1
|
Nandi S, Sikder R, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Zhakipbekov K, Acharya K, Habtemariam S, Arslan Ateşşahin D, Goloshvili T, Ahmed Aldahish A, Sharifi‐Rad J, Calina D. Updated aspects of alpha-Solanine as a potential anticancer agent: Mechanistic insights and future directions. Food Sci Nutr 2024; 12:7088-7107. [PMID: 39479710 PMCID: PMC11521658 DOI: 10.1002/fsn3.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Anish Nag
- Department of Life SciencesCHRIST (Deemed to be University)BangaloreKarnatakaIndia
| | - Somanjana Khatua
- Department of Botany, Faculty of ScienceUniversity of AllahabadPrayagrajUttar PradeshIndia
| | - Surjit Sen
- Department of BotanyFakir Chand CollegeKolkataIndia
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical PharmacyAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | | | - Dilek Arslan Ateşşahin
- Department of Plant and Animal Production, Baskil Vocational SchoolFırat UniversityElazıgTurkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic ResourcesInstitute of Botany, Ilia State UniversityTbilisiGeorgia
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaKingdom of Saudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
2
|
Gonçalves YG, Kravicz M, Massaro TNC, Aldana-Mejía JA, Bastos JK, L Bentley MVB, Marcato PD. Rational design of solid lipid-polymer hybrid nanoparticles: An innovative glycoalkaloids-carrier with potential for topical melanoma treatment. Colloids Surf B Biointerfaces 2024; 242:114098. [PMID: 39067191 DOI: 10.1016/j.colsurfb.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Despite the promising potential of Solanum plant glycoalkaloids in combating skin cancer, their clinical trials have been halted due to dose-dependent toxicity and poor water solubility. In this study, we present a rational approach to address these limitations and ensure colloidal stability of the nanoformulation over time by designing solid lipid-polymer hybrid nanoparticles (SLPH). Leveraging the biocompatible and cationic properties of polyaspartamides, we employed a new polyaspartamide derivative (P1) as a raw material for this class of nanostructures. Subsequently, we prepared SLPH through a one-step process involving hot-melt emulsification followed by ultrasonication. The physicochemical properties of the SLPH were thoroughly characterized using dynamic light scattering (DLS), ζ-potential analysis, nanoparticle tracking analysis (NTA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The optimized formulation exhibited long-term stability over six months under low temperatures, maintaining a particle size around 200 nm, a polydispersity index (PdI) lower than 0.2, and a ζ-potential between +35-40 mV. Furthermore, we evaluated the cytotoxic effect of the SLPH against human cutaneous melanoma cells (SK-MEL-28) compared to human foreskin fibroblast cells (HFF-1). Encapsulation of glycoalkaloids into the nanoparticles (SLPH-GE) resulted in a two-fold greater selective cytotoxic profile for melanoma cells than glycoalkaloids-free (GE). The nanoparticles disrupted the stratum corneum barrier with a penetration depth of approximately 77 μm. These findings underscore the potential of the developed nanosystem as an effective glycoalkaloid carrier with suitable colloidal and biological properties for further studies in topical treatment strategies for cutaneous melanoma.
Collapse
Affiliation(s)
- Yasmim G Gonçalves
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Marcelo Kravicz
- School of Surgery and Medicine, University of Milano-Bicocca, Italy
| | - Taís N C Massaro
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Jennyfer A Aldana-Mejía
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Maria Vitória B L Bentley
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Priscyla D Marcato
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Lucier R, Kamileen MO, Nakamura Y, Serediuk S, Barbole R, Wurlitzer J, Kunert M, Heinicke S, O'Connor SE, Sonawane PD. Steroidal scaffold decorations in Solanum alkaloid biosynthesis. MOLECULAR PLANT 2024; 17:1236-1254. [PMID: 38937971 DOI: 10.1016/j.molp.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Collapse
Affiliation(s)
- Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Biosynthesis and NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sofiia Serediuk
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Jens Wurlitzer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
4
|
Borsoi FT, Pastore GM, Arruda HS. Health Benefits of the Alkaloids from Lobeira ( Solanum lycocarpum St. Hill): A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1396. [PMID: 38794466 PMCID: PMC11124789 DOI: 10.3390/plants13101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Solanum is the largest genus within the Solanaceae family and has garnered considerable attention in chemical and biological investigations over the past 30 years. In this context, lobeira or "fruta-do-lobo" (Solanum lycocarpum St. Hill), a species predominantly found in the Brazilian Cerrado, stands out. Beyond the interesting nutritional composition of the fruits, various parts of the lobeira plant have been used in folk medicine as hypoglycemic, sedative, diuretic, antiepileptic, and antispasmodic agents. These health-beneficial effects have been correlated with various bioactive compounds found in the plant, particularly alkaloids. In this review, we summarize the alkaloid composition of the lobeira plant and its biological activities that have been reported in the scientific literature in the last decades. The compiled data showed that lobeira plants and fruits contain a wide range of alkaloids, with steroidal glycoalkaloid solamargine and solasonine being the major ones. These alkaloids, but not limited to them, contribute to different biological activities verified in alkaloid-rich extracts/fractions from the lobeira, including antioxidant, anti-inflammatory, anticancer, antigenotoxic, antidiabetic, antinociceptive, and antiparasitic effects. Despite the encouraging results, additional research, especially toxicological, pre-clinical, and clinical trials, is essential to validate these human health benefits and ensure consumers' safety and well-being.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato nº 80, Campinas 13083-862, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato nº 80, Campinas 13083-862, São Paulo, Brazil
| | - Henrique Silvano Arruda
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato nº 80, Campinas 13083-862, São Paulo, Brazil
| |
Collapse
|
5
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Joshi JR, Paudel D, Eddy E, Charkowski AO, Heuberger AL. Plant necrotrophic bacterial disease resistance phenotypes, QTL, and metabolites identified through integrated genetic mapping and metabolomics in Solanum species. FRONTIERS IN PLANT SCIENCE 2024; 15:1336513. [PMID: 38504885 PMCID: PMC10949924 DOI: 10.3389/fpls.2024.1336513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024]
Abstract
Most food crops are susceptible to necrotrophic bacteria that cause rotting and wilting diseases in fleshy organs and foods. All varieties of cultivated potato (Solanum tuberosum L.) are susceptible to diseases caused by Pectobacterium species, but resistance has been demonstrated in wild potato relatives including S. chacoense. Previous studies demonstrated that resistance is in part mediated by antivirulence activity of phytochemicals in stems and tubers. Little is known about the genetic basis of antivirulence traits, and the potential for inheritance and introgression into cultivated potato is unclear. Here, the metabolites and genetic loci associated with antivirulence traits in S. chacoense were elucidated by screening a sequenced S. tuberosum x S. chacoense recombinant inbred line (RIL) population for antivirulence traits of its metabolite extracts. Metabolite extracts from the RILs exhibited a quantitative distribution for two antivirulence traits that were positively correlated: quorum sensing inhibition and exo-protease inhibition, with some evidence of transgressive segregation, supporting the role of multiple loci and metabolites regulating these resistance-associated systems. Metabolomics was performed on the highly resistant and susceptible RILs that revealed 30 metabolites associated with resistance, including several alkaloids and terpenes. Specifically, several prenylated metabolites were more abundant in resistant RILs. We constructed a high-density linkage map with 795 SNPs mapped to 12 linkage groups, spanning a length of 1,507 cM and a density of 1 marker per 1.89 cM. Genetic mapping of the antivirulence and metabolite data identified five quantitative trait loci (QTLs) related to quorum sensing inhibition that explained 8-28% of the phenotypic variation and two QTLs for protease activity inhibition that explained 14-19% of the phenotypic variation. Several candidate genes including alkaloid, and secondary metabolite biosynthesis that are related to disease resistance were identified within these QTLs. Taken together, these data support that quorum sensing inhibition and exo-protease inhibition assays may serve as breeding targets to improve resistance to nectrotrophic bacterial pathogens in potato and other plants. The identified candidate genes and metabolites can be utilized in marker assisted selection and genomic selection to improve soft- rot and blackleg disease resistance.
Collapse
Affiliation(s)
- Janak R. Joshi
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Dev Paudel
- Department of Environmental Horticulture, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Ethan Eddy
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Amy O. Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Adam L. Heuberger
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Ahmad R, Riaz M, Aldholmi M, Alsulays A, Alsulais W, Alaswad D, Almutawah AI, Al Nahab HZ. Solanum pseudocapsicum vs Capsicum annum; comparative phenolics profiling using green ultrasonic extraction and UHPLC analysis. ULTRASONICS SONOCHEMISTRY 2024; 103:106789. [PMID: 38309047 PMCID: PMC10848139 DOI: 10.1016/j.ultsonch.2024.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Solanum pseudocapsicum (PC) and Capsicum annum (CA) belongs to the family of Solanaceae. CA have been reported a rich source of phenolics whereas, the phenolics content of GA (gallic acid), SC (scopoletin), RA (rosmarinic acid), and RV (resveratrol) are yet to be reported for the PC-fruit. This study comparatively evaluates the phenolics profile for different parts (seeds and skin) and colors (green and red) of the PC- and CA-fruits using the green solvents of ethanol (ET), acetone (AC), water (H2O), and different combinations of these solvents. METHODOLOGY Ultrasonics extraction (US) and UHPLC analysis were employed for phenolics evaluation. RESULTS The USMD (method development) revealed the highest extract yield of 62 mg/100 mg for the PC-skin in ET:AC (70:30) solvent whereas, more phenolics (ppm) were observed for PC-seeds in ET:AC (50:50) solvent, particularly the SC (29.46) and GA (16.92). The UHPLCMDMV exhibited significant accuracies (100.70-114.14 %) with r2-values (0.9993-0.9997) in the linearity range of 1-200 ppm. The USMV (method validation) in PC- and CA-fruit parts and colors revealed more extract yields for the red skin part of the PC- (180.5 mg) and CA-fruit (126.2 mg). The phenolics were seen more in the green seeds of the PC-fruit (ppm); SC (276), GA (147.36), RV (28.54), and RA (23.87) followed by the green PC-skin, and red/green CA-seeds. The statistical models of mean differences, ANOVA, and Pearson's correlation showed significant differences for the PC-fruit parts (seeds and skin) and colors (red and green) vs extract yield and phenolics content (P = 0.05). CONCLUSION PC-and CA-fruits were successfully evaluated where the seeds for the green fruits exhibited more phenolics amount.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Khyber Pakhtunkhwa, Pakistan
| | - Mohammed Aldholmi
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahad Alsulays
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wala Alsulais
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Deema Alaswad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Alhassan Ibrahim Almutawah
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Hasan Zaki Al Nahab
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Khabade S, Sirigiri DNR, Ram AB. l-Asparaginase from Solanum lycopersicum as a Nutraceutical for Acute Lymphoblastic Leukemia. ACS OMEGA 2024; 9:3616-3624. [PMID: 38284052 PMCID: PMC10809669 DOI: 10.1021/acsomega.3c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
l-Asparaginase (E.C. 3.5.1.1) is an indispensable analeptic anticancer enzyme used as an amalgam with additional cancer medicines for the cure of acute lymphoblastic leukemia (ALL). The presence of lAparaginase in tomato was confirmed byWestern blotting and DNA sequencing. The l-Asparaginase gene from tomato has been deposited in the NCBI database with accession number: OR736141. Crude enzyme was extracted from the fruit pulp of Solanum lycopersicum, and the activity was determined by the Nesslerization method. Further, the crude extract was subjected to purification, and kinetic parameters were studied. The percentage yield was calculated to be 6.457, and the purification fold was 0.086. The enzyme showed maximum activity at optimum pH 7.0, optimum temperature 37 °C, and incubation time of 05 min. The Michaelis constant "Km" and maximum velocity "Vmax" values were determined by the Lineweaver-Burk plot, which showed a low Km value of 0.66 and Vmax of 3.846 IU. Cytotoxic studies were carried out for crude and purified l-asparaginase. Purified l-Asparaginase has exhibited anticancer activity against the ALL model system, K-562 cell line, comparable to that of the anticancer compound vinblastine. Hence, l-Asparaginase from the fruit extract of tomato could be used as a nutraceutical to support cancer treatment in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sarina
P. Khabade
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| | - Divijendra Natha Reddy Sirigiri
- Department
of Biotechnology, BMS College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 560019, India
| | - Anshu Beulah Ram
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| |
Collapse
|
9
|
Delbrouck JA, Murza A, Diachenko I, Ben Jamaa A, Devi R, Larose A, Chamberland S, Malouin F, Boudreault PL. From garden to lab: C-3 chemical modifications of tomatidine unveil broad-spectrum ATP synthase inhibitors to combat bacterial resistance. Eur J Med Chem 2023; 262:115886. [PMID: 37924710 DOI: 10.1016/j.ejmech.2023.115886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023]
Abstract
Antibiotic resistance is escalating alarmingly worldwide. Bacterial resistance mechanisms are surfacing and proliferating across the globe, jeopardizing our capacity to manage prevalent infectious illnesses. Without drastic measures, we risk entering a post-antibiotic era, where even trivial infections and injuries can cause death again. In this context, we have developed a new class of antibiotics based on tomatidine (TO), a natural product derived from tomato plants, with a novel mode of action by targeting bacterial ATP synthases. The first generation of compounds proved highly specific for small-colony variants (SCVs) of Staphylococcus aureus. However, optimization of this scaffold through extensive structure-activity relationship studies has enabled us to broaden its effectiveness to include both Gram-positive and Gram-negative bacteria. Notably, the results showed that specific C3-modification of TO could improve ATP synthase inhibition and also bypass the outer membrane barrier of Gram-negative bacteria to gain substantial growth inhibition including against multi-resistant strains.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Iryna Diachenko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Abdelkhalek Ben Jamaa
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Runjun Devi
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Audrey Larose
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada.
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.
| |
Collapse
|