1
|
Lavecchia R, García-Martínez JB, Contreras-Ropero JE, Barajas-Solano AF, Zuorro A. Antibacterial and Photocatalytic Applications of Silver Nanoparticles Synthesized from Lacticaseibacillus rhamnosus. Int J Mol Sci 2024; 25:11809. [PMID: 39519360 PMCID: PMC11546108 DOI: 10.3390/ijms252111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The biosynthesis of silver nanoparticles (AgNPs) presents an innovative and sustainable approach in nanotechnology with promising applications in fields such as medicine, food safety, and pharmacology. In this study, AgNPs were successfully synthesized using the probiotic strain Lacticaseibacillus rhamnosus (BCRC16000), addressing challenges related to stability, biocompatibility, and scalability that are common in conventional nanoparticle production methods. The formation of AgNPs was indicated by a color change from yellow to brown, and UV-visible spectrophotometry confirmed their presence with a characteristic absorption peak at 443 nm. Furthermore, Fourier transform infrared (FTIR) spectroscopy revealed the involvement of biomolecules in reducing silver ions, which suggests their role in stabilizing the nanoparticles. In addition, field emission scanning electron microscopy (FE-SEM) showed significant morphological and structural changes. At the same time, dynamic light scattering (DLS) and zeta potential analyses provided valuable insights such as average size (199.7 nm), distribution, and stability, reporting a polydispersity index of 0.239 and a surface charge of -36.3 mV. Notably, the AgNPs demonstrated strong antibacterial activity and photocatalytic efficiency, underscoring their potential for environmental and biomedical applications. Therefore, this study highlights the effectiveness of Lacticaseibacillus rhamnosus in the biosynthesis of AgNPs, offering valuable antibacterial and photocatalytic properties with significant industrial and scientific implications.
Collapse
Affiliation(s)
- Roberto Lavecchia
- Department of Chemical Engineering, Materials, and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Janet B. García-Martínez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia; (J.B.G.-M.); (J.E.C.-R.); (A.F.B.-S.)
| | - Jefferson E. Contreras-Ropero
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia; (J.B.G.-M.); (J.E.C.-R.); (A.F.B.-S.)
| | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia; (J.B.G.-M.); (J.E.C.-R.); (A.F.B.-S.)
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials, and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| |
Collapse
|
2
|
Zhang X, Hao X, Chen X, Wang F, Guo H. The beneficial effects of the active components from Maclura tricuspidata fruits in the treatment of diabetes mellitus. Nat Prod Res 2024; 38:3831-3835. [PMID: 37737157 DOI: 10.1080/14786419.2023.2261067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Five active compounds, daidzein, luteolin, alpinumisoflavone (AI), 6,8-diprenylgenistein (DG), and warangalone (WA), were identified from the fruits of Maclura tricuspidata via LC-Q/TOF-MS. WA and DG were shown to reverse the high glucose (HG)-induced injury in human umbilical vein endothelial cells (HUVECs), indicating their potential protective effects in alleviating diabetic symptoms. Network pharmacology was conducted to reveal the potential mechanisms of action of the compounds, and Hsp90α (degree: 47), Src (degree: 49), Akt (degree: 69) and p53 (degree: 60) were shown as the core targets related to antidiabetic properties. Further experimental verification suggested that the compounds could enhance phosphorylation of Src and Akt, increase p53 expression act as Hsp90 inhibitors, and protect against HG induced endothelial dysfunction. Our findings will provide a comprehensive understanding of the active substances of M. tricuspidata, which will be helpful for their utilisation.
Collapse
Affiliation(s)
- Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoyan Hao
- Shandong Lancheng Analysis and Testing Co., Ltd, Jinan, China
| | - Xiqiang Chen
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fengxia Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongbo Guo
- State Key Laboratory of Stress Biology in Arid Areas, State and Local Joint Research Center of Traditional Chinese Medicine Fingerprint and Natural Products, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Roumeliotis S, Liakopoulos V, Veljkovic A, Dounousi E. Redox Systems Biology in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9864037. [PMID: 37180759 PMCID: PMC10171981 DOI: 10.1155/2023/9864037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Evangelia Dounousi
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Lee JY, Son HG, Koo Y, Jung SH, Park SD, Shim JJ, Lee JL, Lee YH. Protective Effects of Cudrania tricuspidata Against Helicobacter pylori-Induced Inflammation in C57BL/6 Mice. J Med Food 2023; 26:224-231. [PMID: 36862521 DOI: 10.1089/jmf.2022.k.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Helicobacter pylori modulates the host inflammatory response, resulting in chronic gastritis, which contributes to gastric cancer pathogenesis. We verified the effect of Cudrania tricuspidata on H. pylori infection by inhibiting H. pylori-induced inflammatory activity. Five-week-old C57BL/6 mice (n = 8) were administered C. tricuspidata leaf extract (10 or 20 mg/kg per day) for 6 weeks. An invasive test (campylobacter-like organism [CLO]) and noninvasive tests (stool antigen test [SAT] and H. pylori antibody enzyme-linked immunosorbent assay) were performed to confirm the eradication of H. pylori. To evaluate the anti-inflammatory effect of C. tricuspidata, pro-inflammatory cytokines levels and inflammation scores were measured in mouse gastric tissue. C. tricuspidata significantly decreased the CLO score and H. pylori immunoglobulin G antibody optical density levels at both 10 and 20 mg/kg per day doses (P < .05). C. tricuspidata decreased the H. pylori antibody levels in a concentration-dependent manner, increased negative responses to SAT by up to 37.5%, and inhibited the pro-inflammatory cytokines interleukin (IL; IL-1β, IL-6, 1L-8, and tumor necrosis factor alpha). C. tricuspidata also relieved gastric erosions and ulcers and significantly reduced the inflammation score (P < .05). We measured rutin in C. tricuspidata extract as a standard for high-performance liquid chromatography. C. tricuspidata leaf extract showed anti-H. pylori activity through the inhibition of inflammation. Our findings suggest that C. tricuspidata leaf extract is potentially an effective functional food material against H. pylori.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Hyung Gu Son
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Yejin Koo
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | | | | | | | | | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| |
Collapse
|
5
|
Islam R, Sun L, Zhang L. Biomedical Applications of Chinese Herb-Synthesized Silver Nanoparticles by Phytonanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2757. [PMID: 34685197 PMCID: PMC8539779 DOI: 10.3390/nano11102757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Recent advances in nanotechnology have opened up new avenues for the controlled synthesis of nanoparticles for biomedical and pharmaceutical applications. Chinese herbal medicine is a natural gift to humanity, and it has long been used as an antibacterial and anticancer agent. This study will highlight recent developments in the phytonanotechnological synthesis of Chinese herbal medicines to utilize their bioactive components in biomedical and therapeutic applications. Biologically synthesized silver nanoparticles (AgNPs) have emerged as a promising alternative to chemical and physical approaches for various biomedical applications. The comprehensive rationale of combinational or synergistic effects of Chinese herb-based AgNPs synthesis was investigated with superior physicochemical and biological properties, and their biomedical applications, including antimicrobial and anticancer activity and wound healing properties. AgNPs can damage the cell ultrastructure by triggering apoptosis, which includes the formation of reactive oxygen species (ROS), DNA disintegration, protein inactivation, and the regulation of various signaling pathways. However, the anticancer mechanism of Chinese herbal medicine-based AgNPs is more complicated due to the potential toxicity of AgNPs. Further in-depth studies are required to address Chinese herbs' various bioactive components and AgNPs as a synergistic approach to combat antimicrobial resistance, therapeutic efficiency of drug delivery, and control and prevention of newly emerged diseases.
Collapse
Affiliation(s)
| | - Leming Sun
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (R.I.); (L.Z.)
| | | |
Collapse
|
6
|
Asghar MA, Yousuf RI, Shoaib MH, Asghar MA, Zehravi M, Rehman AA, Imtiaz MS, Khan K. Green Synthesis and Characterization of Carboxymethyl Cellulose Fabricated Silver-Based Nanocomposite for Various Therapeutic Applications. Int J Nanomedicine 2021; 16:5371-5393. [PMID: 34413643 PMCID: PMC8370115 DOI: 10.2147/ijn.s321419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose The current study proposed the simple, eco-friendly and cost-effective synthesis of carboxymethyl cellulose (CMC) structured silver-based nanocomposite (CMC-AgNPs) using Syzygium aromaticum buds extract. Methods The CMC-AgNPs were characterized by ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transmission infra-red (FTIR), energy-dispersive X-ray (EDX), and dynamic light scattering (DLS) techniques. The synthesized nanocomposites were evaluated for their bactericidal kinetics, in-vivo anti-inflammatory, anti-leishmaniasis, antioxidant and cytotoxic activities using different in-vitro and in-vivo models. Results The spherical shape nanocomposite of CMC-AgNPs was synthesized with the mean size range of 20–30 nm, and the average pore diameter is 18.2 nm while the mean zeta potential of −31.6 ± 3.64 mV. The highly significant (P < 0.005) antibacterial activity was found against six bacterial strains with the ZIs of 24.6 to 27.9 mm. More drop counts were observed in Gram-negative strains after 10 min exposure with CMC-AgNPs. Significant damage in bacterial cell membrane was also observed in atomic force microscopy (AFM) after treated with CMC-AgNPs. Nanocomposite showed highly significant anti-inflammatory activity in cotton pellet induced granuloma model (Phase I) in rats with the mean inhibitions of 43.13% and 48.68% at the doses of 0.025 and 0.05 mg/kg, respectively, when compared to control. Reduction in rat paw edema (Phase II) was also highly significant (0.025 mg/kg; 42.39%; 0.05 mg/kg, 47.82%). At dose of 0.05 mg/kg, CMC-AgNPs caused highly significant decrease in leukocyte counts (922 ± 83), levels of CRP (8.4 ± 0.73 mg/mL), IL-1 (177.4 ± 21.3 pg/mL), IL-2 (83.7 ± 11.5 pg/mL), IL-6 (83.7 ± 11.5 pg/mL) and TNF-α (18.3 ± 5.3 pg/mL) as compared to control group. CMC-AgNPs produced highly effective anti-leishmaniasis activity with the viable Leishmania major counts decreased up to 36.7% within 24 h, and the IC50 was found to be 28.41 μg/mL. The potent DPPH radical scavenging potential was also observed for CMC-AgNPs with the IC50 value of 112 μg/mL. Furthermore, the cytotoxicity was assessed using HeLa cell lines with the LC50 of 108.2 μg/mL. Conclusion The current findings demonstrate positive attributes of CMC fabricated AgNPs as a promising antibacterial, anti-inflammatory, anti-leishmaniasis, and antioxidant agent with low cytotoxic potential.
Collapse
Affiliation(s)
- Muhammad Arif Asghar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Asif Asghar
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Karachi, Sindh, Pakistan
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Pharmacy for Girls, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Ahad Abdul Rehman
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Suleman Imtiaz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Kamran Khan
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
7
|
Jeon JS, Kang HM, Park JH, Kang JS, Lee YJ, Park YH, Je BI, Park SY, Choi YW. A Comparative Study on Photo-Protective and Anti-Melanogenic Properties of Different Kadsura coccinea Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1633. [PMID: 34451678 PMCID: PMC8401305 DOI: 10.3390/plants10081633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Kadsura coccinea (KC), a beneficial plant for human health, has been used for centuries in China, Thailand, and Korea in folk medicine and food. There is evidence supporting the biological effects of highly bioactive ingredients in KC such as lignans, triterpenoids, flavonoids, phenolic acids, steroids, and amino acids. In this study, we aimed to explore the effects, functions, and mechanisms of the extracts from KC root (KCR), stem (KCS), leaf (KCL), and fruit (KCF) in UVA and UVB-irradiated keratinocytes and α-melanocyte stimulating hormone (α-MSH)-stimulated melanocytes. First, the total polyphenol and flavonoid contents of KCR, KCS, KCL, and KCF and their radical scavenging activities were investigated. These parameters were found to be in the following order: KCL > KCR > KCS > KCF. UVA and UVB-irradiated keratinocytes were treated with KCR, KCS, KCL, and KCF, and keratinocyte viability, LDH release, intracellular ROS production, and apoptosis were examined. Our results demonstrated that KC extracts improved keratinocyte viability and reduced LDH release, intracellular ROS production, and apoptosis in the presence UVA and UVB irradiation. The overall photoprotective activity of the KC extracts was confirmed in the following order: KCL > KCR > KCS > KCF. Moreover, KC extracts significantly decreased the intracellular melanin content and tyrosinase activity in α-MSH-stimulated melanocytes. Mechanistically, KC extracts reduced the protein and mRNA expression levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) in α-MSH-stimulated melanocytes. In addition, these extracts markedly downregulated myophthalmosis-related transcription factor expression and cAMP-related binding protein phosphorylation, which is upstream of the regulation of Tyrosinase, TRP-1, and TRP-2. The overall anti-melanogenic activity of the KC extracts was established in the following order. KCL > KCR > KCS > KCF. Overall, the KC extracts exert photoprotective and anti-melanogenic effects, providing a basis for developing potential skin-whitening and photoprotective agents.
Collapse
Affiliation(s)
- Joong Suk Jeon
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - He Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Ju Ha Park
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Jum Soon Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Yong Jae Lee
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Young Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| |
Collapse
|
8
|
Cudrania tricuspidata Root Extract Prevents Methylglyoxal-Induced Inflammation and Oxidative Stress via Regulation of the PKC-NOX4 Pathway in Human Kidney Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5511881. [PMID: 33859775 PMCID: PMC8026309 DOI: 10.1155/2021/5511881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy is a microvascular complication induced by diabetes, and methylglyoxal (MGO) is a reactive carbonyl species causing oxidative stress that contributes to the induction of inflammatory response in kidney cells. Cudrania tricuspidata (CT), cultivated in Northeast Asia, has been used as traditional medicine for treating various diseases, including neuritis, liver damage, and cancer. In this study, we determined whether a CT root extract (CTRE) can prevent MGO-induced reactive oxygen species (ROS) production and inflammation and assessed underlying mechanisms using a kidney epithelial cell line, HK-2. We observed that CTRE inhibited MGO-induced ROS production. Additionally, CTRE ameliorated the activation of MGO-induced inflammatory signaling pathways such as p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-JUN N-terminal kinase (JNK). Consistent with these results, expressions of p-nuclear factor-kappa B (NFκB) and inflammatory cytokines, tumor necrosis factor-α, interleukin- (IL-) 1β, and IL-6, were decreased when compared with MGO-only exposed HK-2 cells. CTRE alleviated the MGO-induced decrease in nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and antioxidant enzyme mRNA expressions. MGO induced the expression of NADPH oxidase 4 (NOX4); CTRE pretreatment inhibited this induction. Further studies revealed that the NOX4 expression was inhibited owing to the suppression of MGO-induced protein kinase C (PKC) activation following CTRE treatment. Collectively, our data suggest that CTRE attenuates MGO-induced inflammation and oxidative stress via inhibition of PKC activation and NOX4 expression, as well as upregulating the Nrf2-antioxidant enzyme pathway in HK-2 cells.
Collapse
|