1
|
Carrillo-Romero J, Mentxaka G, García-Salvador A, Katsumiti A, Carregal-Romero S, Goñi-de-Cerio F. Assessing the Toxicity of Metal- and Carbon-Based Nanomaterials In Vitro: Impact on Respiratory, Intestinal, Skin, and Immune Cell Lines. Int J Mol Sci 2024; 25:10910. [PMID: 39456693 PMCID: PMC11507852 DOI: 10.3390/ijms252010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO2), zinc oxide (ZnO), silica (SiO2), cerium oxide (CeO2), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays. Physicochemical characterisation of the NMs was carried out, and in vitro assays were performed to assess the cytotoxicity, genotoxicity, reactive oxygen species (ROS) production, apoptosis/necrosis, and inflammation in cell lines representative of the systems evaluated (3T3, Caco-2, HepG2, A549, and THP-1 cell lines). The results obtained show that 3T3 and A549 cells exhibit high cytotoxicity and ROS production after exposure to ZnO NMs. Caco-2 and HepG2 cell lines show cytotoxicity when exposed to ZnO and Ag NMs and oxidative stress induced by SiO2 and MWCNTs. THP-1 cell line shows increased cytotoxicity and a pro-inflammatory response upon exposure to SiO2. This study emphasises the importance of conducting comprehensive toxicological assessments of NMs given their physicochemical interactions with biological systems. Therefore, it is of key importance to develop robust and specific methodologies for the assessment of their potential health risks.
Collapse
Affiliation(s)
- Juliana Carrillo-Romero
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
| | - Gartze Mentxaka
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Adrián García-Salvador
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| |
Collapse
|
2
|
Vital N, Gramacho AC, Silva M, Cardoso M, Alvito P, Kranendonk M, Silva MJ, Louro H. Challenges of the Application of In Vitro Digestion for Nanomaterials Safety Assessment. Foods 2024; 13:1690. [PMID: 38890918 PMCID: PMC11171843 DOI: 10.3390/foods13111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Considering the increase in the production and use of nanomaterials (NM) in food/feed and food contact materials, novel strategies for efficient and sustainable hazard characterization, especially in the early stages of NM development, have been proposed. Some of these strategies encompass the utilization of in vitro simulated digestion prior to cytotoxic and genotoxic assessment. This entails exposing NM to fluids that replicate the three successive phases of digestion: oral, gastric, and intestinal. Subsequently, the resulting digestion products are added to models of intestinal cells to conduct toxicological assays, analyzing multiple endpoints. Nonetheless, exposure of intestinal cells to the digested products may induce cytotoxicity effects, thereby posing a challenge to this strategy. The aim of this work was to describe the challenges encountered with the in vitro digestion INFOGEST 2.0 protocol when using the digestion product in toxicological studies of NM, and the adjustments implemented to enable its use in subsequent in vitro biological assays with intestinal cell models. The adaptation of the digestion fluids, in particular the reduction of the final bile concentration, resulted in a reduced toxic impact of digestion products.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Ana Catarina Gramacho
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
| | - Mafalda Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Food and Nutrition, 1649-016 Lisbon, Portugal
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Cardoso
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Food and Nutrition, 1649-016 Lisbon, Portugal
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
3
|
Ogulur I, Yazici D, Pat Y, Bingöl EN, Babayev H, Ardicli S, Heider A, Rückert B, Sampath V, Dhir R, Akdis M, Nadeau K, Akdis CA. Mechanisms of gut epithelial barrier impairment caused by food emulsifiers polysorbate 20 and polysorbate 80. Allergy 2023; 78:2441-2455. [PMID: 37530764 DOI: 10.1111/all.15825] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND The rising prevalence of many chronic diseases related to gut barrier dysfunction coincides with the increased global usage of dietary emulsifiers in recent decades. We therefore investigated the effect of the frequently used food emulsifiers on cytotoxicity, barrier function, transcriptome alterations, and protein expression in gastrointestinal epithelial cells. METHODS Human intestinal organoids originating from induced pluripotent stem cells, colon organoid organ-on-a-chip, and liquid-liquid interface cells were cultured in the presence of two common emulsifiers: polysorbate 20 (P20) and polysorbate 80 (P80). The cytotoxicity, transepithelial electrical resistance (TEER), and paracellular-flux were measured. Immunofluorescence staining of epithelial tight-junctions (TJ), RNA-seq transcriptome, and targeted proteomics were performed. RESULTS Cells showed lysis in response to P20 and P80 exposure starting at a 0.1% (v/v) concentration across all models. Epithelial barrier disruption correlated with decreased TEER, increased paracellular-flux and irregular TJ immunostaining. RNA-seq and targeted proteomics analyses demonstrated upregulation of cell development, signaling, proliferation, apoptosis, inflammatory response, and response to stress at 0.05%, a concentration lower than direct cell toxicity. A proinflammatory response was characterized by the secretion of several cytokines and chemokines, interaction with their receptors, and PI3K-Akt and MAPK signaling pathways. CXCL5, CXCL10, and VEGFA were upregulated in response to P20 and CXCL1, CXCL8 (IL-8), CXCL10, LIF in response to P80. CONCLUSIONS The present study provides direct evidence on the detrimental effects of food emulsifiers P20 and P80 on intestinal epithelial integrity. The underlying mechanism of epithelial barrier disruption was cell death at concentrations between 1% and 0.1%. Even at concentrations lower than 0.1%, these polysorbates induced a proinflammatory response suggesting a detrimental effect on gastrointestinal health.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elif Naz Bingöl
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
4
|
Ferraris F, Raggi A, Ponti J, Mehn D, Gilliland D, Savini S, Iacoponi F, Aureli F, Calzolai L, Cubadda F. Agglomeration Behavior and Fate of Food-Grade Titanium Dioxide in Human Gastrointestinal Digestion and in the Lysosomal Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1908. [PMID: 37446425 DOI: 10.3390/nano13131908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
In the present study, we addressed the knowledge gaps regarding the agglomeration behavior and fate of food-grade titanium dioxide (E 171) in human gastrointestinal digestion (GID). After thorough multi-technique physicochemical characterization including TEM, single-particle ICP-MS (spICP-MS), CLS, VSSA determination and ELS, the GI fate of E 171 was studied by applying the in vitro GID approach established for the regulatory risk assessment of nanomaterials in Europe, using a standardized international protocol. GI fate was investigated in fasted conditions, relevant to E 171 use in food supplements and medicines, and in fed conditions, with both a model food and E 171-containing food samples. TiO2 constituent particles were resistant to GI dissolution, and thus, their stability in lysosomal fluid was investigated. The biopersistence of the material in lysosomal fluid highlighted its potential for bioaccumulation. For characterizing the agglomeration degree in the small intestinal phase, spICP-MS represented an ideal analytical tool to overcome the limitations of earlier studies. We demonstrated that, after simulated GID, in the small intestine, E 171 (at concentrations reflecting human exposure) is present with a dispersion degree similar to that obtained when dispersing the material in water by means of high-energy sonication (i.e., ≥70% of particles <250 nm).
Collapse
Affiliation(s)
- Francesca Ferraris
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Andrea Raggi
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Sara Savini
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Francesca Iacoponi
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Federica Aureli
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Francesco Cubadda
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
5
|
Guo Z, Zuo J, Feng J, Li J, Zhang S, Ma K. Impact of Titanium Dioxide-Graphene Oxide (TiO 2-GO) Composite Nanoparticle on the Juveniles of the Giant River Prawn, Macrobrachium rosenbergii: Physio-Biochemistry and Transcriptional Response. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:45-56. [PMID: 36527515 DOI: 10.1007/s10126-022-10180-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials are used in many fields, resulting in inevitably releasing into the aquatic environment. The presence of nanomaterials, including TiO2-GO in the aquatic environment, can be toxic to aquatic organisms. However, few studies have focused on the effects of TiO2-GO composite nanoparticle on crustaceans. In the present study, the giant river prawn Macrobrachium rosenbergii juveniles were exposed to two concentrations of TiO2-GO composite nanoparticle (0.1 and 0.5 mg/L). The effects of TiO2-GO composite exposure on activities of digestive and antioxidant-related enzymes and expressions of growth and immune-related genes at the transcriptome were studied. The results showed that the survival rate and growth performance were not negatively affected by TiO2-GO composite at the two exposure levels. Nevertheless, exposure to TiO2-GO composite causes an effect on the activities of digestive and antioxidant enzymes in the juvenile prawns. The enzyme activities of CAT, SOD, GSH-Px, AMS, TPS, and LPS in the 0.1 mg/L TiO2-GO composite experimental group were markedly reduced than those in the control group. Additionally, the expression level of genes involved in growth and immunity was significantly affected by TiO2-GO composite. After exposure to the 0.1 mg/L TiO2-GO composite, the mRNA expression level of MSTN was significantly increased, but the level of EcR, Raptor, and CaBP was significantly decreased. However, the mRNA levels of the CTL, TLR, JAK, and STAT were significantly increased after exposure to the 0.5 mg/L concentration of TiO2-GO composite. Furthermore, to understand the molecular mechanism of M. rosenbergii under TiO2-GO composite exposure, RNA-Seq was employed to analyze the changes of the muscle and hepatopancreas transcriptome. Compared with the control group, we identified 5166 and 4784 differentially expressed genes (DEGs) in the muscle and hepatopancreas, respectively (p < 0.05). Based on gene ontology and KEGG analysis, significant differences were observed in the DEGs involved in activity and binding, metabolism, immune response, and environmental information processing. These results showed that exposure to TiO2-GO composite nanoparticle led to the changes of enzyme activity and gene expression, suggesting that TiO2-GO composite existing in aquatic environments would disrupt the physiology of M. rosenbergii. This study will serve as a foundation for subsequent research into the evaluation of nanomaterial toxicity on crustacean species.
Collapse
Affiliation(s)
- Ziqi Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiabao Zuo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Jianbin Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Keyi Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, People's Republic of China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- College of Fisheries and Life Science, Pudong New Area, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
6
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Stalder T, Zaiter T, El-Basset W, Cornu R, Martin H, Diab-Assaf M, Béduneau A. Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology 2022; 481:153353. [DOI: 10.1016/j.tox.2022.153353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
8
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
9
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
10
|
Bakun P, Czarczynska-Goslinska B, Mlynarczyk DT, Musielak M, Mylkie K, Dlugaszewska J, Koczorowski T, Suchorska WM, Ziegler-Borowska M, Goslinski T, Krakowiak R. Gallic Acid-Functionalized, TiO 2-Based Nanomaterial-Preparation, Physicochemical and Biological Properties. MATERIALS 2022; 15:ma15124177. [PMID: 35744240 PMCID: PMC9228946 DOI: 10.3390/ma15124177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.K.); (R.K.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Correspondence: (P.B.); (T.G.)
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.K.); (R.K.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
| | - Kinga Mylkie
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (M.Z.-B.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.K.); (R.K.)
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (M.Z.-B.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.K.); (R.K.)
- Correspondence: (P.B.); (T.G.)
| | - Rafal Krakowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.K.); (R.K.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| |
Collapse
|
11
|
Ventura C, Marques C, Cadete J, Vilar M, Pedrosa JFS, Pinto F, Fernandes SN, da Rosa RR, Godinho MH, Ferreira PJT, Louro H, Silva MJ. Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. J Xenobiot 2022; 12:91-108. [PMID: 35645290 PMCID: PMC9149940 DOI: 10.3390/jox12020009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Nanocellulose is an innovative engineered nanomaterial with an enormous potential for use in a wide array of industrial and biomedical applications and with fast growing economic value. The expanding production of nanocellulose is leading to an increased human exposure, raising concerns about their potential health effects. This study was aimed at assessing the potential toxic and genotoxic effects of different nanocelluloses in two mammalian cell lines; (2) Methods: Two micro/nanocelluloses, produced with a TEMPO oxidation pre-treatment (CNFs) and an enzymatic pre-treatment (CMFs), and cellulose nanocrystals (CNCs) were tested in osteoblastic-like human cells (MG-63) and Chinese hamster lung fibroblasts (V79) using the MTT and clonogenic assays to analyse cytotoxicity, and the micronucleus assay to test genotoxicity; (3) Results: cytotoxicity was observed by the clonogenic assay in V79 cells, particularly for CNCs, but not by the MTT assay; CNF induced micronuclei in both cell lines and nucleoplasmic bridges in MG-63 cells; CMF and CNC induced micronuclei and nucleoplasmic bridges in MG-63 cells, but not in V79 cells; (4) Conclusions: All nanocelluloses revealed cytotoxicity and genotoxicity, although at different concentrations, that may be related to their physicochemical differences and availability for cell uptake, and to differences in the DNA damage response of the cell model.
Collapse
Affiliation(s)
- Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Catarina Marques
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - João Cadete
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - Madalena Vilar
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
| | - Jorge F. S. Pedrosa
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Silvo Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Fátima Pinto
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Susete Nogueira Fernandes
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Rafaela Raupp da Rosa
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Maria Helena Godinho
- CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Paulo J. T. Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Silvo Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (J.C.); (M.V.); (F.P.); (H.L.); (M.J.S.)
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082 Lisbon, Portugal
| |
Collapse
|
12
|
Vieira A, Vital N, Rolo D, Roque R, Gonçalves LM, Bettencourt A, Silva MJ, Louro H. Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells. Food Chem Toxicol 2022; 161:112841. [PMID: 35093430 DOI: 10.1016/j.fct.2022.112841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022]
Abstract
The widespread use of titanium dioxide nanomaterials (TiO2 NMs) in food and consumer products such as toothpaste or food contact materials, suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract (GIT). We previously showed that the in vitro digestion of TiO2 NMs may increase their toxicity in intestinal cells. In this work, we analyzed the genotoxicity and the intracellular reactive oxygen species induction by physiologically relevant concentrations of three different TiO2 NMs (NM-102, NM-103 and NM-105) in Caco-2 and HT29-MTX-E12 intestinal cells, while considering the potential influence of the digestion process in the NMs' physiochemical characteristics. The results evidenced a DNA-damaging effect dependent on the NM, more relevant for the rutile/anatase NM-105, possibly due to its lower hydrodynamic size in the cells medium. In addition, the results of the micronucleus assay suggest effects on chromosomal integrity, an indicator of cancer risk, in the HT29-MTX-E12 cells, for all the tested TiO2 NMs, especially after the in vitro digestion. This work supports the evidence for concerns on the use of TiO2 NMs as a food additive, recently reported by EFSA, and for their use in applications in consumer products that may drive human exposure through ingestion.
Collapse
Affiliation(s)
- Adriana Vieira
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Nádia Vital
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Dora Rolo
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Rossana Roque
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Lídia M Gonçalves
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| | - Ana Bettencourt
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisboa, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisboa, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
13
|
Overview of Adverse Outcome Pathways and Current Applications on Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:415-439. [DOI: 10.1007/978-3-030-88071-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:351-375. [DOI: 10.1007/978-3-030-88071-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Vieira A, Gramacho A, Rolo D, Vital N, Silva MJ, Louro H. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:225-257. [DOI: 10.1007/978-3-030-88071-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn exponential increase in products containing titanium dioxide nanomaterials (TiO2), in agriculture, food and feed industry, lead to increased oral exposure to these nanomaterials (NMs). Thus, the gastrointestinal tract (GIT) emerges as a possible route of exposure that may drive systemic exposure, if the intestinal barrier is surpassed. NMs have been suggested to produce adverse outcomes, such as genotoxic effects, that are associated with increased risk of cancer, leading to a concern for public health. However, to date, the differences in the physicochemical characteristics of the NMs studied and other variables in the test systems have generated contradictory results in the literature. Processes like human digestion may change the NMs characteristics, inducing unexpected toxic effects in the intestine. Using TiO2 as case-study, this chapter provides a review of the works addressing the interactions of NMs with biological systems in the context of intestinal tract and digestion processes, at cellular and molecular level. The knowledge gaps identified suggest that the incorporation of a simulated digestion process for in vitro studies has the potential to improve the model for elucidating key events elicited by these NMs, advancing the nanosafety studies towards the development of an adverse outcome pathway for intestinal effects.
Collapse
|
16
|
Martins C, Alvito P, Assunção R. Nanomaterials in Foods and Human Digestion: An Important Layer in the Assessment of Potential Toxic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:403-414. [DOI: 10.1007/978-3-030-88071-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Behaviour of Titanium Dioxide Particles in Artificial Body Fluids and Human Blood Plasma. Int J Mol Sci 2021; 22:ijms221910614. [PMID: 34638952 PMCID: PMC8509028 DOI: 10.3390/ijms221910614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.
Collapse
|
18
|
Mortensen NP, Moreno Caffaro M, Aravamudhan S, Beeravalli L, Prattipati S, Snyder RW, Watson SL, Patel PR, Weber FX, Montgomery SA, Sumner SJ, Fennell TR. Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO 2 E171 in Male and Female Rat Pups. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1487. [PMID: 34199726 PMCID: PMC8230348 DOI: 10.3390/nano11061487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Oral exposure to nanoparticles (NPs) during early life is an understudied area. The goals of this study were to evaluate the effect of pre-weaned rat gastric fluids on 50 nm CuO NPs and TiO2 E171 in vitro, and to evaluate uptake in vivo. The NP uptake was studied in vivo in male and female Sprague-Dawley rat pups following oral administration of four consecutive daily doses of 10 mg/kg CuO NPs, TiO2 E171, or vehicle control (water) between postnatal day (PND) 7-10. Rat pups were sacrificed on either PND10 or PND21. Simulated digestion led to dissolution of CuO NPs at the later ages tested (PND14 and PND21, but not PND7). In vivo intestinal uptake of CuO NPs and TiO2 E171 was observed by hyperspectral imaging of intestinal cross sections. Brightfield microscopy showed that the number of immune cells increased in the intestinal tissue following NP administration. Orally administered NPs led to low intestinal uptake of NPs and an increase in immune cells in the small and large intestine, suggesting that oral exposure to NPs during early life may lead to irritation or a low-grade inflammation. The long-term impact of increased immune cells in the intestinal tract during early life is unknown.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Maria Moreno Caffaro
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Lakshmi Beeravalli
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Sharmista Prattipati
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Rodney W. Snyder
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Scott L. Watson
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Purvi R. Patel
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Frank X. Weber
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Susan J. Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA;
| | - Timothy R. Fennell
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| |
Collapse
|
19
|
Bischoff NS, de Kok TM, Sijm DT, van Breda SG, Briedé JJ, Castenmiller JJ, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, van Loveren H. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. Int J Mol Sci 2020; 22:ijms22010207. [PMID: 33379217 PMCID: PMC7795714 DOI: 10.3390/ijms22010207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Correspondence:
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Dick T.H.M. Sijm
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacqueline J.M. Castenmiller
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Antoon Opperhuizen
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonóma de México, Mexico City 54090, Mexico;
| | - Hubert Dirven
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| | - David Gott
- Food Standard Agency, London SW1H9EX, UK;
| | - Eric Houdeau
- French National Research Institute for Agriculture, Food and Environment (INRAE), 75338 Paris, France;
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Morten Poulsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Henk van Loveren
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| |
Collapse
|
20
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|