1
|
Marchianò V, Tricase A, Cimino A, Cassano B, Catacchio M, Macchia E, Torsi L, Bollella P. Inside out: Exploring edible biocatalytic biosensors for health monitoring. Bioelectrochemistry 2025; 161:108830. [PMID: 39362018 DOI: 10.1016/j.bioelechem.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Edible biosensors can measure a wide range of physiological and biochemical parameters, including temperature, pH, gases, gastrointestinal biomarkers, enzymes, hormones, glucose, and drug levels, providing real-time data. Edible biocatalytic biosensors represent a new frontier within healthcare technology available for remote medical diagnosis. The main challenges to develop edible biosensors are: i) finding edible materials (i.e. redox mediators, conductive materials, binders and biorecognition elements such as enzymes) complying with Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and European Medicines Agency (EMEA) regulations; ii) developing bioelectronics able to operate in extreme working conditions such as low pH (∼pH 1.5 gastric fluids etc.), body temperature (between 37 °C and 40 °C) and highly viscous bodily fluids that may cause surface biofouling issues. Nowadays, advanced printing techniques can revolutionize the design and manufacturing of edible biocatalytic biosensors. This review outlines recent research on biomaterials suitable for creating edible biocatalytic biosensors, focusing on their electrochemical properties such as electrical conductivity and redox potential. It also examines biomaterials as substrates for printing and discusses various printing methods, highlighting challenges and perspectives for edible biocatalytic biosensors.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Angelo Tricase
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Alessandra Cimino
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Blanca Cassano
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Michele Catacchio
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy.
| |
Collapse
|
2
|
Botteon CA, Pereira ADES, de Castro LP, Justino IA, Fraceto LF, Bastos JK, Marcato PD. Toxicity Assessment of Biogenic Gold Nanoparticles on Crop Seeds and Zebrafish Embryos: Implications for Agricultural and Aquatic Ecosystems. ACS OMEGA 2025; 10:1032-1046. [PMID: 39829554 PMCID: PMC11740149 DOI: 10.1021/acsomega.4c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms. In this study, we evaluated the benefits and toxicity of gold nanoparticles (GNPs), synthesized via green chemistry, on the growth of cultivated plants and in the zebrafish embryo model. GNPs were synthesized through an economical and environmentally friendly method using Brazilian red propolis (BRP) extract (BRP-GNPs). BRP-GNPs exhibited negative and positive effects on plant germination, depending on the concentration tested and the plant species involved. Moreover, BRP-GNPs induced developmental toxicity in fish embryos in a dose-dependent manner. Our results provide valuable insights for assessing the environmental risks of biogenic GNPs.
Collapse
Affiliation(s)
- Caroline
E. A. Botteon
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | | | - Larissa P. de Castro
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Isabela A. Justino
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Leonardo F. Fraceto
- Institute
of Science and Technology, São Paulo
State University, Sorocaba 18087-180, Brazil
| | - Jairo K. Bastos
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Priscyla D. Marcato
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| |
Collapse
|
3
|
Souza CRD, Souza-Silva G, Silva FVM, Cardoso PVR, Lima WDS, Pereira CADJ, Mol MPG, Silveira MR. Ecotoxicological studies of direct and indirect genotoxicity with Artemia: a integrative review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:305-320. [PMID: 39087887 DOI: 10.1080/10934529.2024.2384216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.
Collapse
Affiliation(s)
| | - Gabriel Souza-Silva
- Social Pharmacy Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Walter Dos Santos Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Marcos Paulo Gomes Mol
- Department of Research and Development, Ezequiel Dias Foundantion, Belo Horizonte, Brazil
| | | |
Collapse
|
4
|
Easwaran C, Christopher SR, Moorthy G, Mohan P, Marimuthu R, Koothan V, Nallusamy S. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172533. [PMID: 38649050 DOI: 10.1016/j.scitotenv.2024.172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.
Collapse
Affiliation(s)
- Cheran Easwaran
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Sharmila Rahale Christopher
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Gokulakrishnan Moorthy
- Indian Council of Agricultural Research - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Raju Marimuthu
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, 641003, India
| | - Vanitha Koothan
- Department of Fruit Science, HC& RI, Tamil Nadu Agricultural University, 641003, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, 641003, India
| |
Collapse
|
5
|
Brunelli A, Cazzagon V, Faraggiana E, Bettiol C, Picone M, Marcomini A, Badetti E. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171132. [PMID: 38395161 DOI: 10.1016/j.scitotenv.2024.171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.
Collapse
Affiliation(s)
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Eleonora Faraggiana
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| |
Collapse
|
6
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
7
|
Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. NANO-MICRO LETTERS 2023; 15:54. [PMID: 36795339 PMCID: PMC9935810 DOI: 10.1007/s40820-023-01025-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Shivraj Hariram Nile
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589, Berlin, Germany
| | - Dirk Rothenstein
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
8
|
Connolly M, Moles G, Carniel FC, Tretiach M, Caorsi G, Flahaut E, Soula B, Pinelli E, Gauthier L, Mouchet F, Navas JM. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NANOIMPACT 2023; 29:100447. [PMID: 36563784 DOI: 10.1016/j.impact.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tests using algae and/or cyanobacteria, invertebrates (crustaceans) and fish form the basic elements of an ecotoxicological assessment in a number of regulations, in particular for classification of a substance as hazardous or not to the aquatic environment according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS-CLP) (GHS, 2022) and the REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals, EC, 2006). Standardised test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) are available to address the regulatory relevant endpoints of growth inhibition in algae and cyanobacteria (TG 201), acute toxicity to invertebrates (TG 202), and acute toxicity in fish (TG 203). Applying these existing OECD TGs for testing two dimensional (2D) graphene nanoforms may require more attention, additional considerations and/or adaptations of the protocols, because graphene materials are often problematic to test due to their unique attributes. In this review a critical analysis of all existing studies and approaches to testing used has been performed in order to comment on the current state of the science on testing and the overall ecotoxicity of 2D graphene materials. Focusing on the specific tests and available guidance's, a complete evaluation of aquatic toxicity testing for hazard classification of 2D graphene materials, as well as the use of alternative tests in an integrated approach to testing and assessment, has been made. This information is essential to ensure future assessments generate meaningful data that will fulfil regulatory requirements for the safe use of this "wonder" material.
Collapse
Affiliation(s)
- M Connolly
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain.
| | - G Moles
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| | - F Candotto Carniel
- UNITS, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
| | - M Tretiach
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - G Caorsi
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - E Flahaut
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - B Soula
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - E Pinelli
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - L Gauthier
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - F Mouchet
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - J M Navas
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| |
Collapse
|
9
|
dos Santos OAL, Pizzorno Backx B, Abumousa RA, Bououdina M. Environmental Implications Associated with the Development of Nanotechnology: From Synthesis to Disposal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4319. [PMID: 36500947 PMCID: PMC9740896 DOI: 10.3390/nano12234319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology remains under continuous development. The unique, fascinating, and tunable properties of nanomaterials make them interesting for diverse applications in different fields such as medicine, agriculture, and remediation. However, knowledge about the risks associated with nanomaterials is still poorly known and presents variable results. Furthermore, the interaction of nanomaterials with biological systems and the environment still needs to be clarified. Moreover, some issues such as toxicity, bioaccumulation, and physicochemical transformations are found to be dependent on several factors such as size, capping agent, and shape, making the comparisons even more complex. This review presents a comprehensive discussion about the consequences of the use and development of nanomaterials regarding their potential risks to the environment as well as human and animal health. For this purpose, we reviewed the entire production chain from manufacturing, product development, applications, and even product disposal to raise the important implications at each stage. In addition, we present the recent developments in terms of risk management and the recycling of nanomaterials. Furthermore, the advances and limitations in the legislation and characterization of nanomaterials are also discussed.
Collapse
Affiliation(s)
| | - Bianca Pizzorno Backx
- Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias 25240-005, Brazil
| | - Rasha A. Abumousa
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
10
|
Boros BV, Dascalu D, Ostafe V, Isvoran A. Assessment of the Effects of Chitosan, Chitooligosaccharides and Their Derivatives on Lemna minor. Molecules 2022; 27:6123. [PMID: 36144862 PMCID: PMC9502776 DOI: 10.3390/molecules27186123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan, chitooligosaccharides and their derivatives’ production and use in many fields may result in their release to the environment, possibly affecting aquatic organisms. Both an experimental and a computational approach were considered for evaluating the effects of these compounds on Lemna minor. Based on the determined EC50 values against L. minor, only D-glucosamine hydrochloride (EC50 = 11.55 mg/L) was considered as “slightly toxic” for aquatic environments, while all the other investigated compounds, having EC50 > 100 mg/L, were considered as “practically non-toxic”. The results obtained in the experimental approach were in good agreement with the predictions obtained using the admetSAR2.0 computational tool, revealing that the investigated compounds were not considered toxic for crustacean, fish and Tetrahymena pyriformis aquatic microorganisms. The ADMETLab2.0 computational tool predicted the values of IGC50 for Tetrahymena pyriformis and the LC50 for fathead minnow and Daphnia magna, with the lowest values of these parameters being revealed by totally acetylated chitooligosaccharides in correlation with their lowest solubility. The effects of the chitooligosaccharides and chitosan on L. minor decreased with increased molecular weight, increased with the degree of deacetylation and were reliant on acetylation patterns. Furthermore, the solubility mainly influenced the effects on the aqueous environment, with a higher solubility conducted to lower toxicity.
Collapse
Affiliation(s)
- Bianca-Vanesa Boros
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Daniela Dascalu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Vasile Ostafe
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|
11
|
Kim SQ, Kim KH. Emergence of Edible Plant-Derived Nanovesicles as Functional Food Components and Nanocarriers for Therapeutics Delivery: Potentials in Human Health and Disease. Cells 2022; 11:cells11142232. [PMID: 35883674 PMCID: PMC9319657 DOI: 10.3390/cells11142232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are a highly heterogeneous population of membranous particles that are secreted by almost all types of cells across different domains of life, including plants. In recent years, studies on plant-derived nanovesicles (PDNVs) showed that they could modulate metabolic reactions of the recipient cells, affecting (patho)physiology with health benefits in a trans-kingdom manner. In addition to its bioactivity, PDNV has advantages over conventional nanocarriers, making its application promising for therapeutics delivery. Here, we discuss the characteristics of PDNV and highlight up-to-date pre-clinical and clinical evidence, focusing on therapeutic application.
Collapse
Affiliation(s)
- Sora Q. Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-496-2330
| |
Collapse
|
12
|
Gambardella C, Pinsino A. Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review. TOXICS 2022; 10:393. [PMID: 35878298 PMCID: PMC9323026 DOI: 10.3390/toxics10070393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/16/2023]
Abstract
This systematic review analyzes the studies available on the ecotoxicity of nanomaterials (NMs) in the environment to understand where future research should be addressed for achieving Agenda 2030 goals on sustainable development and environmental safety. We discuss the status of NMs ecotoxicological effects across different organisms that are representative of all natural environments (land, air, water). A total of 1562 publications were retrieved from the Web of Science (all databases) by using the search criteria "nanomaterials" and "ecotoxicology"; among them, 303 studies were included in the systematic review because they met any of the following criteria: (i) focalize on both search criteria; (ii) deal with terrestrial, or aquatic environment; (iii) address models (organisms, cells) for the nano environmental risk assessment and exposure. The knowledge gaps are identified together with novel insights that need to be further investigated to better understand the ecotoxicological environmental impacts of NMs.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council, 16149 Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
13
|
Life Cycle Assessment and Preliminary Cost Evaluation of a Smart Packaging System. SUSTAINABILITY 2022. [DOI: 10.3390/su14127080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Smart food packaging (SP) is an innovative packaging system that can extend the shelf life of the product and reduce food waste. The objective of the study is the estimation of the environmental and economic sustainability of the overall life cycle of a SP including a chemical sensor able to detect modifications in the concentration of CO2, which is an indicator of food spoilage, and encapsulated oregano essential oil (OEO), capable of inhibiting the microbial growth. For this purpose, a life cycle assessment (LCA), following the ISO 14040 series and ReCiPe methodology, and an economic evaluation of SP, were performed. The environmental footprint (EF) of SP was compared to that of a conventional packaging (CP) in terms of packaging production, use and end of life (EoL) of both the packaging and the contained food product. The results demonstrated that the production of SP burdened by 67% the impact category of climate change. However, when adapting four use and EoL scenarios, namely the CP generates 30% food waste, whereas SP can generate 5% (optimistic scenario), 10% (realistic) or 20% (conservative) waste, SP proved to be environmentally superior in most impact categories.
Collapse
|
14
|
Toropova AP, Toropov AA. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153747. [PMID: 35149067 DOI: 10.1016/j.scitotenv.2022.153747] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Basic principles and problems of the systematization of data on nanomaterials are discussed. The eclectic character of nanomaterials is defined as the key difference between nanomaterials and traditional substances. The quasi-SMILES technique is described and discussed. The possible role of the approach is bridging between experimentalists and developers of models for endpoints related to nanomaterials. The use of models on the possible impact of nanomaterials on the environment and human health has been collected and compared. The new criteria of the predictive potential for the above models are discussed. The advantage of the statistical criteria sensitive simultaneously to both the correlation coefficient and the root mean square error noted. The rejection of the border between the effect of the biochemical reality of substances at a molecular level and the effect of experiment conditions at the macro level gives the possibility to develop models that are epistemologically more reliable in the comparison with traditional models based exclusively on the molecular structure-biological activity interdependence (without taking into account experimental conditions). Models of the physicochemical and biochemical behaviour of nanomaterials are necessary in order to develop and apply new industrial achievements, everyday comfort species, medicine, cosmetics, and foods without negative effects on ecology and human health. The CORAL (abbreviation CORrelation And Logic) software provides the user with the possibility to build up nano-QSAR models as a mathematical function of so-called correlation weights of fragments of quasi-SMILES. These models are built up via the Monte Carlo method. Apparently, the quasi-SMILES is a universal representation of nano-reality since there is no limitation to choose the list of eclectic data able to have an impact on nano-phenomena. This paradigm is a convenient language to the conversation of experimentalists and developers of models for nano-phenomena.
Collapse
Affiliation(s)
- Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
15
|
Köktürk M, Altindag F, Nas MS, Calimli MH. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol Trace Elem Res 2022; 200:2455-2467. [PMID: 34313947 DOI: 10.1007/s12011-021-02821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Bimetallic nanoparticles are synthesized using two different metal elements and used recently in many fields. However, limited studies related to the ecotoxic effects of nanoparticles available in the literature. The purpose of this study is to synthesize and characterize bimetallic PdCu/MWCNT and PdNi/MWCNT NPs and investigate their ecotoxic effects on earthworms. For this purpose, we injected approximately 20 µL of various concentrations of bimetallic PdCu/MWCNT and PdNi/MWCNT NPs (1, 10, 100, 1000, and 2000 mg/L) into the coelomic space of earthworms. We evaluated survival rate, malformations, reactive oxygen species (ROS) level, 8-OHdG content, and histopathological changes in earthworms at the 48th hour after exposure. PdCu/MWCNT and PdNi/MWCNT NPs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) pattern, and Raman-scattering spectroscopy. Toxicological examinations showed that PdCu/MWCNT NPs reduced the survival rate of earthworms (2000 mg/L, 84%) and caused various malformations (various lesions, thinning, swelling, and rupture), but nonsignificant effects of survival rate and malformations were observed in earthworms using PdNi/MWCNT NPs. The histopathological examinations of earthworm tissues exposed with PdNi/MWCNT determined that tissues in all treatment groups had a normal histological appearance. However, at a concentration of 2000 mg/L of PdCu/MWCNT NPs, atrophy in the longitudinal muscle layer and less degenerative cells in the epidermis layer were observed in earthworm tissues. It was determined that PdNi/MWCNT and PdCu/MWCNT NPs caused significant increases in ROS levels and 8-OHdG activity in earthworm tissues after 48 h. Finally, our results demonstrated that the toxicity of PdNi/MWCNT NPs was detected to be lower than PdCu/MWCNT NPs. However, both nanoparticles may pose a toxicological risk at high concentrations (1000 and 2000 mg/L). These findings will provide valuable information to studies on the use of PdNi/MWCNT NPs in wastewater treatment systems, industrial and medical fields, which have been determined to have less ecotoxicological risk.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdır University, Igdır, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, University of Igdır, Igdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, University of Igdır, Igdır, Turkey.
| |
Collapse
|
16
|
Jovanović Glavaš O, Stjepanović N, Hackenberger BK. Influence of nano and bulk copper on agile frog development. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:357-365. [PMID: 35001260 DOI: 10.1007/s10646-021-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology, as one of the fastest-growing industries, offers many benefits in various fields. However, properties that contribute to its positive effects, in other context, can cause adverse effects to various organisms, such as amphibians. Identifying possible negative effects on its survival is crucial since amphibians are the most threatened group of vertebrates. In that context, we investigated the influence of both nano and bulk copper on embryonic development of agile frog, Rana dalmatina. The embryos were exposed to various concentrations (0.01 mg/L, 0.075 mg/L, 0.15 mg/L or 0.3 mg/L) of either nano (CuO, declared size 40-80 nm) or bulk form (CuSO4·5H2O) for 16 days. Upon the experiment, tadpoles were measured and weighted, then homogenized and their protein, lipid, and carbohydrates content determined, as well as the activity of LDH. Our results suggest stronger negative influence of nano copper to size and weight of tadpoles, and bulk copper on lipid content, while both had strong negative effect on carbohydrates content, and LDH activity. In addition, our results suggest agile frog to be more susceptible to negative influence of both, nano and bulk copper, than commonly used Xenopus laevis.
Collapse
Affiliation(s)
- Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | | |
Collapse
|
17
|
Kusi J, Maier KJ. Evaluation of silver nanoparticle acute and chronic effects on freshwater amphipod (Hyalella azteca). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106016. [PMID: 34788726 DOI: 10.1016/j.aquatox.2021.106016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/02/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) are known to cause ecotoxic effects, but there are no existing derived ambient water quality criteria (AWQC) for these nanomaterials to protect freshwater aquatic life due to insufficient toxicological data. We exposed Hyalella azteca to silver nitrate, citrate-coated AgNPs (citrate-AgNPs), and polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs) in a 10-day and 28-day water-only static renewal system with clean sand as a substrate for the amphipods and compared their point estimates with the United States Environmental Protection Agency (USEPA) AWQC for silver. We observed that all treatments decreased the survival, growth, and biomass of H. azteca, and the order of toxicity was AgNO3 > citrate-AgNPs > PVP-AgNPs. The LC50s of AgNO3, citrate-AgNPs, and PVP-AgNPs were 3.0, 9.6, and 296.0 µg total Ag L-1, respectively, for the acute exposure and 2.4, 3.2, and 61.4 µg total Ag L-1, respectively, for the chronic exposure. Acute and chronic EC20s of citrate-AgNPs ranged from 0.5 to 3.5 µg total Ag L-1 while that of PVP-AgNPs ranged from 31.2 to 175 µg total Ag L-1 for growth and biomass. Both Ag+ released from AgNPs and the nanoparticles contributed to the observed toxicity. The dissolution and toxicity of AgNPs were influenced by surface coating agents, particle size, and surface charge. Most point estimates for AgNPs were above AWQC for silver (4.1 µg L-1) and the lowest concentration (0.12 µg/L) at which Ag is expected to cause chronic adverse effects to freshwater aquatic life. Our study demonstrates that the current AWQC for silver, in general, is protective of freshwater aquatic life against AgNPs tested in the present study.
Collapse
Affiliation(s)
- Joseph Kusi
- Department of Natural Sciences and Environmental Health, Mississippi Valley State University, Itta Bena, MS 38941, United States; Department of Environmental Health, East Tennessee State University, Johnson City, Tennessee 37614, United States.
| | - Kurt J Maier
- Department of Natural Sciences and Environmental Health, Mississippi Valley State University, Itta Bena, MS 38941, United States; Department of Environmental Health, East Tennessee State University, Johnson City, Tennessee 37614, United States
| |
Collapse
|
18
|
Kubendiran H, Alex SA, Pulimi M, Chandrasekaran N, Nancharaiah YV, Venugopalan VP, Mukherjee A. Development of biogenic bimetallic Pd/Fe nanoparticle-impregnated aerobic microbial granules with potential for dye removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112789. [PMID: 34029979 DOI: 10.1016/j.jenvman.2021.112789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to develop bimetallic core-shell Pd/Fe nanoparticles on the surface of aerobic microbial granules (Bio-Pd/Fe) and to evaluate their dye removal potential using a representative dye, methyl orange (MO). The aerobic microbial granules (1.5 ± 0.32 mm) were grown for 70 days in a 3-L glass sequencing batch reactor (SBR) with a 12-h cycle time. The Bio-Pd/Fe formation was catalyzed by the Bio-H2 gas produced by the granules. The developed Bio-Pd/Fe was further used for MO removal from aqueous solutions, and the reaction parameters were optimized by response surface methodology (RSM). The XRD, SEM, EDAX, elemental mapping, and XPS studies confirmed the formation of Bio-Pd/Fe. Under the optimized removal conditions, 99.33% MO could be removed by Bio-Pd/Fe, whereas removal by Bio-Pd, Bio-Fe, aerobic microbial granules, and heat-killed granules were found to be quite low (68.91 ± 0.2%, 76.8 ± 0.3%, 19.8 ± 0.6%, and 6.59 ± 0.2%, respectively). The mechanism of removal was investigated by UV-visible spectroscopy, redox potential analysis, HR-LCMS analyses of the solution phase, and XRD and XPS analyses of the solid sorbent. The degradation products of MO exhibited m/z values corresponding to 292, 212, and 160 m/z. The remnant toxicity of the intermediate degradation products was analysed using freshwater algae, Scenedesmus sp. And Allium cepa, as indicator organisms. These assays suggested that after the treatment with Bio-Pd/Fe, MO was transformed to a lesser toxic form.
Collapse
Affiliation(s)
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Y V Nancharaiah
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India
| | - V P Venugopalan
- Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
19
|
Li Y, Zhong L, Zhang L, Shen X, Kong L, Wu T. Research Advances on the Adverse Effects of Nanomaterials in a Model Organism, Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2406-2424. [PMID: 34078000 DOI: 10.1002/etc.5133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Along with the rapid development of nanotechnology, the biosafety assessment of nanotechnology products, including nanomaterials (NMs), has become more and more important. The nematode Caenorhabditis elegans is a valuable model organism that has been widely used in the field of biology because of its excellent advantages, including low cost, small size, short life span, and highly conservative genomes with vertebral animals. In recent years, the number of nanotoxicological researchers using C. elegans has been growing. According to these available studies, the present review classified the adverse effects of NMs in C. elegans into systematic, cellular, and molecular toxicity, and focused on summarizing and analyzing the underlying mechanisms of metal, metal oxide, and nonmetallic NMs causing toxic effects in C. elegans. Our findings provide insights into what further studies are needed to assess the biosafety of NMs in the ecosystem using C. elegans. Environ Toxicol Chem 2021;40:2406-2424. © 2021 SETAC.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lishi Zhong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
García-Sánchez S, Gala M, Žoldák G. Nanoimpact in Plants: Lessons from the Transcriptome. PLANTS 2021; 10:plants10040751. [PMID: 33921390 PMCID: PMC8068866 DOI: 10.3390/plants10040751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transcriptomics studies are available to evaluate the potential toxicity of nanomaterials in plants, and many highlight their effect on stress-responsive genes. However, a comparative analysis of overall expression changes suggests a low impact on the transcriptome. Environmental challenges like pathogens, saline, or drought stress induce stronger transcriptional responses than nanoparticles. Clearly, plants did not have the chance to evolve specific gene regulation in response to novel nanomaterials; but they use common regulatory circuits with other stress responses. A shared effect with abiotic stress is the inhibition of genes for root development and pathogen response. Other works are reviewed here, which also converge on these results.
Collapse
Affiliation(s)
- Susana García-Sánchez
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park P.J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
- Correspondence: (S.G.-S.); (G.Ž.)
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenna 5, 040 01 Košice, Slovakia;
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park P.J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
- Correspondence: (S.G.-S.); (G.Ž.)
| |
Collapse
|
21
|
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:213-239. [PMID: 33447834 DOI: 10.1039/d0em00404a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern agricultural practices have triggered the process of agricultural pollution. This process can cause the degradation of eco-systems, land, and environment owing to the modern-day by-products of agriculture. The substantial use of chemical fertilizers, pesticides, and, contaminated water for irrigation cause further damage to agriculture. The current scenario of the agriculture and food sector has therefore become unsustainable. Nanotechnology has provided innovative and resourceful frontiers to the agriculture sector by contributing practical applications in conventional agricultural ways and practices. There is a large possibility that agri-nanotechnology can have a significant impact on the sustainable agriculture and crop growth. Recent research has shown the potential of nanotechnology in improving the agriculture sector by enhancing the efficiency of agricultural inputs and providing solutions to agricultural problems for improving food productivity and security. The prospective use of nanoscale agrochemicals such as nanofertilizers, nanopesticides, nanosensors, and nanoformulations in agriculture has transformed traditional agro-practices, making them more sustainable and efficient. However, the application of these nano-products in real field situations raises concern about nanomaterial safety, exposure levels, and toxicological repercussions to the environment and human health. The present review gives an insight into recent advancements in nanotechnology-based agrochemicals that have revolutionized the agriculture sector. Further, the implementation barriers related to the nanomaterial use in agriculture, their commercialization potential, and the need for policy regulations to assess possible nano-agricultural risks are also discussed.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Archita Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sanjeev K Bhardwaj
- Amesys India, Cross Road No. 4, Near Geeta Gopal Bhawan, Ambala Cantt-133001, Haryana, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Manna I, Sahoo S, Bandyopadhyay M. Effect of Engineered Nickel Oxide Nanoparticle on Reactive Oxygen Species-Nitric Oxide Interplay in the Roots of Allium cepa L. FRONTIERS IN PLANT SCIENCE 2021; 12:586509. [PMID: 33633755 PMCID: PMC7901573 DOI: 10.3389/fpls.2021.586509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
Scientists anxiously follow instances of heavy metals augmenting in the environment and undergoing bioaccumulation and trace their biomagnification across food webs, wary of their potent toxicity on biological entities. Engineered nanoparticles supplement natural pools of respective heavy metals and can mimic their effects, exerting toxicity at higher concentrations. Thus, a thorough understanding of the underlying mechanism of this precarious interaction is mandatory. Most urban and industrial environments contain considerable quantities of nickel oxide nanoparticles. These in excess can cause considerable damage to plant metabolism through a significant increase in cellular reactive oxygen species and perturbation of its cross-talk with the reactive nitrogen species. In the present work, the authors have demonstrated how the intrusion of nickel oxide nanoparticles (NiO-NP) affected the exposed roots of Allium cepa: starting with disruption of cell membranes, before being interiorized within cell organelles, effectively disrupting cellular homeostasis and survival. A major shift in the reactive oxygen species (ROS) and nitric oxide (NO) equanimity was also observed, unleashing major altercations in several crucial biochemical profiles. Altered antioxidant contents and upregulation of stress-responsive genes, namely, Catalase, Ascorbate peroxidase, Superoxide dismutase, and Rubisco activase, showing on average 50-250% rise across NiO-NP concentrations tested, also entailed increased cellular hydrogen peroxide contents, with tandem rise in cellular NO. Increased NO content was evinced from altered concentrations of nitric oxide synthase and nitrate reductase, along with NADPH oxidase, when compared with the negative control. Though initially showing a dose-dependent concomitant rise, a significant decrease of NO was observed at higher concentrations of NiO-NP, while cellular ROS continued to increase. Modified K/Na ratios, with increased proline concentrations and GABA contents, all hallmarks of cellular stress, correlated with ROS-NO perturbations. Detailed studies showed that NiO-NP concentration had a significant role in inducing toxicity, perturbing the fine balance of ROS-NO, which turned lethal for the cell at higher dosages of the ENP precipitating in the accumulation of stress markers and an inevitable shutdown of cellular mechanisms.
Collapse
Affiliation(s)
- Indrani Manna
- Department of Botany, CAS, University of Calcutta, Kolkata, India
| | - Saikat Sahoo
- Department of Botany, Krishna Chandra College, Hetampur, India
| | | |
Collapse
|
23
|
A study of the effects of sodium alginate and sodium carboxymethyl cellulose on the growth of the common duckweed (Lemna minor L.). JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc210805082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium alginate (ALG) and sodium carboxymethyl cellulose (CMC) are two
polysaccharides that have a wide range of applications which could lead to
accidental pollution of the environment, making the assessment of their
potential ecotoxicity imperative. The present study assesses the ALG and CMC
effects on the growth response of the common duckweed (Lemna minor L.). The
results emphasize that both polysaccharides can be classified as practically
nontoxic based on their EC50 values, with ALG having a relatively higher
toxicity compared to CMC. It was also observed that high doses of 1, 5 and
10 mg mL-1 of the two polysaccharides produced growth inhibitory effects
against common duckweed. The toxicity of biopolymers against common
duckweed, measured as EC50 values, seems to be correlated to the
hydrophobicity of the monomers building the polymer. The EC50 values
increase linearly with the increase of water solubility (log S) values and
decrease linearly with the lipophilicity (log P) values.
Collapse
|
24
|
Díez-Pascual AM. Recent Progress in Antimicrobial Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2315. [PMID: 33238368 PMCID: PMC7700142 DOI: 10.3390/nano10112315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
Bacterial infections are a well-known and serious problem in numerous areas of everyday life, causing death, pain, and huge added costs to healthcare worldwide [...].
Collapse
Affiliation(s)
- Ana Maria Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
25
|
Frenzilli G. Nanotechnology for Environmental and Biomedical Research. NANOMATERIALS 2020; 10:nano10112220. [PMID: 33171579 PMCID: PMC7695177 DOI: 10.3390/nano10112220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
26
|
Cu Nanoparticle-Loaded Nanovesicles with Antibiofilm Properties. Part I: Synthesis of New Hybrid Nanostructures. NANOMATERIALS 2020; 10:nano10081542. [PMID: 32781618 PMCID: PMC7466395 DOI: 10.3390/nano10081542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used as delivery vehicles because phospholipids favor cellular uptake. Their capacity for hydrophilic/hydrophobic balance and carrier capacity could be advantageous to prepare novel hybrid nanostructures based on metal NPs (Me-NPs). In this work, NVs were loaded with CuNPs, which have been reported to have a biofilm inhibition effect. These hybrid materials could improve the effect of conventional antibacterial agents. CuNPs were electro-synthesized by the sacrificial anode electrolysis technique in organic media and characterized in terms of morphology through transmission electron microscopy (TEM). The NVs were prepared by the thin film hydration method in aqueous media, using phosphatidylcholine (PC) and cholesterol as a membrane stabilizer. The nanohybrid systems were purified to remove non-encapsulated NPs. The size distribution, morphology and stability of the NV systems were studied. Different quaternary ammonium salts in vesicular systems made of PC were tested as stabilizing surfactants for the synthesis and inclusion of CuNPs. The entrapment of charged metal NPs was demonstrated. NPs attached preferably to the membrane, probably due to the attraction of their hydrophobic shell to the phospholipid bilayers. The high affinity between benzyl-dimethyl-hexadecyl-ammonium chloride (BDHAC) and PC allowed us to obtain stable hybrid NVs c.a. 700 nm in diameter. The stability of liposomes increased with NP loading, suggesting a charge-stabilization effect in a novel antibiofilm nanohybrid material.
Collapse
|
27
|
Zielińska A, Costa B, Ferreira MV, Miguéis D, Louros JMS, Durazzo A, Lucarini M, Eder P, V. Chaud M, Morsink M, Willemen N, Severino P, Santini A, Souto EB. Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4657. [PMID: 32605255 PMCID: PMC7369733 DOI: 10.3390/ijerph17134657] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
This review offers a systematic discussion about nanotoxicology and nanosafety associated with nanomaterials during manufacture and further biomedical applications. A detailed introduction on nanomaterials and their most frequently uses, followed by the critical risk aspects related to regulatory uses and commercialization, is provided. Moreover, the impact of nanotoxicology in research over the last decades is discussed, together with the currently available toxicological methods in cell cultures (in vitro) and in living organisms (in vivo). A special focus is given to inorganic nanoparticles such as titanium dioxide nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). In vitro and in vivo case studies for the selected nanoparticles are discussed. The final part of this work describes the significance of nano-security for both risk assessment and environmental nanosafety. "Safety-by-Design" is defined as a starting point consisting on the implementation of the principles of drug discovery and development. The concept "Safety-by-Design" appears to be a way to "ensure safety", but the superficiality and the lack of articulation with which it is treated still raises many doubts. Although the approach of "Safety-by-Design" to the principles of drug development has helped in the assessment of the toxicity of nanomaterials, a combination of scientific efforts is constantly urgent to ensure the consistency of methods and processes. This will ensure that the quality of nanomaterials is controlled and their safe development is promoted. Safety issues are considered strategies for discovering novel toxicological-related mechanisms still needed to be promoted.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Beatriz Costa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Maria V. Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Diogo Miguéis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Jéssica M. S. Louros
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba—UNISO, Sorocaba 18023-000, Brazil;
| | - Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|