accumulation. These findings signify that Sm and DA have remarkable anti-stress effects, which can help regulate plant self-defense systems, reflecting satisfactory plant growth and productivity. Thus, realizing the synergistic effect of Sm and DA in cadmium tolerance confers potential new capabilities for these compounds to function in sustainable agriculture.
Collapse
Affiliation(s)
- Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani M. Abualresh
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghada A. Badawy
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|