1
|
Hussaian Basha C, Palati M, Dhanamjayulu C, Muyeen SM, Venkatareddy P. A novel on design and implementation of hybrid MPPT controllers for solar PV systems under various partial shading conditions. Sci Rep 2024; 14:1609. [PMID: 38238374 PMCID: PMC10796370 DOI: 10.1038/s41598-023-49278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
At present, fossil fuel-based power generation systems are reducing drastically because of their less availability in nature. In addition, it produces hazardous gasses and high environmental pollution. So, in this work, the solar natural source is selected for generating the electricity. Due to the nonlinear behavior of PV, achieving maximum voltage from the Photovoltaic (PV) system is a more tough job. In this work, various hybrid optimization controllers are studied for tracing the working power point of the PV under different Partial Shading Conditions. The studied hybrid optimization MPPT methods are equated in terms of oscillations across MPP, output power extraction, settling time of the MPP, dependency on the PV modeling, operating duty value of the converter, error finding accuracy of MPPT, algorithm complexity, tracking speed, periodic tuning required, and the number of sensing parameters utilized. Based on the simulative comparison results, it has been observed that the modified Grey Wolf Optimization based ANFIS hybrid MPPT method provides good results when equated with the other power point tracking techniques. Here, the conventional converter helps increase the PV source voltage from one level to another level. The proposed system is investigated by using the MATLAB/Simulink tool.
Collapse
Affiliation(s)
| | - Madhu Palati
- BMS Institute of Technology and Management, Bengaluru, India
| | - C Dhanamjayulu
- School of Electrical Engineering, Vellore Institute of Technology, Vellore, 632014, India.
| | - S M Muyeen
- Qatar University, University Street, Doha, Qatar.
| | | |
Collapse
|
2
|
Zhao W, Zhang J, Kong F, Ye T. Application of Perovskite Nanocrystals as Fluorescent Probes in the Detection of Agriculture- and Food-Related Hazardous Substances. Polymers (Basel) 2023; 15:2873. [PMID: 37447518 DOI: 10.3390/polym15132873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Halide perovskite nanocrystals (PNCs) are a new kind of luminescent material for fluorescent probes. Compared with traditional nanosized luminescent materials, PNCs have better optical properties, such as high fluorescence quantum yield, tunable band gap, low size dependence, narrow emission bandwidth, and so on. Therefore, they have broad application prospects as fluorescent probes in the detection of agriculture- and food-related hazardous substances. In this paper, the structure and basic properties of PNCs are briefly described. The water stabilization methods, such as polymer surface coating, ion doping, surface passivation, etc.; are summarized. The recent advances of PNCs such as fluorescent probes for detecting hazardous substances in the field of agricultural and food are reviewed, and the detection effect and mechanism are discussed and analyzed. Finally, the problems and solutions faced by PNCs as fluorescent probes in agriculture and food were summarized and prospected. It is expected to provide a reference for further application of PNCs as fluorescent probes in agriculture and food.
Collapse
Affiliation(s)
- Wei Zhao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Fanjun Kong
- Harbin Technician College, Harbin 150500, China
| | - Tengling Ye
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
He M, Alomar M, Alqarni AS, Arshad N, Akbar M, Yousaf M, Irshad MS, Lu Y, Liu Q. Strontium-Cobaltite-Based Perovskite (SrCoO 3) for Solar-Driven Interfacial Evaporation Systems for Clean Water Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1420. [PMID: 37111005 PMCID: PMC10146356 DOI: 10.3390/nano13081420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Solar-driven evaporation technology is often used in areas with limited access to clean water, as it provides a low-cost and sustainable method of water purification. Avoiding salt accumulation is still a substantial challenge for continuous desalination. Here, an efficient solar-driven water harvester that consists of strontium-cobaltite-based perovskite (SrCoO3) anchored on nickel foam (SrCoO3@NF) is reported. Synced waterways and thermal insulation are provided by a superhydrophilic polyurethane substrate combined with a photothermal layer. The structural photothermal properties of SrCoO3 perovskite have been extensively investigated through state-of-the-art experimental investigations. Multiple incident rays are induced inside the diffuse surface, permitting wideband solar absorption (91%) and heat localization (42.01 °C @ 1 sun). Under 1 kW m-2 solar intensity, the integrated SrCoO3@NF solar evaporator has an outstanding evaporation rate (1.45 kg/m2 h) and solar-to-vapor conversion efficiency (86.45% excluding heat losses). In addition, long-term evaporation measurements demonstrate small variance under sea water, illustrating the system's working capacity for salt rejection (1.3 g NaCl/210 min), which is excellent for an efficient solar-driven evaporation application compared to other carbon-based solar evaporators. According to the findings of this research, this system offers significant potential for producing fresh water devoid of salt accumulation for use in industrial applications.
Collapse
Affiliation(s)
- Miao He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Muneerah Alomar
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Areej S. Alqarni
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Naila Arshad
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Akbar
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Muhammad Yousaf
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/Energy Storage Joint Research Centre, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Muhammad Sultan Irshad
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;
| | - Yuzheng Lu
- School of Electronic and Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Qiang Liu
- School of Electronic and Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
4
|
Shan X, Zhu S, Lin R, Li Y, Wang Z, Qian Z, Cui X, Liu R, Tian P. Improvements of the modulation bandwidth and data rate of green-emitting CsPbBr 3 perovskite quantum dots for Gbps visible light communication. OPTICS EXPRESS 2023; 31:2195-2207. [PMID: 36785238 DOI: 10.1364/oe.477993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
CsPbBr3 perovskite quantum dots (PQDs) as promising color conversion materials have been widely used in display and visible light communication (VLC), but most CsPbBr3 PQDs for VLC are randomly selected without optimization. Thereby the exploration of fundamental experimental parameters of QDs is essential to better employ their performance advantages. Herein, we investigated the concentration and solvent effects on photoluminescence (PL) properties and communication performance of CsPbBr3 PQDs. The PL, time-resolved PL characterization and communication measurements of CsPbBr3 PQDs all exhibit concentration dependence, suggesting that there exists an optimum concentration to take advantages of performance merits. CsPbBr3 PQDs with a concentration of 0.5 mg/ml show the shortest carrier lifetime and achieve the highest -3 dB bandwidth (168.03 MHz) as well as the highest data rate (660 Mbps) comparing to other concentrations. And in terms of the optimal concentration, we further explored the approach to improve the communication performance, investigating the effect of polarity solvent on the communication performance of CsPbBr3 PQDs. Original 0.5 mg/ml CsPbBr3 PQDs (1 ml) with 55 μL ethanol added in obtain a higher -3 dB bandwidth of 363.68 MHz improved by ∼116.4% and a record data rate of 1.25 Gbps improved by ∼89.4% but weaker PL emission due to energy transfer. The energy transfer assisted improvement may open up a promising avenue to improve the communication performance of QDs, but more feasible energy transfer path needs to be explored to ensure the stability of QDs.
Collapse
|
5
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Liu XY, Cui Y, Deng JP, Liu YY, Ma XF, Hou YX, Wei JY, Li ZQ, Wang ZW. Charge Carriers Trapping by the Full-Configuration Defects in Metal Halide Perovskites Quantum Dots. J Phys Chem Lett 2022; 13:8858-8863. [PMID: 36123602 DOI: 10.1021/acs.jpclett.2c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites quantum dots (MHPQDs) have aroused enormous interest in the photovoltaic and photoelectric disciplines because of their marvelous properties and size characteristics. However, one of the key problems of how to systematically analyze charge carriers trapped by defects is still a challenging task. Here, we study multiphonon processes of the charge carrier trapping by various defects in MHPQDs based on the well-known Huang-Rhys model, in which a method of a full-configuration defect, including different defect species with variable depth and lattice relaxation strength, is developed by introducing a localization parameter in the quantum defect model. With the help of this method, these fast trapping channels for charge carriers transferring from the quantum dot ground state to different defects are found. Furthermore, the dependence of the trapping time on the radius of quantum dot, the defect depth, and temperature is given. These results not only enrich the knowledge of charge carrier trapping processes by defects, but also bring light to the designs of MHPQDs-based photovoltaic and photoelectric devices.
Collapse
Affiliation(s)
- Xiao-Yi Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Yu Cui
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Jia-Pei Deng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Yi-Yan Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Xu-Fei Ma
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Yu-Xuan Hou
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Jun-Ye Wei
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Zhi-Qing Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| | - Zi-Wu Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin, 300354, China
| |
Collapse
|
7
|
Sardar S, Maity P, Mittal M, Chakraborty S, Dhara A, Jana A, Bandyopadhyay A. Synthesis and characterization of polypyrrole encapsulated formamidinium lead bromide crystals for fluorescence memory recovery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Liu L, Pan K, Xu K, Zhang JZ. Impact of Molecular Ligands in the Synthesis and Transformation between Metal Halide Perovskite Quantum Dots and Magic Sized Clusters. ACS PHYSICAL CHEMISTRY AU 2022; 2:156-170. [PMID: 36855569 PMCID: PMC9718301 DOI: 10.1021/acsphyschemau.1c00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal halide perovskite quantum dots (PQDs) and perovskite magic sized clusters (PMSCs) exhibit interesting size- and composition-dependent optoelectronic properties that are promising for emerging applications including photovoltaic solar cells and light-emitting diodes (LEDs). Much work has focused on developing new synthesis strategies to improve their structural stability and property tunability. In this paper, we review recent progress in the synthesis and characterization of PQDs and PMSCs, with a focus on the impact of different molecular ligands on their surface passivation and interconversion. Moreover, the effect of capping ligands on ion exchange during synthesis and doping is discussed. Finally, we present some perspectives on challenges and opportunities in fundamental studies and potential applications of both PQDs and PMSCs.
Collapse
Affiliation(s)
- Li Liu
- Research Institute
of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan 430064, P.R. China,Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Keliang Pan
- Hubei Institute
of Geosciences, Wuhan 430034, P.R. China,Hubei Key Laboratory
of Resource and Ecological Environment Geology, Wuhan 430034, P.R. China,
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States,
| |
Collapse
|
9
|
Castillo-Ruiz EA, Garcia-Gutierrez DF, Garcia-Gutierrez DI. High-yield synthesis of CsPbBr 3nanoparticles: diphenylphosphine as a reducing agent and its effect in Pb-seeding nucleation and growth. NANOTECHNOLOGY 2022; 33:155604. [PMID: 34965515 DOI: 10.1088/1361-6528/ac46d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Based on the reported nucleation mechanisms for CsPbX3and II-VI/IV-VI quantum dots, CsPbBr3nanoparticles with a higher reaction-yield (up to 393% mass-increment) were synthetized by the hot-injection method. The introduction of diphenylphosphine (DPP) as a reducing agent improved nanoparticle nucleation and growth, giving out evidence for Pb-seeding in CsPbBr3nanoparticles formation. Additionally, a clear influence of the DPP in a CsPbBr3-Cs4PbBr6incomplete phase transformation was observed, marked by the appearance of several PbBr2nanoparticles. This indicated the need for an improved ratio between the stabilizing agents and the precursors, due to the increased number of nucleation sites produced by DPP. The resulting CsPbBr3nanoparticles showed high quality, as they displayed 70%-90% photoluminescence quantum yield; narrow size distribution with an average nanoparticle size of∼10 nm; and the characteristic cubic morphology reported in previous works. This increment in CsPbBr3nanoparticles' reaction yield will contribute to making them a more attractive option for different optoelectronic applications.
Collapse
Affiliation(s)
- Eder A Castillo-Ruiz
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, Mexico
- Universidad Autónoma de Nuevo León, UANL, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIIDIT, Apodaca, Nuevo León, C.P. 66628, Mexico
| | - Diana F Garcia-Gutierrez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, Mexico
- Universidad Autónoma de Nuevo León, UANL, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIIDIT, Apodaca, Nuevo León, C.P. 66628, Mexico
| | - Domingo I Garcia-Gutierrez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, Mexico
- Universidad Autónoma de Nuevo León, UANL, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIIDIT, Apodaca, Nuevo León, C.P. 66628, Mexico
| |
Collapse
|
10
|
Lin Y, Fan X, Yang X, Zheng X, Huang W, Shangguan Z, Wang Y, Kuo HC, Wu T, Chen Z. Remarkable Black-Phase Robustness of CsPbI 3 Nanocrystals Sealed in Solid SiO 2 /AlO x Sub-Micron Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103510. [PMID: 34636128 DOI: 10.1002/smll.202103510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
This work combines the high-temperature sintering method and atomic layer deposition (ALD) technique, and yields SiO2 /AlOx -sealed γ-CsPbI3 nanocrystals (NCs). The black-phase CsPbI3 NCs, scattered and encapsulated firmly in solid SiO2 sub-micron particles, maintain in black phases against water soaking, ultraviolet irradiation, and heating, exhibiting remarkable phase stability. A new phase-transition route, from γ via β to α phase without transferring into δ phase, has been discovered upon temperature increasing. The phase stability is ascribed to the high pressure exerted by the rigid SiO2 encapsulations, and its condensed amorphous structures that prevent the permeation of H2 O molecules. Nanoscale coating of Al2 O3 thin films, which are deposited on the surface of the CsPbI3 -SiO2 by ALD, enhances the protection against O2 infiltration, greatly elevating the high-temperature stability of CsPbI3 NCs sealed inside, as the samples remain bright after 1-h annealing in air at 400 °C. These fabrication and encapsulation techniques effectively prevent the formation of δ-CsPbI3 under harsh environment, bringing the high-pressure preservation of black-phase CsPbI3 from laboratory to industry toward potential applications in both photovoltaic and fluorescent areas.
Collapse
Affiliation(s)
- Yue Lin
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Fujian Science and Technology Innovation Laboratory for Energy Materials of China, Xiamen, 361005, China
| | - Xiaotong Fan
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Xiao Yang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Xi Zheng
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Weizhi Huang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Zhibin Shangguan
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Yuhan Wang
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
| | - Hao-Chung Kuo
- Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Tingzhu Wu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Fujian Science and Technology Innovation Laboratory for Energy Materials of China, Xiamen, 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Fujian Science and Technology Innovation Laboratory for Energy Materials of China, Xiamen, 361005, China
| |
Collapse
|
11
|
Study of Construction and Performance on Photoelectric Devices of Cs-Pb-Br Perovskite Quantum Dot. MATERIALS 2021; 14:ma14216716. [PMID: 34772246 PMCID: PMC8587011 DOI: 10.3390/ma14216716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023]
Abstract
White LEDs were encapsulated using Cs4PbBr6 quantum dots and Gd2O3:Eu red phosphor as lamp powder. Under the excitation of a GaN chip, the color coordinates of the W-LED were (0.33, 0.34), and the color temperature was 5752 K, which is close to the color coordinate and color temperature range of standard sunlight. The electric current stability was excellent with an increase in the electric current, voltage, and luminescence intensity of the quantum dots and phosphors by more than 10 times. However, the stability of the quantum dots was slightly insufficient over long working periods. The photocatalytic devices were constructed using TiO2, CsPbBr3, and NiO as an electron transport layer, light absorption layer, and catalyst, respectively. The Cs–Pb–Br-based perovskite quantum dot photocatalytic devices were constructed using a two-step spin coating method, one-step spin coating method, and full PLD technology. In order to improve the water stability of the device, a hydrophobic carbon paste and carbon film were selected as the hole transport layer. The TiO2 layer and perovskite layer with different thicknesses and film forming qualities were obtained by changing the spin coating speed. The influence of the spin coating speed on the device’s performance was explored through SEM and a J–V curve to find the best spin coating process. The device constructed by the two-step spin coating method had a higher current density but no obvious increase in the current density under light, while the other two methods could obtain a more obvious light response, but the current density was very low.
Collapse
|
12
|
Wen Z, Xie F, Choy WCH. Stability of electroluminescent perovskite quantum dots light‐emitting diode. NANO SELECT 2021. [DOI: 10.1002/nano.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhuoqi Wen
- Academy for Engineering and Technology Fudan University Shanghai China
| | - Fengxian Xie
- Academy for Engineering and Technology Fudan University Shanghai China
- Institute for Electric Light Sources, School of Information Science and Technology Fudan University Shanghai China
| | - Wallace. C. H. Choy
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| |
Collapse
|
13
|
Wang Z, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. ENVIRONMENTAL RESEARCH 2021; 194:110593. [PMID: 33352186 DOI: 10.1016/j.envres.2020.110593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 05/23/2023]
Abstract
Quantum dots are widely applicated into bioindustry and research owing to its superior properties such as broad excitation spectra, narrow bandwidth emission spectra and high resistance to photo-bleaching. However, the toxicity of quantum dots should not be underestimated and aroused widespread concern. The surface properties and size of quantum dots are critical relevant properties on toxicity. Then, the core/shell structure becomes one common way to affect the activity of quantum dots such as enhance biocompatibility and stability. Except those toxicity it induced, the problem it brought into the environment such as the degradation of quantum dot similarly becomes a hot issue. This review initially took a brief scan of current research on the cytotoxicity of QDs and the mechanism behind that over the past five years. Mainly discussion concentrated on the diversity of structure on quantum dots whether played a key role on the cytotoxicty of quantum dots. It also discussed the role of different shells with metal or nonmetal cores and the influence on the environment.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
14
|
Xiao P, Yu Y, Cheng J, Chen Y, Yuan S, Chen J, Yuan J, Liu B. Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E103. [PMID: 33406749 PMCID: PMC7823701 DOI: 10.3390/nano11010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Recently, perovskite light-emitting diodes (PeLEDs) are seeing an increasing academic and industrial interest with a potential for a broad range of technologies including display, lighting, and signaling. The maximum external quantum efficiency of PeLEDs can overtake 20% nowadays, however, the lifetime of PeLEDs is still far from the demand of practical applications. In this review, state-of-the-art concepts to improve the lifetime of PeLEDs are comprehensively summarized from the perspective of the design of perovskite emitting materials, the innovation of device engineering, the manipulation of optical effects, and the introduction of advanced encapsulations. First, the fundamental concepts determining the lifetime of PeLEDs are presented. Then, the strategies to improve the lifetime of both organic-inorganic hybrid and all-inorganic PeLEDs are highlighted. Particularly, the approaches to manage optical effects and encapsulations for the improved lifetime, which are negligibly studied in PeLEDs, are discussed based on the related concepts of organic LEDs and Cd-based quantum-dot LEDs, which is beneficial to insightfully understand the lifetime of PeLEDs. At last, the challenges and opportunities to further enhance the lifetime of PeLEDs are introduced.
Collapse
Affiliation(s)
- Peng Xiao
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Yicong Yu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Junyang Cheng
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Yonglong Chen
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Shengjin Yuan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Jianwen Chen
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Jian Yuan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan 528225, China; (P.X.); (J.C.); (Y.C.); (S.Y.); (J.C.); (J.Y.)
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
CsPbBr3 Nanocrystals-Based Polymer Nanocomposite Films: Effect of Polymer on Spectroscopic Properties and Moisture Tolerance. ENERGIES 2020. [DOI: 10.3390/en13246730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal halide perovskites nanocrystals (NCs) represent an emerging class of materials that find increasing application in optoelectronic and photovoltaic devices, thanks to their intriguing optical properties, including high absorption coefficient, high fluorescence quantum yield (PL QY) and fast charge carrier separation. However, their opening to market is still hindered by their limited reliability, due to an intrinsic structural instability and degradation of their photophysical properties upon air, moisture, and light exposure. The incorporation of perovskite NCs in polymer matrix can limit some of the NC instability issues, with advantages in film processability, device fabrication and mechanical performance, being also useful for fundamental studies. In this regard, here, nanocomposites based on polymethylmethacrylate or polystyrene embedding all-inorganic CsPbBr3 NCs have been prepared and processed in the form of flexible free-standing films. A systematic spectrofluorimetric study, comprising steady state photoluminescence (PL), PL quantum yield (QY) and PL decay of the free-standing films before and after exposure to relative humidity condition (RH% 85%, at 25 °C) is performed and discussed. Phase segregation phenomena, changes in NC passivation and recombination dynamics are evaluated as a function of polymer loading and its molecular structure and finally the efficacy of the polymer as moisture barrier investigated.
Collapse
|
16
|
Wu Y, Ma J, Su P, Zhang L, Xia B. Full-Color Realization of Micro-LED Displays. NANOMATERIALS 2020; 10:nano10122482. [PMID: 33322057 PMCID: PMC7764662 DOI: 10.3390/nano10122482] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Emerging technologies, such as smart wearable devices, augmented reality (AR)/virtual reality (VR) displays, and naked-eye 3D projection, have gradually entered our lives, accompanied by an urgent market demand for high-end display technologies. Ultra-high-resolution displays, flexible displays, and transparent displays are all important types of future display technology, and traditional display technology cannot meet the relevant requirements. Micro-light-emitting diodes (micro-LEDs), which have the advantages of a high contrast, a short response time, a wide color gamut, low power consumption, and a long life, are expected to replace traditional liquid-crystal displays (LCD) and organic light-emitting diodes (OLED) screens and become the leaders in the next generation of display technology. However, there are two major obstacles to moving micro-LEDs from the laboratory to the commercial market. One is improving the yield rate and reducing the cost of the mass transfer of micro-LEDs, and the other is realizing a full-color display using micro-LED chips. This review will outline the three main methods for applying current micro-LED full-color displays, red, green, and blue (RGB) three-color micro-LED transfer technology, color conversion technology, and single-chip multi-color growth technology, to summarize present-day micro-LED full-color display technologies and help guide the follow-up research.
Collapse
|
17
|
Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands. NANOMATERIALS 2020; 10:nano10112171. [PMID: 33143226 PMCID: PMC7692729 DOI: 10.3390/nano10112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023]
Abstract
The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain in alkanethiols for the synthesis of the small InP core. The reactive alkanethiol with a short hydrocarbon chain forms the ZnS shell rapidly and prevents the growth of the InP core, thus reducing the emission wavelength. In addition, the length of the hydrocarbon chain in the fatty acid was varied to reduce the nucleation kinetics of the core. The fatty acid with a long hydrocarbon chain exhibited a long emission wavelength as a result of the rapid nucleation and growth, due to the insufficient In–P–Zn complex by the steric effect. Blue-emissive InP/GaP/ZnS QDs were synthesized with hexanethiol and lauryl acid, exhibiting a photoluminescence (PL) peak of 485 nm with a full width at half-maximum of 52 nm and a photoluminescence quantum yield of 45%. The all-solution processed quantum dot light-emitting diodes were fabricated by employing the aforementioned blue-emissive QDs as an emitting layer, and the resulting device exhibited a peak luminance of 1045 cd/m2, a current efficiency of 3.6 cd/A, and an external quantum efficiency of 1.0%.
Collapse
|
18
|
Quantum Confinement Effect and Photoenhancement of Photoluminescence of PbS and PbS/MnS Quantum Dots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quantum confinement effect and photoenhancement of photoluminescence (PL) of lead sulphide (PbS) quantum dots (QDs) and lead sulphide/manganese sulphide (PbS/MnS) core shell QDs capped with thiol ligands in aqueous solution were investigated. From PL results, the presence of MnS shells gives a strong confinement effect which translates to higher emission energy in PbS/MnS core shell QDs. Increasing MnS shell thickness from 0.3 to 1.5 monolayers (ML) causes a blueshift of PL peak energies as the charge carriers concentrated in the PbS core region. Enhancement of the PL intensity of colloidal PbS and PbS/MnS core shell QDs has been observed when the samples are illuminated above the band gap energy, under continuous irradiation for 40 min. Luminescence from PbS QDs and PbS/MnS core shell QDs can be strongly influenced by the interaction of water molecules and oxygen present in aqueous solution adsorbed on the QD surface. However, PbS/MnS core shell QDs with a shell thickness of 1.5 ML did not show a PL peak energy stability as it was redshifted after 25 min, probably due to wider size distribution of the QDs.
Collapse
|