1
|
Shen Y, Zhang X, Su J, Lin L, Jiang Z, Qiu L, Wang S, Wu B, Pu C, Cai X, Liu Y, Zhang X. Significantly Enhancing Mechanical and Thermal Properties of Cellulose-Based Composites by Adding Small Amounts of Lysozyme-Modified Graphene Nanoplatelets via Forming Strong Double-Cross-Linked Interface Interactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43159-43168. [PMID: 37651452 DOI: 10.1021/acsami.3c08195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Thermally conductive cellulose-based composites have great application potential in the thermal management of portable and wearable electronic devices. In this work, cellulose-based composites with excellent mechanical and thermal properties were developed by using lysozyme-modified graphene nanoplatelets (LmGNP), epichlorohydrin (ECH), and hydrolyzed cellulose via forming strong double-cross-linked interface interactions, including the hydrogen bond network generated between LmGNP and cellulose and the chemical cross-link of ECH. As for the composites containing 8 wt % LmGNP, the in-plane thermal conductivity was 3.341 W·m-1K-1, while the tensile stress was 114.60 MPa, which increased by 297.3 and 146.2%, respectively, compared to pure cellulose. Along with the good stability, insulation, and lightweight properties, the fabricated composites have the potential to become a promising heat dissipation material for wearable electronic devices.
Collapse
Affiliation(s)
- Yufeng Shen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China
| | - Jiangpeng Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Lin Qiu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sida Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - BingJi Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Changyu Pu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinzhi Cai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Chinalco Capital Holdings Company Limited, Beijing 100044, China
| | - Yuqiao Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
2
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
3
|
Sen S, Singh A, Kailasam K, Bera C, Roy S. Biomass-derived cellulose nanofibers and iron oxide-based nanohybrids for thermal insulation application. NANOSCALE ADVANCES 2022; 4:3381-3390. [PMID: 36131706 PMCID: PMC9417942 DOI: 10.1039/d2na00010e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 05/02/2023]
Abstract
In recent years, due to high energy consumption in the building sector and subsequent environmental issues, environment-friendly and cost-effective thermally insulating materials are in high demand to improve the energy efficiency of buildings. Current commercially available thermal insulating materials (polystyrene) always pose a challenge due to their non-biodegradability and poor insulating performance. To this end, biomass-derived aerogels are attracting significant interest as renewable and sustainable insulating materials. In this work, we have developed a facile strategy for synthesizing cellulose nanofibers from biomass-derived wood pulp as a cost-effective starting material by TEMPO-oxidation, and further incorporating iron oxide nanoparticles to make a nanohybrid. Interestingly, in these nanohybrids, the functional attributes like mechanical strength and flammability were improved to a great extent and thus overcoming the limitations of the commercially available thermal insulating materials in terms of their stability and durability. Most importantly, these nanohybrids demonstrated very low thermal conductivity, as low as 0.024 W m-1 K-1, indicating the better insulating potential of these nanohybrids as compared to other conventional insulating materials.
Collapse
Affiliation(s)
- Sourav Sen
- Institute of Nano Science and Technology Mohali Knowledge City, Sector-81 Mohali-140306 Punjab India
| | - Ajit Singh
- Institute of Nano Science and Technology Mohali Knowledge City, Sector-81 Mohali-140306 Punjab India
| | - Kamalakannan Kailasam
- Institute of Nano Science and Technology Mohali Knowledge City, Sector-81 Mohali-140306 Punjab India
| | - Chandan Bera
- Institute of Nano Science and Technology Mohali Knowledge City, Sector-81 Mohali-140306 Punjab India
| | - Sangita Roy
- Institute of Nano Science and Technology Mohali Knowledge City, Sector-81 Mohali-140306 Punjab India
| |
Collapse
|
4
|
Wang X, Sang T, Li G, Mi Q, Pei Y, Wang Y. Ultrabroadband and ultrathin absorber based on an encapsulated T-shaped metasurface. OPTICS EXPRESS 2021; 29:31311-31323. [PMID: 34615226 DOI: 10.1364/oe.435371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Ultrabroadband absorbers are vital for applications such as solar energy harvesting and integrated optoelectronic devices. Herein, we design, fabricate and characterize a novel ultrabroadband and ultrathin absorber based on the encapsulated T-shaped metasurface (ETM). The ETM consists of a 20 nm Cr film and a Cr substrate sandwiched by the T-shaped polymethyl methacrylate (PMMA) arrays. The Cr film provides a robust absorptive surface with improved impedance matching, and ultrabroadband absorption can be achieved via the excitation of the localized surface plasmon (LSP) of this ultrathin film. The average absorption of simulated and experimental results of the ETM in the visible range of 400-800 nm for the TM (TE) polarization are 96.4% (96.3%) and 90.6% (89.4%), respectively. Three-dimensional (3D) power dissipation density distributions of the proposed structure have been investigated, which indicates that the synergistic absorption effect of different parts of the T-shaped ultrathin Cr film contributes to the major absorption enhancement. The absorption of the ETM is very robust to the changes of geometrical parameters and the symmetry of the structure, and it can be maintained almost the same even if T-shaped profiles are changed to L-shaped profiles. Moreover, the absorption performance of the ETM exhibits polarization-insensitive and wide-angle features, which has advantages for many potential applications.
Collapse
|
5
|
Apostolopoulou-Kalkavoura V, Munier P, Dlugozima L, Heuthe VL, Bergström L. Effect of density, phonon scattering and nanoporosity on the thermal conductivity of anisotropic cellulose nanocrystal foams. Sci Rep 2021; 11:18685. [PMID: 34548539 PMCID: PMC8455657 DOI: 10.1038/s41598-021-98048-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Anisotropic cellulose nanocrystal (CNC) foams with densities between 25 and 130 kg m-3 (CNC25 -CNC130) were prepared by directional ice-templating of aqueous dispersions. Estimates of the solid and gas conduction contributions to the thermal conductivity of the foams using a parallel resistor model showed that the relatively small increase of the radial thermal conductivity with increasing foam density can be attributed to interfacial phonon scattering. The foam wall nanoporosity and, to a lesser extent, the orientation of the CNC particles and alignment of the columnar macropores, also influence the insulation performance of the foams. The insight on the importance of phonon scattering for the thermal insulation properties of nanocellulose foams provides useful guidelines for tailoring nanofibrillar foams for super-insulating applications.
Collapse
Affiliation(s)
| | - Pierre Munier
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lukasz Dlugozima
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Veit-Lorenz Heuthe
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
6
|
Hu D, Liu H, Ding Y, Ma W. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr Polym 2021; 264:118058. [PMID: 33910753 DOI: 10.1016/j.carbpol.2021.118058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
Highly thermally conductive and flame resistant nanocellulose-based composites can synchronously achieve efficient thermal dissipation and low fire hazards of electronic devices, which shows great promise in next-generation green and flexible electronics. However, it has long been intractable to optimize the high thermal conductivity (TC) and flame resistance simultaneously. Herein, synergetic integration of high TC and flame resistance in nacre-like nanocellulose composites has been successfully achieved by the vacuum-assisted filtration of cellulose nanofibers (CNFs) and functionalized boron nitride nanosheets (BNNS-p-APP). Benefiting from the highly oriented hierarchical microstructure, strong hydrogen-bonding interaction, and successful immobilization of ammonium polyphosphate (APP), the as-obtained CNFs/BNNS-p-APP composite film achieves a high in-plane TC of 9.1 W m-1 K-1 and outstanding flame resistance. Meantime, this eco-friendly nanocellulose-based composite also exhibits remarkable flexibility, folding endurance, and mechanical robustness, robustness, which may open up a new opportunity for the thermal management of flexible electronics.
Collapse
Affiliation(s)
- Dechao Hu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China; South China Institute of Collaborative Innovation, Dongguan, 523808, PR China
| | - Huaqing Liu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - Yong Ding
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - Wenshi Ma
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China; South China Institute of Collaborative Innovation, Dongguan, 523808, PR China.
| |
Collapse
|
7
|
Nguyen HL, Tran TH, Hao LT, Jeon H, Koo JM, Shin G, Hwang DS, Hwang SY, Park J, Oh DX. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydr Polym 2021; 271:118421. [PMID: 34364562 DOI: 10.1016/j.carbpol.2021.118421] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Aluminum-coated polypropylene films are commonly used in food packaging because aluminum is a great gas barrier. However, recycling these films is not economically feasible. In addition, their end-of-life incineration generates harmful alumina-based particulate matter. In this study, coating layers with excellent gas-barrier properties are assembled on polypropylene films through layer-by-layer (LbL) deposition of biorenewable nanocellulose and nanochitin. The coating layers significantly reduce the transmission of oxygen and water vapors, two unfavorable gases for food packaging, through polypropylene films. The oxygen transmission rate of a 60 μm-thick, 20 LbL-coated polypropylene film decreases by approximately a hundredfold, from 1118 to 13.10 cc m-2 day-1 owing to the high crystallinity of nanocellulose and nanochitin. Its water vapor transmission rate slightly reduces from 2.43 to 2.13 g m-2 day-1. Furthermore, the coated film is highly transparent, unfavorable to bacterial adhesion and thermally recyclable, thus promising for advanced food packaging applications.
Collapse
Affiliation(s)
- Hoang-Linh Nguyen
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Thang Hong Tran
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Sung Yeon Hwang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
8
|
Al Marri MG, Al-Ghouti MA, Shunmugasamy VC, Zouari N. Date pits based nanomaterials for thermal insulation applications-Towards energy efficient buildings in Qatar. PLoS One 2021; 16:e0247608. [PMID: 33770082 PMCID: PMC7996993 DOI: 10.1371/journal.pone.0247608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Air-conditioning systems make the most significant part of energy consumption in the residential sector. There is no denying that it is essential to produce a comfortable indoor thermal environment for residents in a building. The actual goal is to achieve thermal comfort level without putting too much cost on the ecological system by trying to conserve the amount of energy consumed. An effective way to help achieve such a goal is by incorporating thermal insulation in buildings. Thermal insulations help reduce thermal energy gained during the implementation of a desired thermal comfort level. This study aims to use an environmentally friendly nanoparticle of date pits to create thermal insulations that can be used in buildings. Different ratios of the nanoparticle of the date pits and sand composite were investigated. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the new materials. The material with nanoparticles of date pits and 50% by-volume epoxy provided good thermal insulation with thermal conductivity of 0.26 W⁄mK that could be used in the existing buildings. This has the potential to reduce the overall energy consumption by 4,494 kWh and thereby reduce CO2 emissions of a 570 m2 house by 1.8 tons annually. In conclusion, the future of using nanoparticles of date pits in construction is bright and promising due to their promising results.
Collapse
Affiliation(s)
- Moza Ghorab Al Marri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| | | | - Nabil Zouari
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| |
Collapse
|
9
|
One-pot synthesis of aminated cellulose nanofibers by "biological grinding" for enhanced thermal conductivity nanocomposites. Carbohydr Polym 2021; 254:117310. [PMID: 33357874 DOI: 10.1016/j.carbpol.2020.117310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Aminated cellulose nanofibers (A-CNF) with high thermostability (>350 ℃), high crystallinity (81.25 %), and high dispersion stability were extracted from "biological grinding" biomass through one-pot microwave-hydrothermal synthesis. Worm-eaten wood powder (WWP) as the product of "biological grinding" by borers is a desirable lignocellulose for fabricating A-CNF in a green and cost-effective way since it is a well-milled fine powder with dimension of dozens of microns, which can be used directly, saving energy and labor. Generated A-CNF proved to be an excellent reinforcing and curing agent for constructing high performance epoxy nanocomposites. The nanocomposites exhibited a thermal conductivity enhancement of about 120 %, coefficient of thermal expansion reduction of 78 %, and Young's modulus increase of 108 % at a low A-CNF loading of 1 wt.%, demonstrating their remarkable reinforcing potential and effective stress transfer behavior. The process proposed herein might help to bridge a closed-loop carbon cycle in the whole production-utilization of biomass.
Collapse
|
10
|
Hu D, Ma W. Nanocellulose as a Sustainable Building Block to Construct Eco-Friendly Thermally Conductive Composites. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dechao Hu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Wenshi Ma
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
11
|
Thieu NAT, Vu MC, Kim DH, Choi WK, Kim S. Effect of aspect ratio of vertically aligned copper nanowires in the presence of cellulose nanofibers on the thermal conductivity of epoxy composites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nhat Anh Thi Thieu
- Department of Polymer Science and EngineeringKorea National University of Transportation Chungju 27469 Republic of Korea
| | - Minh Canh Vu
- Department of Polymer Science and EngineeringKorea National University of Transportation Chungju 27469 Republic of Korea
| | - Dae Hoon Kim
- Department of Polymer Science and EngineeringKorea National University of Transportation Chungju 27469 Republic of Korea
- Department of Tests and CertificationKorea Conformity Laboratories Incheon 21591 Republic of Korea
| | - Won Kook Choi
- Center for Optoelectronic Materials and DevicesKorea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Sung‐Ryong Kim
- Department of Polymer Science and EngineeringKorea National University of Transportation Chungju 27469 Republic of Korea
| |
Collapse
|