1
|
Pires B, Catarro G, Soares S, Gonçalves J, Rosado T, Barroso M, Araujo ARTS, Gallardo E. Volumetric Absorptive Microsampling in Toxicology. TOXICS 2024; 13:25. [PMID: 39853024 PMCID: PMC11768451 DOI: 10.3390/toxics13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Volumetric absorptive microsampling (VAMS) is an emerging technique in clinical and forensic toxicology. It is recognized as a promising alternative to traditional sampling methods, offering an accurate and minimally invasive means of collecting small volumes of biological samples, such as blood, urine, and saliva. Unlike conventional methods, VAMS provides advantages in terms of sample stability, storage, and transportation, as it enables samples to be collected outside laboratory environments without requiring refrigeration. This review explores several VAMS methodologies, with a particular focus on its application for the quantification of drugs and other substances in clinical and forensic toxicology. It compares VAMS to other microsampling techniques, such as dried blood spots (DBSs), highlighting VAMS's superiority in addressing issues related to sample volume consistency and environmental impact. Despite its advantages, VAMS also presents certain limitations, including higher costs and difficulties in detecting underfilled samples. Overall, VAMS stands out as a microsampling technique with the potential to enhance patient compliance and operational efficiency, positioning itself as a viable tool for toxicological analysis in both clinical and forensic contexts.
Collapse
Affiliation(s)
- Bruno Pires
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gonçalo Catarro
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CERNAS-IPV Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Grupo de Investigação Sobre Problemas Relacionados Com Toxicofilias, Centro Académico Clínico das Beiras (CACB), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Mário Barroso
- AlphaBiolabs, 14 Webster Court, Carina Park, Warrington WA5 8WD, UK;
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - André R. T. S. Araujo
- Grupo de Investigação Sobre Problemas Relacionados Com Toxicofilias, Centro Académico Clínico das Beiras (CACB), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- BRIDGES—Investigação Biotecnológica para a Inovação e Design de Produtos de Saúde, Instituto Politécnico da Guarda, Avenida Dr. Francisco Sá Carneiro, n.º 50, 6300-559 Guarda, Portugal
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.P.); (G.C.); (S.S.); (J.G.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Grupo de Investigação Sobre Problemas Relacionados Com Toxicofilias, Centro Académico Clínico das Beiras (CACB), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
3
|
Sadok I, Grochowicz M, Krzyszczak-Turczyn A. 4-Vinylpyridine copolymers for improved LC-MS tryptophan and kynurenine determination in human serum. Sci Rep 2024; 14:18622. [PMID: 39128928 PMCID: PMC11317505 DOI: 10.1038/s41598-024-69491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Tryptophan (an essential amino acid) and its clinically important metabolite-kynurenine contribute to several fundamental biological processes and methods that allow their determination in biological samples are in demand. The novelty of the work was a demonstration of the utility of two polymers: 4-vinylpyridine crosslinked with trimethylolpropane trimethacrylate (poly(4VP-co-TRIM)) or 1,4-dimethacryloyloxybenzene (poly(4VP-co-14DMB))-in terms of human serum clean-up for simultaneous LC-MS determination of tryptophan and kynurenine. The goal was to achieve a reduction of the matrix effect, which is responsible for signal suppression, with minimal capture of analytes. The adsorption properties of the polymeric beads were studied by evaluating the adsorption kinetics and isotherms in model matrices. Therefore, the adsorption capacities of both molecules were not efficient, the tested 4-vinylpyridine-based copolymers have shown great promise (especially poly(4VP-co-TRIM)) as sorbents for serum clean-up. In the model human serum matrix, poly(4VP-co-TRIM) provided good recoveries of tryptophan and kynurenine (76% and 87%, respectively) and allowed for the reduction of the matrix effect. Performances of both copolymers were compared to those of commercially available sorbents (octadecylsilane, activated charcoal, and primary secondary amine).
Collapse
Affiliation(s)
- Ilona Sadok
- Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, the John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.
| | - Marta Grochowicz
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33, 20-614, Lublin, Poland
| | - Agnieszka Krzyszczak-Turczyn
- Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, the John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| |
Collapse
|
4
|
Ponzetto F, Parasiliti-Caprino M, Leoni L, Marinelli L, Nonnato A, Nicoli R, Kuuranne T, Ghigo E, Mengozzi G, Settanni F. LC-MS/MS measurement of endogenous steroid hormones and phase II metabolites in blood volumetric absorptive microsampling (VAMS) for doping control purposes. Clin Chim Acta 2024; 557:117890. [PMID: 38537673 DOI: 10.1016/j.cca.2024.117890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Volumetric Absorptive Microsampling (VAMS) is emerging as a valuable technique in the collection of dried biological specimens, offering a potential alternative to traditional sampling methods. The objective of this study was to assess the suitability of 30 μL VAMS for the measurement of endogenous steroid hormones. METHODS A novel LC-MS/MS method was developed for the quantification of 18 analytes in VAMS samples, including main endogenous free steroids and phase II metabolites of androgens. The method underwent validation in accordance with ISO/IEC 17025:2017 and World Anti-Doping Agency (WADA) requirements. Subsequently, it was applied to authentic VAMS samples obtained from 20 healthy volunteers to assess the stability of target analytes under varying storage conditions. RESULTS The validation protocol assessed method's selectivity, matrix effect, extraction recovery, quantitative performance, carry-over and robustness. The analysis of authentic samples demonstrated the satisfactory stability of monitored steroids in VAMS stored at room temperature, 4 °C, -20 °C and -80 °C for up to 100 days and subjected to up to 3 freezing-thawing cycles. CONCLUSIONS The validated LC-MS/MS method demonstrated its suitability for the measurement of steroids in dried blood VAMS. The observed stability of steroidal compounds suggests promising prospects for future applications of VAMS, both in anti-doping contexts and clinical research.
Collapse
Affiliation(s)
- Federico Ponzetto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Mirko Parasiliti-Caprino
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Leoni
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Marinelli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonello Nonnato
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulio Mengozzi
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy; Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| | - Fabio Settanni
- Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
5
|
Papp LA, Imre S, Bálint I, Lungu AI, Mărcutiu PE, Papp J, Ion V. Is it Time to Migrate to Liquid Chromatography Automated Platforms in the Clinical Laboratory? A Brief Point of View. J Chromatogr Sci 2024; 62:191-200. [PMID: 36715315 DOI: 10.1093/chromsci/bmad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Indexed: 01/31/2023]
Abstract
Liquid chromatography coupled to mass spectrometry already started to surpass the major drawbacks in terms of sensitivity, specificity and cross-reactivity that some analytical methods used in the clinical laboratory exhibit. This hyphenated technique is already preferred for specific applications while finding its own place in the clinical laboratory setting. However, large-scale usage, high-throughput analysis and lack of automation emerge as shortcomings that liquid chromatography coupled to mass spectrometry still has to overrun in order to be used on a larger scale in the clinical laboratory. The aim of this review article is to point out the present-day position of the liquid chromatography coupled to mass spectrometry technique while trying to understand how this analytical method relates to the basic working framework of the clinical laboratory. This paper offers insights about the main regulation and traceability criteria that this coupling method has to align and comply to, automation and standardization issues and finally the critical steps in sample preparation workflows all related to the high-throughput analysis framework. Further steps are to be made toward automation, speed and easy-to-use concept; however, the current technological and quality premises are favorable for chromatographic coupled to mass spectral methods.
Collapse
Affiliation(s)
- Lajos-Attila Papp
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Silvia Imre
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| | - István Bálint
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Andreea-Ioana Lungu
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Petra-Edina Mărcutiu
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Júlia Papp
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Valentin Ion
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
Chung SH, Yoo D, Ahn TB, Lee W, Hong J. Profiling Analysis of Tryptophan Metabolites in the Urine of Patients with Parkinson's Disease Using LC-MS/MS. Pharmaceuticals (Basel) 2023; 16:1495. [PMID: 37895965 PMCID: PMC10610059 DOI: 10.3390/ph16101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Although Parkinson's disease (PD) is a representative neurodegenerative disorder and shows characteristic motor impediments, the pathophysiological mechanisms and treatment targets for PD have not yet been clearly identified. Since several tryptophan metabolites produced by gut microbiota could pass the blood-brain barrier and, furthermore, might influence the central nervous system, tryptophan metabolites within the indole, kynurenine, and serotonin metabolic pathways might be the most potent targets for PD development. Furthermore, most metabolites are circulated via the blood, play roles in and/or are metabolized via the host organs, and finally are excreted into the urine. Therefore, profiling the overall tryptophan metabolic pathways in urine samples of patients with PD is important to understanding the pathological mechanisms, finding biomarkers, and discovering therapeutic targets for PD. However, the development of profiling analysis based on tryptophan metabolism pathways in human urine samples is still challenging due to the wide physiological ranges, the varied signal response, and the structural diversity of tryptophan metabolites in complicated urine matrices. In this study, an LC-MS/MS method was developed to profile 21 tryptophan metabolites within the indole, kynurenine, and serotonin metabolic pathways in human urine samples using ion-pairing chromatography and multiple reaction monitoring determination. The developed method was successfully applied to urine samples of PD patients (n = 41) and controls (n = 20). Further, we investigated aberrant metabolites to find biomarkers for PD development and therapeutic targets based on the quantitative results. Unfortunately, most tryptophan metabolites in the urine samples did not present significant differences between control and PD patients, except for indole-3-acetic acid. Nonetheless, indole-3-acetic acid was reported for the first time for its aberrant urinary levels in PD patients and tentatively selected as a potential biomarker for PD. This study provides accurate quantitative results for 21 tryptophan metabolites in biological samples and will be helpful in revealing the pathological mechanisms of PD development, discovering biomarkers for PD, and further providing therapeutic targets for various PD symptoms. In the near future, to further investigate the relationship between gut microbial metabolites and PD, we will employ studies on microbial metabolites using plasma and stool samples from control and PD patients.
Collapse
Affiliation(s)
- So Hyeon Chung
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dallah Yoo
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (D.Y.); (T.-B.A.)
| | - Tae-Beom Ahn
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (D.Y.); (T.-B.A.)
| | - Wonwoong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
7
|
de Sá e Silva DM, Thaitumu M, Theodoridis G, Witting M, Gika H. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites 2023; 13:1038. [PMID: 37887363 PMCID: PMC10609074 DOI: 10.3390/metabo13101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) has arisen as a relevant tool in biological analysis, offering simplified sampling procedures and enhanced stability. Most of the attention VAMS has received in the past decade has been from pharmaceutical research, with most of the published work employing VAMS targeting drugs or other exogenous compounds, such as toxins and pollutants. However, biomarker analysis by employing blood microsampling has high promise. Herein, a comprehensive review on the applicability of VAMS devices for the analysis of endogenous metabolites/biomarkers was performed. The study presents a full overview of the analysis process, incorporating all the steps in sample treatment and validation parameters. Overall, VAMS devices have proven to be reliable tools for the analysis of endogenous analytes with biological importance, often offering improved analyte stability in comparison with blood under ambient conditions as well as a convenient and straightforward sample acquisition model.
Collapse
Affiliation(s)
- Daniel Marques de Sá e Silva
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Marlene Thaitumu
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 6, 85354 Freising, Germany
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Thangavelu MU, Wouters B, Kindt A, Reiss IKM, Hankemeier T. Blood microsampling technologies: Innovations and applications in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:154-180. [PMID: 38716066 PMCID: PMC10989553 DOI: 10.1002/ansa.202300011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2024]
Abstract
With the development of highly sensitive bioanalytical techniques, the volume of samples necessary for accurate analysis has reduced. Microsampling, the process of obtaining small amounts of blood, has thus gained popularity as it offers minimal-invasiveness, reduced logistical costs and biohazard risks while simultaneously showing increased sample stability and a potential for the decentralization of the approach and at-home self-sampling. Although the benefits of microsampling have been recognised, its adoption in clinical practice has been slow. Several microsampling technologies and devices are currently available and employed in research studies for various biomedical applications. This review provides an overview of the state-of-the-art in microsampling technology with a focus on the latest developments and advancements in the field of microsampling. Research published in the year 2022, including studies (i) developing strategies for the quantitation of analytes in microsamples and (ii) bridging and comparing the interchangeability between matrices and choice of technology for a given application, is reviewed to assess the advantages, challenges and limitations of the current state of microsampling. Successful implementation of microsampling in routine clinical care requires continued efforts for standardization and harmonization. Microsampling has been shown to facilitate data-rich studies and a patient-centric approach to healthcare and is foreseen to play a central role in the future digital revolution of healthcare through continuous monitoring to improve the quality of life.
Collapse
Affiliation(s)
| | - Bert Wouters
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| | - Alida Kindt
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| | - Irwin K. M. Reiss
- Department of Neonatal and Pediatric Intensive CareDivision of NeonatologyErasmus MCRotterdamThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
9
|
Deep Eutectic Solvent Based Reversed-Phase Dispersive Liquid-Liquid Microextraction and High-Performance Liquid Chromatography for the Determination of Free Tryptophan in Cold-Pressed Oils. Molecules 2023; 28:molecules28052395. [PMID: 36903640 PMCID: PMC10005200 DOI: 10.3390/molecules28052395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
A fast and straightforward reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) using a deep eutectic solvent (DES) procedure to determine free tryptophan in vegetable oils was developed. The influence of eight variables affecting the RP-DLLME efficiency has been studied by a multivariate approach. A Plackett-Burman design for screening the most influential variables followed by a central composite response surface methodology led to an optimum RP-DLLME setup for a 1 g oil sample: 9 mL hexane as the diluting solvent, vortex extraction with 0.45 mL of DES (choline chloride-urea) at 40 °C, without addition of salt, and centrifugation at 6000 rpm for 4.0 min. The reconstituted extract was directly injected into a high-performance liquid chromatography (HPLC) system working in the diode array mode. At the studied concentration levels, the obtained method detection limits (MDL) was 11 mg/kg, linearity in matrix-matched standards was R2 ≥ 0.997, relative standard deviations (RSD) was 7.8%, and average recovery was 93%. The combined use of the recently developed DES -based RP-DLLME and HPLC provides an innovative, efficient, cost-effective, and more sustainable method for the extraction and quantification of free tryptophan in oily food matrices. The method was employed to analyze cold-pressed oils from nine vegetables (Brazil nut, almond, cashew, hazelnut, peanut, pumpkin, sesame, sunflower, and walnut) for the first time. The results showed that free tryptophan was present in the range of 11-38 mg/100 g. This article is important for its contributions to the field of food analysis, and for its development of a new and efficient method for the determination of free tryptophan in complex matrices, which has the potential to be applied to other analytes and sample types.
Collapse
|
10
|
Volani C, Malfertheiner C, Caprioli G, Fjelstrup S, Pramstaller PP, Rainer J, Paglia G. VAMS-Based Blood Capillary Sampling for Mass Spectrometry-Based Human Metabolomics Studies. Metabolites 2023; 13:metabo13020146. [PMID: 36837765 PMCID: PMC9958641 DOI: 10.3390/metabo13020146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) is a recently developed sample collection method that enables single-drop blood collection in a minimally invasive manner. Blood biomolecules can then be extracted and processed for analysis using several analytical platforms. The integration of VAMS with conventional mass spectrometry (MS)-based metabolomics approaches is an attractive solution for human studies representing a less-invasive procedure compared to phlebotomy with the additional potential for remote sample collection. However, as we recently demonstrated, VAMS samples require long-term storage at -80 °C. This study investigated the stability of VAMS samples during short-term storage and compared the metabolome obtained from capillary blood collected from the fingertip to those of plasma and venous blood from 22 healthy volunteers. Our results suggest that the blood metabolome collected by VAMS samples is stable at room temperature only for up to 6 h requiring subsequent storage at -80 °C to avoid significant changes in the metabolome. We also demonstrated that capillary blood provides better coverage of the metabolome compared to plasma enabling the analysis of several intracellular metabolites presented in red blood cells. Finally, this work demonstrates that with the appropriate pre-analytical protocol capillary blood can be successfully used for untargeted metabolomics studies.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Christa Malfertheiner
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Giulia Caprioli
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Søren Fjelstrup
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Peter P. Pramstaller
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Correspondence:
| |
Collapse
|