1
|
Abbasi SA, Rahim F, Hussain R, Rehman W, Khan S, Taha M, Iqbal T, Khan Y, Ali Shah SA. Synthesis of modified Schiff base appended 1,2,4-triazole hybrids scaffolds: elucidating the in vitro and in silico α-amylase and α-glucosidase inhibitors potential. Z NATURFORSCH C 2025; 80:119-134. [PMID: 38996406 DOI: 10.1515/znc-2024-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as 1H-NMR, 13C-NMR and HREI-MS. Using glimepiride as the reference standard, the in vitro α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC50 values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 μM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 μM (α-glucosidase), respectively. Specifically, the compounds 1, 7 and 8 were found to be significantly active with IC50 values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 μM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 μM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC50 values of 13.02 ± 0.11 μM (for α-glucosidase) and 15.04 ± 0.02 μM (for α-amylase), respectively. The structure-activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.
Collapse
Affiliation(s)
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441, Dammam, Saudi Arabia
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, 45550, Islamabad, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| |
Collapse
|
2
|
Ramzan M, Mahmood S, Amjad A, Javed M, Zidan A, Bahadur A, Iqbal S, Saad M, Zaka N, Khurshid S, Awwad NS, Ibrahium HA, Akhter T. Finding potential inhibitors from phytochemicals against nucleoprotein of crimean congo fever virus using in silico approach. Sci Rep 2024; 14:31804. [PMID: 39738281 DOI: 10.1038/s41598-024-82312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization. Many outbreaks of CCHF have been reported over the years. Former studies on CCHF have reported that the nucleoprotein of CCHF, being a pivotal protein in the replication process of the virus, is a potential target for antiviral drugs. However, there is no specific drug that can be used to treat this fatal disease and laboratory testing is prohibited due to its pathogen level 4. This study aims to find a possible potential inhibitor of the nucleoprotein of CCHFV using modern techniques leading ultimately to the development of effective and natural drugs. In this study, a virtual screening procedure involving a docking process followed by the Molecular Dynamics method is used to find out the potential inhibitors of the nucleoprotein of CCHFV. Phytochemicals having pharmacological properties and approved by the Food and Drug Administration are docked over the nucleoprotein of CCHFV. The study signifies the use of Withanolide E as a drug for the treatment of CCHFV as the study depicts the potential of Withanolide E to inhibit the nucleoprotein of CCHFV using reliable and modern techniques.
Collapse
Affiliation(s)
- Muhammad Ramzan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, 32093, Kuwait
| | - Adnan Amjad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Saad
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice, 44-100, Poland.
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| | - Namrah Zaka
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shazia Khurshid
- Department of Chemistry, Government College University Lahore, Lahore, 54000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
3
|
Iqbal T, Khan S, Hussain R, Khan Y, Shoaib K, Rozeena, Saeed M, Darwish HW. Novel indole based fused triazole-thiadiazole derivatives as anti-diabetic agents: in vitro and in silico approaches. Future Med Chem 2024; 16:2475-2486. [PMID: 39508404 PMCID: PMC11622810 DOI: 10.1080/17568919.2024.2419355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Aim: The current research presents novel library of indole derived fused triazole-thiadiazole derivatives (1-17) for treatment of diabetes mellitus.Methods & results: These compounds were synthesized by treating 2-(1H-indol-3-yl)acetic acid with hydrazinecarbothiohydrazide followed by treating the resultant compound with substituted benzoic acid. Structural validation was achieved spectroscopically (1HNMR, 13CNMR and HREI-MS). The synthesized compounds were subjected to biological evaluation to assess their potential as anti-diabetic. Molecular docking study was employed to investigate the binding interactions of these analogs with relevant proteins. ADMET analysis was used to predict their drug-like properties. Notably, compound-10 (IC50 = 1.27 ± 1.25 and 2.18 ± 2.45 μM) bearing para-substituted F atom exhibited the highest potency due to strong inhibitory interactions through hydrogen bonding.Conclusion: This study identifies promising compounds with anti-diabetic activity, paving the way for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science & Technology, Abbottabad, 22500, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science & Technology, Abbottabad, 22500, Pakistan
| | - Rafaqat Hussain
- College of Biology, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Khurram Shoaib
- Department of Chemistry, Abbottabad University of Science & Technology, Abbottabad, 22500, Pakistan
| | - Rozeena
- Department of Chemistry, University of Malakand, Pakistan
| | - Masab Saeed
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Mo X, Rao DP, Kaur K, Hassan R, Abdel-Samea AS, Farhan SM, Bräse S, Hashem H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024). Molecules 2024; 29:4770. [PMID: 39407697 PMCID: PMC11477627 DOI: 10.3390/molecules29194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Indole derivatives have become an important class of compounds in medicinal chemistry, recognized for their wide-ranging biological activities and therapeutic potential. This review provides a comprehensive overview of recent advances in the evaluation of indole-based compounds in the last five years, highlighting their roles in cancer treatment, infectious disease management, anti-inflammatory therapies, metabolic disorder interventions, and neurodegenerative disease management. Indole derivatives have shown significant efficacy in targeting diverse biological pathways, making them valuable scaffolds in designing new drugs. Notably, these compounds have demonstrated the ability to combat drug-resistant cancer cells and pathogens, a significant breakthrough in the field, and offer promising therapeutic options for chronic diseases such as diabetes and hypertension. By summarizing recent key findings and exploring the underlying biological mechanisms, this review underscores the potential of indole derivatives in addressing major healthcare challenges, thereby instilling hope and optimism in the field of modern medicine.
Collapse
Affiliation(s)
- Xingyou Mo
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur 208001, Uttar Pradesh, India
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Khan S, Hussain R, Iqbal T, Rahim F, Khan Y. Recent development and strategies towards target interactions: Synthesis, characterization and in silico analysis of benzimidazole based thiadiazole as potential anti-Alzheimer agents. Biochem Biophys Res Commun 2024; 726:150201. [PMID: 38924881 DOI: 10.1016/j.bbrc.2024.150201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
In the current research study, we aim to design and synthesize highly potent hybrid analogs of benzimidazole derived thiadiazole based Schiff base derivatives which can combat the cholinesterase enzymes (acetylcholinesterase and butyrylcholinesterase) accountable for developing Alzheimer's disease. In this context, we have synthesized 15 analogs of benzimidazole based thiadiazole derivatives, which were subsequently confirmed through spectroscopic techniques including 1H NMR, 13C NMR and HREI-MS. Biological investigation of all the analogs revealed their varied acetylcholinesterase inhibitory potency covering a range between 3.20 ± 0.10 μM to 20.50 ± 0.20 μM as well as butyrylcholinesterase inhibitory potential with a range of 4.30 ± 0.50 μM to 20.70 ± 0.50 μM when compared with the standard drug Donepezil having IC50 = 6.70 ± 0.20 μM for AChE and 7.90 ± 0.10 μM for BuChE. The promising inhibition by the analogs was evaluated in SAR analysis, where analog-1 (IC50 = 3.20 ± 0.10 μM for AChE and 4.30 ± 0.50 μM for BuChE), analog-4 (IC50 = 4.30 ± 0.30 μM for AChE and 5.50 ± 0.20 μM for BuChE) and analog-5 (IC50 = 4.10 ± 0.30 μM for AChE and 4.60 ± 0.40 μM for BuChE) were found as the lead candidates. Moreover, molecular docking and ADME analysis were conducted to explore the better binding interactions and drugs likeness respectively.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan.
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan.
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, 45550, Islamabad, Pakistan
| |
Collapse
|
6
|
Khan S, Hussain R, Khan Y, Iqbal T, Tahir Y, Hafeez A, Darwish HW, Adnan M. Synthesis, Spectral Analysis and Molecular Docking Investigation of Thiadiazole Based Sulfonamide Derivatives: An Effective Approach Toward Alzheimer's Disease. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
AbstractAlzheimer's disease (AD), a neurodegenerative condition is expected to affect 152 million in 2050. The current study comprises the evaluation of thiazole based thiadiazole bearing sulfonamide derivatives to treat Alzheimer's disease. A series of compounds (1‐15) were synthesized and were studied for their anti‐Alzheimer's potential. Their IC50 values lie in the range between (19.20±0.20 nM–2.50±0.20 nM) for AChE and (19.80±0.20 nM–3.30±0.50 nM) for AChE. Among all of them, analog 2, 7, 9, and 15 were reported to possess significant activity. Among all the members of series, compound 15 having IC50=2.50±0.20 nM and 3.30±0.50 nM for AChE and BuChE, respectively, emerged as the most promising candidate due to the presence of two electronegative fluorine (F) atoms. The small and highly electronegative fluorine atoms have the ability to block the enzyme's activity by forming strong hydrogen bonds with the amino acids of the target enzymes, thereby inhibiting their function. The efficacy of these novel compounds was studied in comparison to the standard drug donepezil having IC50=5.80±0.30 nM for AChE and IC50=6.30±0.81 nM BuChE. For further assessment of inhibition potential and mode of inhibition, molecular docking study of all the potent compounds was carried out. Further, the structural identity of the synthesized compounds was confirmed using various spectroscopic techniques, including 1H‐NMR, 13C‐NMR, and High‐Resolution Electron Impact (HREI) Mass spectrometry, which provided detailed information about their molecular structure. ADME analysis of all the synthesized compounds confirmed their potential as drugs, indicating favorable pharmacokinetic properties and a promising drug profile.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Rafaqat Hussain
- Department of Chemistry Hazara University 21120 Mansehra Pakistan
| | - Yousaf Khan
- Department of Chemistry COMSATS University Islamabad 45550 Islamabad Pakistan
| | - Tayyiaba Iqbal
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Yameena Tahir
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Abdul Hafeez
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University P.O. Box 2457 11451 Riyadh Saudi Arabia
| | - Muhammad Adnan
- Graduate School of Energy Science and Technology Chungnam National University 34134 Daejeon Republic of Korea
| |
Collapse
|
7
|
Shafique T, Javed M, Ali M, Iqbal S, Faizan M, Zidan A, Bahadur A, Mahmood S, Jaber F, Alotaibi KM, Alshalwi M. In Silico Analysis of Calotropis procera-Derived Phytochemicals Targeting 3CL Proteoase of SARS-CoV-2. Mol Biotechnol 2024:10.1007/s12033-024-01253-z. [PMID: 39177861 DOI: 10.1007/s12033-024-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The coronavirus known as SARS-CoV-2 has enveloped virions with single-stranded positive-sense RNA genome. It infects mammals, including humans, via the respiratory tract. The non-structural protein of coronavirus, main protease (3CLp) is a key enzyme in the disease's progression. This study aimed to screen phytochemicals derived from Calotropis Procera as potential drugs against 3CLp. Through database search, 50 phytochemicals were identified in the Calotropis sp. To evaluate the possible drug-like properties of these phytochemicals, the studies like, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) analysis, molecular docking and density functional theory (DFT) were performed. Furthermore, GC-MS was performed using water and ethanolic extracts from the plant leaves. The ADMET analysis and docking results showed 11 phytochemicals as probable drug candidates against 3CLp of SARS-CoV-2. All these phytochemicals showed ≥ - 4.3 kcal/mol binding affinity, similar to previously reported inhibitors. Furthermore, based on band energy gap, EHOMO, ELUMO, and DFT analyses, it was shown that these phytochemicals had a significant level of reactivity necessary for the interaction. Among all, the phytochemicals uscharin, voruscharin, frugoside, coroglaucigenin, and benzoylisolineolone may be considered the top 5 drug-like candidates against 3CLp. Furthermore, the selected phytochemicals may be employed for in vitro and in vivo studies for the advancement of a probable drug alongside SARS-CoV-2.
Collapse
Affiliation(s)
- Tayyaba Shafique
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Muhammad Ali
- Department of Biochemistry, School of Sciences, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Faizan
- Department of Chemical and Material Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Ali Bahadur
- Nanomaterials Research Center, Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Functional Materials Group, Gulf University for Science and Technology, 32093, Mishref, Kuwait.
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, 11541, Riyadh, Saudi Arabia
| | - Matar Alshalwi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, 11541, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Khan S, Hussain R, Iqbal T, Khan Y, Jamal U, Darwish HW, Adnan M. Identification of novel benzothiazole-thiadiazole-based thiazolidinone derivative: in vitro and in silico approaches to develop promising anti-Alzheimer's agents. Future Med Chem 2024; 16:1601-1613. [PMID: 38940467 PMCID: PMC11370920 DOI: 10.1080/17568919.2024.2366159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: The present study describes benzothiazole derived thiazolidinone based thiadiazole derivatives (1-16) as anti-Alzheimer agents.Materials & methods: Synthesis of benzothiazole derived thiazolidinone based thiadiazole derivatives was achieved using the benzothiazole bearing 2-amine moiety. These synthesized compounds were confirmed via spectroscopic techniques (1H NMR, 13C NMR and HREI-MS). These compounds were biologically evaluated for their anti-Alzheimer potential. Binding interactions with proteins and drug likeness of the analogs were explored through molecular docking and ADMET analysis, respectively. In the novel series, compound-3 emerged as the most potent inhibitor when compared with other derivatives of the series.Conclusion: The present study provides potent anti-Alzheimer's agents that can be further optimized to discover novel anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Abbottabad University of Science & Technology (AUST), Abbottabad22500, Pakistan
| | - Rafaqat Hussain
- College of Biology Hunan University, Changsha, Hunan410082, P. R. China
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science & Technology (AUST), Abbottabad22500, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad Campus, Islamabad45550, Pakistan
| | - Urooj Jamal
- Department of Chemistry, Abbottabad University of Science & Technology (AUST), Abbottabad22500, Pakistan
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh11451, Saudi Arabia
| | - Muhammad Adnan
- Graduate School of Energy Science & Technology, Chungnam National University, Daejeon34134, Republic of Korea
| |
Collapse
|
9
|
Khan Y, Maalik A, Rehman W, Alanazi MM, Khan S, Hussain R, Rasheed L, Saboor A, Iqbal S. Synthesis, in vitro bio-evaluation and in silico molecular docking studies of thiadiazole-based Schiff base derivatives. Future Med Chem 2024; 16:335-348. [PMID: 38314616 DOI: 10.4155/fmc-2023-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: Recently, thiadiazole-containing drugs have gained greater clinical relevance and are being explored for the development of new antidiabetic, antiurease and antimicrobial agents that target drug resistance. Methods & results: The authors disclose the synthesis of N-(5-[4-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl)methanimine derivatives starting from 4-(trifluoromethyl)benzoic acid. All of the synthesized derivatives were evaluated for their biological potential in order to investigate the inhibitory activity against antidiabetic, antiurease and antibacterial profiles. Compounds 1, 2 and 9 showed excellent inhibitory activities due to the hydrogen bonding presence of -OH, -F and -CF3 substitutions attached with the phenyl ring. Conclusion: The present study provides potent antidiabetic, antiurease and antimicrobial agents that can be further optimized to discover novel antidiabetic, antiurease drugs.
Collapse
Affiliation(s)
- Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science & Technology (AUST), Abbottabad, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Abdul Saboor
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Shahid Iqbal
- School of Chemical & Environmental Engineering, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
10
|
Elgebaly SA, Peacock WF, Christenson RH, Kreutzer DL, Faraag AHI, Sarguos AMM, El-Khazragy N. Integrated Bioinformatics Analysis Confirms the Diagnostic Value of Nourin-Dependent miR-137 and miR-106b in Unstable Angina Patients. Int J Mol Sci 2023; 24:14783. [PMID: 37834231 PMCID: PMC10573268 DOI: 10.3390/ijms241914783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The challenge of rapidly diagnosing myocardial ischemia in unstable angina (UA) patients presenting to the Emergency Department (ED) is due to a lack of sensitive blood biomarkers. This has prompted an investigation into microRNAs (miRNAs) related to cardiac-derived Nourin for potential diagnostic application. The Nourin protein is rapidly expressed in patients with acute coronary syndrome (ACS) (UA and acute myocardial infarction (AMI)). MicroRNAs regulate gene expression through mRNA binding and, thus, may represent potential biomarkers. We initially identified miR-137 and miR-106b and conducted a clinical validation, which demonstrated that they were highly upregulated in ACS patients, but not in healthy subjects and non-ACS controls. Using integrated comprehensive bioinformatics analysis, the present study confirms that the Nourin protein targets miR-137 and miR-106b, which are linked to myocardial ischemia and inflammation associated with ACS. Molecular docking demonstrated robust interactions between the Nourin protein and miR137/hsa-miR-106b, involving hydrogen bonds and hydrophobic interactions, with -10 kcal/mol binding energy. I-TASSER generated Nourin analogs, with the top 10 chosen for structural insights. Antigenic regions and MHCII epitopes within the Nourin SPGADGNGGEAMPGG sequence showed strong binding to HLA-DR/DQ alleles. The Cytoscape network revealed interactions of -miR137/hsa-miR--106b and Phosphatase and tensin homolog (PTEN) in myocardial ischemia. RNA Composer predicted the secondary structure of miR-106b. Schrödinger software identified key Nourin-RNA interactions critical for complex stability. The study identifies miR-137 and miR-106b as potential ACS diagnostic and therapeutic targets. This research underscores the potential of miRNAs targeting Nourin for precision ACS intervention. The analysis leverages RNA Composer, Schrödinger, and I-TASSER tools to explore interactions and structural insights. Robust Nourin-miRNA interactions are established, bolstering the case for miRNA-based interventions in ischemic injury. In conclusion, the study contributes to UA and AMI diagnosis strategies through bioinformatics-guided exploration of Nourin-targeting miRNAs. Supported by comprehensive molecular analysis, the hypoxia-induced miR-137 for cell apoptosis (a marker of cell damage) and the inflammation-induced miR-106b (a marker of inflammation) confirmed their potential clinical use as diagnostic biomarkers. This research reinforces the growing role of miR-137/hsa-miR-106b in the early diagnosis of myocardial ischemia in unstable angina patients.
Collapse
Affiliation(s)
- Salwa A. Elgebaly
- Research & Development, Nour Heart, Inc., Vienna, VA 22180, USA
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA;
| | - W. Frank Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77057, USA;
| | - Robert H. Christenson
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 2120, USA;
| | - Donald L. Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA;
| | - Ahmed Hassan Ibrahim Faraag
- Department of Botany and Microbiology, Faculty of Science Helwan University, Cairo 11795, Egypt;
- School of Biotechnology, Badr University, Cairo 11829, Egypt
| | | | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Genetics and Molecular Biology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo11599, Egypt
| |
Collapse
|
11
|
Hussain R, Khan S, Ullah H, Ali F, Khan Y, Sardar A, Iqbal R, Ataya FS, El-Sabbagh NM, Batiha GES. Benzimidazole-Based Schiff Base Hybrid Scaffolds: A Promising Approach to Develop Multi-Target Drugs for Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1278. [PMID: 37765088 PMCID: PMC10535318 DOI: 10.3390/ph16091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
A series of benzimidazole-based Schiff base derivatives (1-18) were synthesized and structurally elucidated through 1H NMR, 13C NMR and HREI-MS analysis. Subsequently, these synthetic derivatives were subjected to evaluation for their inhibitory capabilities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). All these derivatives showed significant inhibition against AChE with an IC50 value in the range of 123.9 ± 10.20 to 342.60 ± 10.60 µM and BuChE in the range of 131.30 ± 9.70 to 375.80 ± 12.80 µM in comparison with standard Donepezil, which has IC50 values of 243.76 ± 5.70 µM (AChE) and 276.60 ± 6.50 µM (BuChE), respectively. Compounds 3, 5 and 9 exhibited potent inhibition against both AChE and BuChE. Molecular docking studies were used to validate and establish the structure-activity relationship of the synthesized derivatives.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (R.H.); (A.S.)
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22020, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56130, Pakistan
| | - Farhan Ali
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22020, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University, Islamabad 45550, Pakistan
| | - Asma Sardar
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (R.H.); (A.S.)
| | - Rashid Iqbal
- Department of Agroecology-Climate and Water, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark;
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Nasser M. El-Sabbagh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| |
Collapse
|
12
|
Abolhasani F, Pourshojaei Y, Mohammadi F, Esmaeilpour K, Asadipour A, Ilaghi M, Shabani M. Exploring the potential of a novel phenoxyethyl piperidine derivative with cholinesterase inhibitory properties as a treatment for dementia: Insights from STZ animal model of dementia. Neurosci Lett 2023; 810:137332. [PMID: 37302565 DOI: 10.1016/j.neulet.2023.137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, often characterized by progressive deficits in memory and cognitive functions. Cholinesterase inhibitors have been introduced as promising agents to enhance cognition and memory in both human patients and animal models of AD. In the current study, we assessed the effects of a synthetic phenoxyethyl piperidine derivative, compound 7c, as a novel dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), on learning and memory, as well as serum and hippocampal AChE levels in an animal model of AD. The model of dementia was induced by intracerebroventricular injection of streptozotocin (STZ, 2 mg/kg) to male Wistar rats. STZ-treated rats received compound 7c (3, 30, and 300 µg/kg) for five consecutive days. Passive avoidance (PA) learning and memory, as well as spatial learning and memory using Morris water maze, were evaluated. The level of AChE was measured in the serum and the left and right hippocampus. Findings demonstrated that compound 7c (300 µg/kg) was able to reverse STZ-induced impairments in PA memory, while also reduced the increased AChE level in the left hippocampus. Taken together, compound 7c appeared to act as a central AChE inhibitor, and its role in alleviating cognitive deficits in the AD animal model suggests that it may have therapeutic potential in AD dementia. Further research is required to assess the effectiveness of compound 7c in more reliable models of AD in light of these preliminary findings.
Collapse
Affiliation(s)
- Fatemeh Abolhasani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Khadijeh Esmaeilpour
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Magin IM, Pushkin IA, Ageeva AA, Martianova SO, Polyakov NE, Doktorov AB, Leshina TV. Impact of Non-Covalent Interactions of Chiral Linked Systems in Solution on Photoinduced Electron Transfer Efficiency. Int J Mol Sci 2023; 24:9296. [PMID: 37298248 PMCID: PMC10253034 DOI: 10.3390/ijms24119296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
It is well-known that non-covalent interactions play an essential role in the functioning of biomolecules in living organisms. The significant attention of researchers is focused on the mechanisms of associates formation and the role of the chiral configuration of proteins, peptides, and amino acids in the association. We have recently demonstrated the unique sensitivity of chemically induced dynamic nuclear polarization (CIDNP) formed in photoinduced electron transfer (PET) in chiral donor-acceptor dyads to non-covalent interactions of its diastereomers in solutions. The present study further develops the approach for quantitatively analyzing the factors that determine the association by examples of dimerization of the diastereomers with the RS, SR, and SS optical configurations. It has been shown that, under the UV irradiation of dyads, CIDNP is formed in associates, namely, homodimers (SS-SS), (SR-SR), and heterodimers (SS-SR) of diastereomers. In particular, the efficiency of PET in homo-, heterodimers, and monomers of dyads completely determines the forms of dependences of the CIDNP enhancement coefficient ratio of SS and RS, SR configurations on the ratio of diastereomer concentrations. We expect that the use of such a correlation can be useful in identifying small-sized associates in peptides, which is still a problem.
Collapse
Affiliation(s)
- Ilya M. Magin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| | - Ivan A. Pushkin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra A. Ageeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sofia O. Martianova
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay E. Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| | - Alexander B. Doktorov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| | - Tatyana V. Leshina
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (I.M.M.); (I.A.P.); (A.A.A.); (S.O.M.); (N.E.P.); (T.V.L.)
| |
Collapse
|
14
|
Azmy EM, Nassar IF, Hagras M, Fawzy IM, Hegazy M, Mokhtar MM, Yehia AM, Ismail NS, Lashin WH. New indole derivatives as multitarget anti-Alzheimer's agents: synthesis, biological evaluation and molecular dynamics. Future Med Chem 2023; 15:473-495. [PMID: 37125532 DOI: 10.4155/fmc-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Background: Alzheimer's disease is a neurological disorder that causes brain cells to shrink and die. Aim: Thirteen novel 'oxathiolanyl', 'pyrazolyl' and 'pyrimidinyl' indole derivatives were designed and synthesized as anti-Alzheimer's disease treatment. Method: In vitro enzyme assay was performed against both AChE and BChE enzymes. In addition, antioxidant assay and cytotoxicity on a normal cell line were determined. Molecular docking and dynamic simulations were conducted to confirm the binding mode in both esterases' active sites. In silico absorption, distribution, metabolism, excretion and toxicity studies were also carried out. Results & conclusion: Compounds 5, 7 and 11 exhibited superior inhibitory activity against acetylcholinesterase and butyrylcholinesterase, with IC50 values of 0.042 and 3.003 μM, 2.54 and 0.207 μM and 0.052 and 2.529 μM, respectively, compared with donepezil.
Collapse
Affiliation(s)
- Eman M Azmy
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, 365 Ramsis Street, Abassia, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nasser Sm Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Walaa H Lashin
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| |
Collapse
|
15
|
V S, Girija ASS, Himabindu, Krishnan M, Babu S. Anti-quorum sensing activity of Boerhavia diffusa against Pseudomonas aeruginosa PAO1. Bioinformation 2023; 19:310-318. [PMID: 37808386 PMCID: PMC10557443 DOI: 10.6026/97320630019310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 10/10/2023] Open
Abstract
Quorum sensing (QS) is one of the key virulence factors in Pseudomonas aeruginosa and causes recalcitrant infections. Multi-drug resistance and biofilm formation seem to be regulated by cell-to-cell communication system through QS. Thus this study is aimed to assess the efficacy of ethanolic leaf extract of Boerhavia diffusa in acting against the QS-regulated virulence traits. Fresh leaves of B. diffusa were dried and the ethanolic crude extract was checked for antimicrobial and anti biofilm effect against P. aeruginosa. The active components and the biological structures were elucidated by GC-MS, HPLC and NMR analysis respectively. Further, computational analyses were also performed to assess the drug ligand interactions based on the docking scores and binding energy. The results suggested that the MIC concentration showed a significant effect in inhibiting the QS network circuit of P. aeruginosa. The docking results showed that leaf had bioactive compounds that exhibit strong binding affinity towards transcriptional activators of the QS circuit in P. aeruginosa, i.e., LasR, as compared to the natural ligands, 3-oxo-C12-HSL and C4-HSL. These results clearly depictthe efficacy of Boerhavia diffusa and its phytoconstituents as promising QS antagonist which can be further applied in the treatment strategies for the diseases caused by P. aeruginosa.
Collapse
Affiliation(s)
- Shravani V
- Department of Microbiology, School of Allied Health Sciences, Mallareddy University, Hyderabad, Telangana, India
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - AS Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Himabindu
- Department of Microbiology, Mallareddy Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Madhan Krishnan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamilnadu, India
| | - Shyamaladevi Babu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamilnadu, India
| |
Collapse
|
16
|
Emokpaire SO, Wang N, Liu J, Zhu C, Wang X, Li J, Zhou Y. Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2732. [PMID: 37049026 PMCID: PMC10096174 DOI: 10.3390/ma16072732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In this work, the effect of the Ru element on the γ'-phase evolution and deformation mechanism in the fourth-generation Ni-based single-crystal superalloy was investigated. Results show that the Ru element alters the distribution coefficient of other elements in the alloy to produce reverse partitioning behavior, which leads to a difference in microstructure between 0Ru and 3Ru. The addition of Ru triggered the incubation period before the beginning of the primary creep stage, which depends on the creep temperature and stress during creep deformation. TEM results revealed that Ru addition inhibits the slip system {111}<112> at medium-temperature (760-1050 °C) and high-stress (270-810 MPa) creep, which brings a considerably low creep rate and high creep life to the Ru-containing alloy.
Collapse
Affiliation(s)
- Stephen Okhiai Emokpaire
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Nan Wang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
- The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110016, China
| | - Jide Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Chongwei Zhu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Xinguang Wang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Jinguo Li
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Yizhou Zhou
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| |
Collapse
|
17
|
Ke Z, Fan X, Di Y, Chen F, Han X, Yang K, Li B. A Comprehensive Investigation into the Crystallology, Molecule, and Quantum Chemistry Properties of Two New Hydrous Long-Chain Dibasic Ammonium Salts C nH 2n+8N 2O 6 (n = 35 and 37). Int J Mol Sci 2023; 24:5467. [PMID: 36982543 PMCID: PMC10052139 DOI: 10.3390/ijms24065467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
Through the salification reaction of carboxylation, successful attachment of the long-chain alkanoic acid to the two ends of 1,3-propanediamine was realized, which enabled the doubling of the long-chain alkanoic acid carbon chain. Hydrous 1,3-propanediamine dihexadecanoate (abbreviated as 3C16) and 1,3-propanediamine diheptadecanoate (abbreviated as 3C17) were synthesized afterward, and their crystal structures were characterized by the X-ray single crystal diffraction technique. By analyzing their molecular and crystal structure, their composition, spatial structure, and coordination mode were determined. Two water molecules played important roles in stabilizing the framework of both compounds. Hirshfeld surface analysis revealed the intermolecular interactions between the two molecules. The 3D energy framework map presented the intermolecular interactions more intuitively and digitally, in which dispersion energy plays a dominant role. DFT calculations were performed to analyze the frontier molecular orbitals (HOMO-LUMO). The energy difference between the HOMO-LUMO is 0.2858 eV and 0.2855 eV for 3C16 and 3C17, respectively. DOS diagrams further confirmed the distribution of the frontier molecular orbitals of 3C16 and 3C17. The charge distributions in the compounds were visualized using a molecular electrostatic potential (ESP) surface. ESP maps indicated that the electrophilic sites are localized around the oxygen atom. The crystallographic data and parameters of quantum chemical calculation in this paper will provide data and theoretical support for the development and application of such materials.
Collapse
Affiliation(s)
- Zengbo Ke
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
- College of Chemical Engineering and Modern Materials, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
| | - Xinhui Fan
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Youying Di
- College of Chemical Engineering and Modern Materials, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
| | - Fengying Chen
- College of Chemical Engineering and Modern Materials, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
| | - Xi Han
- College of Chemical Engineering and Modern Materials, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Bing Li
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| |
Collapse
|
18
|
Yu Q, Zou J, Yu C, Peng G, Fan G, Wang L, Chen S, Lu L, Wang Z. Nitrogen Doped Porous Biochar/β-CD-MOFs Heterostructures: Bi-Functional Material for Highly Sensitive Electrochemical Detection and Removal of Acetaminophen. Molecules 2023; 28:2437. [PMID: 36985408 PMCID: PMC10054116 DOI: 10.3390/molecules28062437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Acetaminophen (AC) is one of the most common over-the-counter drugs, and its pollutant in groundwater has attracted more attention due to its serious risk to human health. Currently, the research on AC is mainly focused on its detection, but few are concerned about its removal. In this work, for the first time, nitrogen-doped Soulangeana sepals derived biochar/β-cyclodextrin-Metal-organic frameworks (N-SC/β-CD-MOFs) composite was proposed for the simultaneous efficient removal and detection of AC. N-SC/β-CD-MOFs combined the properties of host-guest recognition of β-CD-MOFs and porous structure, high porosity, and large surface area of N-SC. Their synergies endowed N-SC/β-CD-MOFs with a high adsorption capacity toward AC, which was up to 66.43 mg/g. The adsorption type of AC on the surface of N-SC/β-CD-MOFs conformed to the Langmuir adsorption model, and the study of the adsorption mechanism showed that AC adsorption on N-SC was mainly achieved through hydrogen bonding. In addition, the high conductivity, large specific surface area and abundant active sites of N-SC/β-CD-MOFs were of great significance to the high-performance detection of AC. Accordingly, the sensor prepared with N-SC/β-CD-MOFs presented a wide linear range (1.0-30.0 μM) and a low limit of detection of 0.3 nM (S/N = 3). These excellent performances demonstrate that N-SC/β-CD-MOFs could act as an efficient dual-functional material for the detection and removal of AC.
Collapse
Affiliation(s)
- Qi Yu
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Zou
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenxiao Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guanwei Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|