1
|
Sturabotti E, Camilli A, Leonelli F, Vetica F. Carbon Dots as Bioactive Antifungal Nanomaterials. ChemMedChem 2024; 19:e202400463. [PMID: 39103288 DOI: 10.1002/cmdc.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Nowadays, the widespread diffusion of infections caused by opportunistic fungi represents a demanding threat for global health security. This phenomenon has also worsened by the emergence of contagious events in hospitalisation environments and by the fact that many fungi have developed harsh and serious resistance mechanisms to the traditional antimycotic drugs. Hence, the design of novel antifungal agents is a key factor to counteract mycotic infections and resistance. Within this context, nanomaterials are gaining increasing attention thanks to their biocidal character. Among these, carbon dots (CDs) represent a class of zero-dimensional, photoluminescent and quasi-spherical nanoparticles which, for their great and tuneable features, have found applications in catalysis, sensing and biomedicine. Nevertheless, only a few works define and recapitulate their antifungal properties. Therefore, we aim to give an overview about the recent advances in the synthesis of CDs active against infective fungi. We described the general features of CDs and fungal cells, by highlighting some of the most common antimycotic mechanisms. Then, we evaluated the effects of CDs, antimicrobial drugs-loaded CDs and CDs-incorporated packaging systems on different fungi and analysed the use of CDs as fluorescent nano-trackers for bioimaging, showing, to all effects, their promising application as antifungal agents.
Collapse
Affiliation(s)
- Elisa Sturabotti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Alessandro Camilli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
2
|
Rai M, Ingle AP, Törős G, Prokisch J. Assessing the efficacy of carbon nanodots derived from curcumin on infectious diseases. Expert Rev Anti Infect Ther 2024; 22:1107-1121. [PMID: 39317385 DOI: 10.1080/14787210.2024.2409401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The threat of new, emerging, and multidrug-resistant microbes is increasing which has created the necessity for new antimicrobials. In this regard, nanotechnology can be an alternative for the treatment of infectious microbes. Curcumin has been used since ancient times as antimicrobials; however, it has limitations due to its less aqueous solubility, bioavailability, and biocompatibility. This problem can be solved by curcumin-derived carbon nanodots, which are emerging antimicrobials of <10 nm size, water-soluble, biocompatible, less toxic, and fluorescent. AREAS COVERED The review discusses the application of curcumin-derived carbon nanodots against various pathogenic microbes including bacteria and dreaded viruses like SARS-CoV-2. In addition, the role of curcumin carbon nanodots in biolabelling of pathogenic microbes, mechanism of action, bioimaging, and therapy has been critically examined. EXPERT OPINION Carbon nanodots play an important role in combating pathogenic microbes by early diagnosis, bioimaging, nanocarrier for antimicrobial drugs, and therapy of infectious diseases. Curcumin carbon nanodots have already demonstrated their benefits of being water soluble, bioavailable, and biocompatible. However, more thorough research is needed to understand the efficacy and safety of curcumin carbon nanodots. In the future, curcumin-derived carbon nanodots can be used as alternative antimicrobial agents to fight microbial infections including multidrug-resistant microbes.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Avinash P Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. PDKV, Akola, India
| | - Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- School of Animal Husbandry, University of Debrecen, Debrecen, Hungary
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
4
|
Walke G, Santi C, Haydon C, Joshi P, Takebayashi Y, Rama S, Dorh J, Hotha S, Spencer J, Galan MC. C2-Linked Arabinose-Functionalized Polystyrene Microbeads Selectively Target Staphylococcus aureus. JACS AU 2024; 4:4537-4543. [PMID: 39610754 PMCID: PMC11600162 DOI: 10.1021/jacsau.4c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Carbohydrates play pivotal roles in the first stages of microbial infections and can be exploited as decoys to hijack the interactions between bacteria and the host cell. Multivalent glycan probes mimicking the natural presentation of glycans in living cells have been successfully employed to study fundamental carbohydrate/protein interactions in microbial systems; however, most pathogenic glycan receptors exhibit a shared specificity for commonly found sugars present in both healthy and pathogenic cells, posing a challenge for target selectivity. In this study, we report the synthesis of a small library of d-arabinose multivalent probes, a sugar absent in human physiology, and their evaluation in a bacteria agglutination assay using cluster analysis. Our findings reveal preferential binding to Staphylococcus aureus of C2-linked arabinose moieties over C1- or C5-linked probes, underscoring the importance of glycan presentation in targeting specificity. Furthermore, we demonstrate the selectivity of the C2-linked probe toward S. aureus across a panel of common bacterial pathogens. Additionally, these probes are able to disrupt biofilm formation in S. aureus SH1000, thereby further proving the cell surface interactions with S. aureus.
Collapse
Affiliation(s)
- Gulab Walke
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Cristina Santi
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Calum Haydon
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Pooja Joshi
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Pune 411 008, India
| | - Yuiko Takebayashi
- School of
Cellular and Molecular Medicine, University
of Bristol Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Sylvain Rama
- FluoretiQ
Ltd., Futurespace, Filton Road, Stoke Gifford, Bristol BS34 8RB, United
Kingdom
| | - Josephine Dorh
- FluoretiQ
Ltd., Futurespace, Filton Road, Stoke Gifford, Bristol BS34 8RB, United
Kingdom
| | - Srinivas Hotha
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Pune 411 008, India
| | - James Spencer
- School of
Cellular and Molecular Medicine, University
of Bristol Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - M. Carmen Galan
- School of
Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Liu Y, Zhang L, Cai H, Qu X, Chang J, Waterhouse GIN, Lu S. Biomass-derived carbon dots with pharmacological activity for biomedicine: Recent advances and future perspectives. Sci Bull (Beijing) 2024; 69:3127-3149. [PMID: 39183109 DOI: 10.1016/j.scib.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Carbon dots (CDs), a type of nanoparticle with excellent optical properties, good biocompatibility, and small size, are finding increasing application across the fields of biology and biomedicine. In recent years, biomass-derived CDs with pharmacological activity (BP-CDs) derived from herbal medicines (HMs), HMs extracts and other natural products with demonstrated pharmaceutical activity have attracted particular attention. Herein, we review recent advances in the development of BP-CDs, covering the selection of biomass precursors, different methods used for the synthesis of BP-CDs from natural sources, and the purification of BP-CDs. Additionally, we summarize the many remarkable properties of BP-CDs including optical properties, biocompatibility and pharmaceutical efficacy. Moreover, the antibacterial, antiviral, anticancer, biosensing, bioimaging, and other applications of BP-CDs are reviewed. Thereafter, we discuss the advantages and disadvantages of BP-CDs and Western drug-derived CDs, highlighting the excellent performance of BP-CDs. Finally, based on the current state of research on BP-CDs, we suggest several aspects of BP-CDs that urgently need to be addressed and identify directions that should be pursued in the future. This comprehensive review on BP-CDs is expected to guide the precise design, preparation, and future development of BP-CDs, thereby advancing the application of BP-CDs in biomedicine.
Collapse
Affiliation(s)
- Yue Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zhang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Cai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoli Qu
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | | | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Khan B, Zhang J, Durrani S, Wang H, Nawaz A, Durrani F, Ye Y, Wu FG, Lin F. Carbon-Dots-Mediated Improvement of Antimicrobial Activity of Natural Products. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47257-47269. [PMID: 39216005 DOI: 10.1021/acsami.4c09689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of new microbicidal compounds has become a top priority due to the emergence and spread of drug-resistant pathogenic microbes. In this study, blue-emitting and positively charged carbon dots (CDs), called Du-CDs, were fabricated for the first time utilizing the natural product extract of endophyte Diaporthe unshiuensis YSP3 as raw material through a one-step solvothermal method, which possessed varied functional groups including amino, carboxyl, hydroxyl, and sulfite groups. Interestingly, Du-CDs exhibited notably enhanced antimicrobial activities toward both bacteria and fungi as compared to the natural product extract of YSP3, with low minimum inhibitory concentrations. Moreover, Du-CDs significantly inhibited the formation of biofilms. Du-CDs bound with the microbial cell surface via electronic interaction or hydrophobic interaction entered the microbial cells and were distributed fully inside the cells. Du-CDs caused cell membrane damage and/or cell division cycle interruption, resulting in microbial cell death. Moreover, Du-CDs exhibited an improved antimicrobial effect and accelerated wound healing ability with good biocompatibility in the mouse model. Overall, we demonstrate that the formation of CDs from fungal natural products presents a promising and potential means to develop novel antimicrobial agents with great fluorescence, improved microbiocidal effect and wound healing capacity, and good biosafety for combating microbial infections.
Collapse
Affiliation(s)
- Babar Khan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jie Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Samran Durrani
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Haiyan Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ali Nawaz
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Faisal Durrani
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fengming Lin
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
7
|
El-Gendy NS, Hosny M, Ismail AR, Radwan AA, Ali BA, Ali HR, El-Salamony RA, Abdelsalam KM, Mubarak M. A Study on the Potential of Valorizing Sargassum latifolium into Biofuels and Sustainable Value-Added Products. Int J Biomater 2024; 2024:5184399. [PMID: 39410935 PMCID: PMC11479779 DOI: 10.1155/2024/5184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
To increase the limited commercial utility and lessen the negative environmental effects of the massive growth of brown macroalgae, this work illustrates the feasibility of valorizing the invasively proliferated Sargassum latifolium into different value-added products. The proximate analysis recommends its applicability as a solid biofuel with a sufficient calorific value (14.82 ± 0.5 MJ/kg). It contains 6.00 ± 0.07% N + P2O5 + K2O and 29.61 ± 0.05% organic C. Its nutritional analysis proved notable carbohydrate, ash, protein, and fiber contents with a rational amount of lipid and a considerable amount of beneficial macronutrients and micronutrients, with a low concentration of undesirable heavy metals. That recommends its application in the organic fertilizer, food, medicine, and animal fodder industries. A proposed eco-friendly sequential integrated process valorized its biomass into 77.6 ± 0.5 mg/g chlorophyll, 180 ± 0.5 mg/g carotenoids, 5.86 ± 0.5 mg/g fucoxanthin, 0.93 ± 0.5 mg/g β-carotene, 21.97 ± 0.5% (w/w) alginate, and 16.40 ± 0.5% (w/w) cellulose, with different industrial and bioprocess applications. Furthermore, Aspergillus galapagensis SBWF1, Mucor hiemalis SBWF2, and Penicillium oxalicum SBWF3 (GenBank accession numbers OR636487, OR636488, and OR636489) have been isolated from its fresh biomass. Those showed wide versatility for hydrolyzing and saccharifying its polysaccharides. A Gram-negative Stutzerimonas stutzeri SBB1(GenBank accession number OR764547) has also been isolated with good capabilities to ferment the produced pentoses, hexoses, and mannitol from the fungal saccharification, yielding 0.25 ± 0.014, 0.26 ± 0.018, and 0.37 ± 0.020 g ethanol/g algal biomass, respectively. Furthermore, in a pioneering step for valuing the suggested sequential biomass hydrolysis and bioethanol fermentation processes, the spent waste S. latifolium disposed of from the saccharification process has been valorized into C-dots with potent biocidal activity against pathogenic microorganisms.
Collapse
Affiliation(s)
- Nour Sh. El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
- Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, P.O. 12566, Egypt
| | - Mohamed Hosny
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | - Abdallah R. Ismail
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | - Ahmad A. Radwan
- National Research Centre (NRC), El-Dokki, Cairo, P.O. 12622, Egypt
| | - Basma A. Ali
- General Organization for Export and Import Control (GOEIC), Cairo, Egypt
| | - Hager R. Ali
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | | | - Khaled M. Abdelsalam
- Marine Environment Division, National Institute of Oceanography and Fisheries NIOF, Alexandria Branch, P.O. 21519, Egypt
| | - Manal Mubarak
- Soil and Water Department, Faculty of Agriculture, Ain Shams University, Cairo, P.O. 11241, Egypt
| |
Collapse
|
8
|
Kaur A, Kaur M, Vyas P. Abatement of microbes and organic pollutants using heterostructural nanocomposites of rice straw CQDs with substituted strontium ferrite. CHEMOSPHERE 2024; 359:142310. [PMID: 38761820 DOI: 10.1016/j.chemosphere.2024.142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Sustainable use of agricultural waste still remains a challenging task. Herein, we used rice straw as a carbon precursor to prepare carbon quantum dots (CQDs) for photocatalytic applications. Nanocomposites of CQDs with Ti4+ and Mg2+ substituted strontium ferrite (Sr0·4Ti0·4Mg0·2Fe2O4.4) nanoparticles (NPs) in varying w:w ratio was synthesized by ultrasonication method. The successful formation of nanocomposites was confirmed by various microscopic and spectroscopic techniques. The photocatalytic and antibacterial activity of NPs, CQDs and nanocomposites was comparatively evaluated using tetracycline hydrochloride, azure B, Staphylococcus aureus and Escherichia coli as model pollutants. The CQDs-Sr0.4Ti0·4Mg0·2Fe2O4.4 nanocomposite with a w:w ratio of 2:1 showed excellent photocatalytic and antibacterial activity, with the degradation and inactivation efficiency ranging from 97.1% to 99.0% in presence of visible light. The increased specific surface area (117.2 m2/g), and reduction in band gap (2.48 eV-2.09 eV) and decreased photoluminescence intensity of nanocomposites all corroborated these results. The impacting experimental parameters such as catalyst dose, pH and contact time were also examined. Quenching experiments confirmed that hydroxyl radicals (HO∙) radicals and holes (h+) played a vital role in the degradation of pollutants. The kinetics of photodegradation was explained by using the Langmuir-Hinshelwood model. Box-Behnken statistical modelling was used to optimize photocatalytic parameters. Results indicated that the nanocomposite of CQDs with Sr0·4Ti0·4Mg0·2Fe2O4.4 can serve as a promising photocatalyst for the removal of pollutants and microbes.
Collapse
Affiliation(s)
- Ajaypal Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Pratibha Vyas
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, India
| |
Collapse
|
9
|
Soni H, Bhattu M, Sd P, Kaur M, Verma M, Singh J. Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications. ENVIRONMENTAL RESEARCH 2024; 251:118560. [PMID: 38447603 DOI: 10.1016/j.envres.2024.118560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
The surging demand for eco-friendly nanomaterial synthesis has spurred the emergence of green approaches for synthesizing carbon dots (CDs). These methods utilized natural carbon sources, such as different kind of waste for CDs synthesis, underscoring their significance in waste management and circular economy initiatives. Furthermore, the properties of CDs can be tailored by their functionalization with different materials, enabling their versatile utilization in diverse scientific domains. In this regard, the current study delves into an in-depth review of recent advances in the green/sustainable fabrication of carbon dots nanocomposites (CDNCs) with metal/metal oxides and polymers within the timeframe of 2019-2023. It begins by categorizing different types of CDs, analyzing their associated nanocomposites with mechanistic insights. The primary focus is on green synthesis methods, particularly those that employ waste materials. Furthermore, we also discussed the applications of these CDs in both environmental and biological fields by covering areas such as catalysis, photocatalysis, heavy metal ion sensing, antimicrobial, and bioimaging with in-depth underlying mechanisms. At last, the review highlights the significant challenges with future directions. These include the pursuit of cost-effective green precursors, the advancement of streamlined one-step synthesis techniques, and their efficient utilization for diverse applications. Therefore, this review provides valuable insights for researchers seeking to enhance the functionality and sustainability of CDNCs by highlighting their potential to address environmental and biological challenges.
Collapse
Affiliation(s)
- Himanshi Soni
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - Priya Sd
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Manvinder Kaur
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India.
| | - Jagpreet Singh
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India.
| |
Collapse
|
10
|
Bian Z, Bao T, Sun X, Wang N, Mu Q, Jiang T, Yu Z, Ding J, Wang T, Zhou Q. Machine Learning Tools to Assist the Synthesis of Antibacterial Carbon Dots. Int J Nanomedicine 2024; 19:5213-5226. [PMID: 38855729 PMCID: PMC11162209 DOI: 10.2147/ijn.s451680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction The emergence and rapid spread of multidrug-resistant bacteria (MRB) caused by the excessive use of antibiotics and the development of biofilms have been a growing threat to global public health. Nanoparticles as substitutes for antibiotics were proven to possess substantial abilities for tackling MRB infections via new antimicrobial mechanisms. Particularly, carbon dots (CDs) with unique (bio)physicochemical characteristics have been receiving considerable attention in combating MRB by damaging the bacterial wall, binding to DNA or enzymes, inducing hyperthermia locally, or forming reactive oxygen species. Methods Herein, how the physicochemical features of various CDs affect their antimicrobial capacity is investigated with the assistance of machine learning (ML) tools. Results The synthetic conditions and intrinsic properties of CDs from 121 samples are initially gathered to form the raw dataset, with Minimum inhibitory concentration (MIC) being the output. Four classification algorithms (KNN, SVM, RF, and XGBoost) are trained and validated with the input data. It is found that the ensemble learning methods turn out to be the best on our data. Also, ε-poly(L-lysine) CDs (PL-CDs) were developed to validate the practical application ability of the well-trained ML models in a laboratory with two ensemble models managing the prediction. Discussion Thus, our results demonstrate that ML-based high-throughput theoretical calculation could be used to predict and decode the relationship between CD properties and the anti-bacterial effect, accelerating the development of high-performance nanoparticles and potential clinical translation.
Collapse
Affiliation(s)
- Zirui Bian
- Department of Bone, Huangdao District Central Hospital, Qingdao, People’s Republic of China
| | - Tianzhe Bao
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| | - Xuequan Sun
- Weifang Eye Institute, Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang, People’s Republic of China
- Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Ning Wang
- Department of Bone, Huangdao District Central Hospital, Qingdao, People’s Republic of China
| | - Qian Mu
- Department of Biomaterials, LongScience Biological (Qingdao) Co, LTD, Qingdao, People’s Republic of China
| | - Ting Jiang
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, People’s Republic of China
| | - Zhongxiang Yu
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, People’s Republic of China
| | - Junhang Ding
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| |
Collapse
|
11
|
Priyadarshini E, Kumar R, Balakrishnan K, Pandit S, Kumar R, Jha NK, Gupta PK. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS APPLIED BIO MATERIALS 2024; 7:2604-2619. [PMID: 38622845 DOI: 10.1021/acsabm.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215 Tamil Nadu, India
| | - Soumya Pandit
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105 Tamil Nadu, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401 Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
12
|
Mirseyed PS, Arjmand S, Rahmandoust M, Kheirabadi S, Anbarteh R. Green synthesis of yeast cell wall-derived carbon quantum dots with multiple biological activities. Heliyon 2024; 10:e29440. [PMID: 38699041 PMCID: PMC11064072 DOI: 10.1016/j.heliyon.2024.e29440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Hypothesis Yeast cell walls are a sustainable biomass source containing carbon and other elements like phosphorus. Converting cell walls into valuable nanomaterials like carbon quantum dots (CQDs) is of interest. Experiments Cell walls from Saccharomyces cerevisiae were hydrothermally treated in 0.5 M H2SO4 to produce CQDs. Multiple analytical techniques were utilized to confirm phosphorus-doping (P-CQDs), characterize the fluorescence properties, determine quantum yield, and evaluate the sensing, antimicrobial, photocatalytic, and antioxidant capacities. Findings A successful synthesis of P-CQDs was achieved with strong blue fluorescence under UV excitation, 19 % quantum yield, and excellent stability. The P-CQDs showed sensitive fluorescence quenching in response to ferric ions with a 201 nM detection limit. Antibacterial effects against Escherichia coli and Staphylococcus aureus were demonstrated. P-CQDs also exhibited dye degradation under sunlight and antioxidant activity. So, the prepared P-CQDs displayed promising multifunctional capabilities for metal ion detection, disinfection, and environmental remediation. Further research is required to fully realize and implement the multifunctional potential of P-CQDs in real-world applications.
Collapse
Affiliation(s)
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Shahpour Kheirabadi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Rojin Anbarteh
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
14
|
Radha R, Makhlouf Z, Diab R, Al-Sayah MH. Modifying cellulose fibres with carbon dots: a promising approach for the development of antimicrobial fibres. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231755. [PMID: 38633350 PMCID: PMC11022000 DOI: 10.1098/rsos.231755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
This study focuses on the development of antimicrobial fibres for use in medical and healthcare textile industries. Carbon dots (CDs) were designed with boronic acid groups for the attachment to cellulose fibres found in cotton textiles and to enhance their attachment to glycogens on bacterial surfaces. Boronic acid-based and curcumin-based CDs were prepared and characterized using various techniques, showing a nanoscale size and zeta potential values. The CDs inhibited the growth of both Staphylococcus epidermidis and Escherichia coli bacteria, with UV-activated CDs demonstrating improved antibacterial activity. The antimicrobial activity of the CDs was then tested, revealing strong adherence to cellulose paper fibres with no CD diffusion and potent inhibition of bacterial growth. Cytotoxicity assays on human cell lines showed no toxicity towards cells at concentrations of up to 100 µg ml-1 but exhibited increased toxicity at concentrations exceeding 1000 µg ml-1. However, CD-modified cellulose paper fibres showed no toxicity against human cell lines, highlighting the antimicrobial properties of the CD-modified cellulose fibres are safe for human use. These findings show promising potential for applications in both industrial and clinical settings.
Collapse
Affiliation(s)
- Remya Radha
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| | - Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| | - Rasha Diab
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| |
Collapse
|
15
|
Koul K, Jawanda IK, Soni T, Singh P, Sharma D, Kumari S. Quantum dots: a next generation approach for pathogenic microbial biofilm inhibition; mechanistic insights, existing challenges, and future potential. Arch Microbiol 2024; 206:158. [PMID: 38480540 DOI: 10.1007/s00203-024-03919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.
Collapse
Affiliation(s)
- Khyati Koul
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | | | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Pranjali Singh
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Divyani Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Kunjan F, Shanmugam R, Govindharaj S. Evaluation of Free Radical Scavenging and Antimicrobial Activity of Coleus amboinicus-Mediated Iron Oxide Nanoparticles. Cureus 2024; 16:e55472. [PMID: 38571817 PMCID: PMC10988995 DOI: 10.7759/cureus.55472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Background In this research, iron oxide nanoparticles were synthesized using Coleus amboinicus stem extract, which is used for various diseases such as throat infection, cough, fever, nasal congestion, and digestive problems. Aim This study aimed to formulate a green synthesis of iron oxide nanoparticles mediated by Coleus amboinicus (known as karpuravalli in Tamil) and assess its antimicrobial and antioxidant properties. Materials and methods Iron oxide nanoparticles were synthesized, and then their antimicrobial properties were tested against two specific pathogens, i.e., Streptococcus mutans and Candida albicans, using the agar well diffusion technique. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, hydroxyl radical scavenging (H2O2) assay, and ferric ion reducing antioxidant power (FRAP) assay were conducted to check the free radical scavenging activity. Result The results obtained showed that these iron oxide nanoparticles showed better antimicrobial activity against Streptococcus mutans when compared to Candida albicans, and the antioxidant activity showed a very close efficacy when compared to the standard. Conclusion The research has demonstrated the high antioxidant activity and high antibacterial activity of iron oxide nanoparticles using Coleus amboinicus stem, a natural and cheaper antimicrobial drug compared to the drugs present on the market.
Collapse
Affiliation(s)
- Faris Kunjan
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sulochana Govindharaj
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
17
|
Ghorbani M, Moradi M, Tajik H, Molaei R, Alizadeh A. Carbon dots embedded bacterial cellulose membrane as active packaging: Toxicity, in vitro release and application in minced beef packaging. Food Chem 2024; 433:137311. [PMID: 37683493 DOI: 10.1016/j.foodchem.2023.137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Antimicrobial bacterial cellulose (BC) membranes incorporated with carbon dots (CDs) were developed to improve the shelf life and ensure the safety of minced beef during 9 days of storage at 4 °C. An ex-situ method was used to develop BC-CDs with different CDs loading capacities (16.50, 22.50, and 38.50 mg/cm3). Only BC-CDs38.50 membrane exhibited toxicity in human embryonic kidney cells, and BC-CDs membranes had the slowest release rate of CDs in 95% ethanol. Significant differences were noted in the chemical and sensory attributes of samples packaged with BC-CDs16.50 and BC-CDs22.50, compared to the control. The microbial counts in samples with BC-CDs were significantly lower than those in samples with pristine BC membranes or the control. Notably, the BC-CDs22.50 membrane exhibited a substantial reduction (4.7 log10 CFU/g) in Escherichia coli counts by the end of storage. These findings highlight the potential of BC-CDs membranes as effective antimicrobial materials in meat packaging.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
18
|
Kolekar AG, Nille OS, Koparde SV, Patil AS, Waghmare RD, Sohn D, Anbhule PV, Kolekar GB, Gokavi GS, More VR. Green, facial zinc doped hydrothermal synthesis of cinnamon derived fluorescent carbon dots (Zn-Cn-CDs) for highly selective and sensitive Cr 6+ and Mn 7+ metal ion sensing application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123413. [PMID: 37741103 DOI: 10.1016/j.saa.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Carbon dots have demonstrated a great potential as luminescent nanoparticles in energy, drug delivery, sensors, and various biomedical applications as well as environmental pollutants and water analysis. Although, such nanoparticles appear to exhibit low toxicity compared to other semiconductor and metal based luminescent nanomaterials. Today, we know that toxicity of carbon dots (CDs) strongly depends on the protocol of fabrication. The various dopants or heteroatoms have been used to enhance the optical and physicochemical properties. In this work, zinc doped aqueous fluorescent Zn-Cn-CDs have been synthesized from cinnamon by hydrothermal synthesis method. The synthesized Zn-Cn-CDs were confirmed for their physicochemical properties by using various characterization techniques viz. UV-Vis. and spectrofluorometer for optical properties, Fourier transform infrared spectroscopy (FTIR) and XRD, as well as TEM and XPS, was done for morphological and chemical analysis. The successfully synthesized Zn-Cn-CDs showed outstanding optical performance for metal ion sensing applications. The developed heteroatom doped Zn-Cn-CDs as a fluorescent probe exhibited higher selectivity and sensitivity for Cr6+ and Mn7+ metal ions. The obtained results showed a better linear range with excellent limit of detection (LOD) 3.97 µg/mL and 2.05 µg/mL for Cr6+ and Mn7+ metal ions respectively. The low cost, simple and highly fluorescent probe can be effectively applicable for development of environmental pollutants sensing purposes.
Collapse
Affiliation(s)
- Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Akshay S Patil
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Ravindra D Waghmare
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | | | | |
Collapse
|
19
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
20
|
Nangan S, Kanagaraj K, Kaarthikeyan G, Kumar A, Ubaidullah M, Pandit B, Govindasamy R, Natesan T. Sustainable preparation of luminescent carbon dots from syringe waste and hyaluronic acid for cellular imaging and antimicrobial applications. ENVIRONMENTAL RESEARCH 2023; 237:116990. [PMID: 37640096 DOI: 10.1016/j.envres.2023.116990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Addressing the global challenge of persistent waste through an eco-conscious strategy to transform it into valuable and versatile materials holds great significance in today's swiftly evolving world. By adopting a sustainable approach, we can repurpose waste syringes composed of polytetrafluoroethylene (PTFE) into fluorescent carbon dots (CDs) using a simple hydrothermal process. This research harnessed hyaluronic acid to carbonize and modify discarded plastic syringes, resulting in the creation of luminescent syringe carbon dots (SCDs). Rigorous analysis employing diverse techniques delved into their optical attributes, size distribution, and surface characteristics. Extensive biocompatibility assessments using established assay methods confirmed the safety of the derived SCDs, unveiling their potential antibacterial and antifungal traits. Additionally, a confocal microscope was employed to evaluate the cellular imaging capabilities of SCDs on HeLa cells. Notably, at bactericidal concentrations, SCDs exhibited mild cytotoxicity towards mammalian cells, showcasing cell viability surpassing 91.07% at 1 mg/mL. This pioneering exploration paves the way for potential applications of SCD-based nano-bactericides across various biomedical domains. The initial outcomes established herein mark a significant stride towards the creation of cost-effective and ecologically sound fluorescent probes for biomedical imaging, aimed at combating microbial infections. By ingeniously reutilizing polyethylene terephthalate (PET), this investigation offers a sustainable remedy to address the ecological predicaments linked with plastic waste. In doing so, it charts a course towards contributing to the development of affordable, eco-friendly solutions, heralding a promising prospect for a cleaner, healthier environment.
Collapse
Affiliation(s)
- Senthilkumar Nangan
- Department of Chemistry, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India
| | - Kuppusamy Kanagaraj
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Gurumoorthy Kaarthikeyan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, Tamil Nadu, Chennai, 600077, India
| | - Thirumalaivasan Natesan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
21
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
22
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
23
|
Bauer EM, Talone A, Imperatori P, Briancesco R, Bonadonna L, Carbone M. The Addition of Co into CuO-ZnO Oxides Triggers High Antibacterial Activity and Low Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2823. [PMID: 37947668 PMCID: PMC10649786 DOI: 10.3390/nano13212823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by XRD, IR, SEM and EDX, indicating the formation of either crystalline or amorphous hydrocarbonate precursors. The oxides present one or two crystalline phases, depending on their composition; the triple-cation oxides form a solid solution of tenorite. Also, the morphology of the samples varies with the composition, yielding nanoparticles, filaments and hydrangea-like microaggregates. The antibacterial assays are conducted against E. coli and indicate an enhanced efficacy, especially displayed by the oxide containing 3% Co and 9% Zn incorporated into the CuO lattice. The oxides with the highest antibacterial properties are tested for their cytotoxicity, indicating a low toxicity impact, in line with literature data.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Alessandro Talone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Patrizia Imperatori
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Rossella Briancesco
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Lucia Bonadonna
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| |
Collapse
|
24
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
25
|
Garcia-Millan T, Ramos-Soriano J, Ghirardello M, Liu X, Santi CM, Eloi JC, Pridmore N, Harniman RL, Morgan DJ, Hughes S, Davis SA, Oliver TAA, Kurian KM, Galan MC. Multicolor Photoluminescent Carbon Dots à La Carte for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44711-44721. [PMID: 37715711 PMCID: PMC10540137 DOI: 10.1021/acsami.3c08200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.
Collapse
Affiliation(s)
| | - Javier Ramos-Soriano
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Mattia Ghirardello
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Xia Liu
- Bristol
Medical School, Public Health Sciences, Southmead Hospital, University of Bristol, Southmead Road, Bristol BS8 NB, U.K.
| | | | - Jean-Charles Eloi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Natalie Pridmore
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - David J. Morgan
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
- HarwellXPS—The
EPSRC National Facility for Photoelectron, Spectroscopy, Research Complex at Harwell (RCaH), Didcot OX11 0FA, U.K.
| | - Stephen Hughes
- DST
Innovations Ltd, Unit
6a Bridgend Business Centre, Bennett Street, Bridgend CF31 3SH, U.K.
| | - Sean A. Davis
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Kathreena M. Kurian
- Bristol
Medical School, Public Health Sciences, Southmead Hospital, University of Bristol, Southmead Road, Bristol BS8 NB, U.K.
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
26
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
27
|
Kaurav H, Verma D, Bansal A, Kapoor DN, Sheth S. Progress in drug delivery and diagnostic applications of carbon dots: a systematic review. Front Chem 2023; 11:1227843. [PMID: 37521012 PMCID: PMC10375716 DOI: 10.3389/fchem.2023.1227843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Dhriti Verma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company Plc, Allegan, MI, United States
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| |
Collapse
|
28
|
Marković ZM, Mišović AS, Zmejkoski DZ, Zdravković NM, Kovač J, Bajuk-Bogdanović DV, Milivojević DD, Mojsin MM, Stevanović MJ, Pavlović VB, Marković BMT. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12050919. [PMID: 37237822 DOI: 10.3390/antibiotics12050919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.
Collapse
Affiliation(s)
- Zoran M Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Aleksandra S Mišović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Danica Z Zmejkoski
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Nemanja M Zdravković
- Scientific Veterinary Institute of Serbia, Janisa Janulisa 14, 11107 Belgrade, Serbia
| | - Janez Kovač
- Jozef Stefan Institute, Department of Surface Engineering-F4, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | | | - Dušan D Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Marija M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena J Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Vladimir B Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Biljana M Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
29
|
Farshidfar N, Fooladi S, Nematollahi MH, Iravani S. Carbon dots with tissue engineering and regenerative medicine applications. RSC Adv 2023; 13:14517-14529. [PMID: 37197681 PMCID: PMC10183719 DOI: 10.1039/d3ra02336b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Carbon dots (CDs) with unique physicochemical features such as exceptional biocompatibility, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl), high stability, and electron mobility have been broadly investigated in nano- and biomedicine. In addition, the controlled architecture, tunable fluorescence emission/excitation, light-emitting potential, high photostability, high water solubility, low cytotoxicity, and biodegradability make these carbon-based nanomaterials suitable for tissue engineering and regenerative medicine (TE-RM) purposes. However, there are still limited pre- and clinical assessments, because of some important challenges such as the scaffold inconsistency and non-biodegradability in addition to the lack of non-invasive methods to monitor tissue regeneration after implantation. In addition, the eco-friendly synthesis of CDs exhibited some important advantages such as environmentally friendly properties, low cost, and simplicity compared to the conventional synthesis techniques. Several CD-based nanosystems have been designed with stable photoluminescence, high-resolution imaging of live cells, excellent biocompatibility, fluorescence properties, and low cytotoxicity, which make them promising candidates for TE-RM purposes. Combining attractive fluorescence properties, CDs have shown great potential for cell culture and other biomedical applications. Herein, recent advancements and new discoveries of CDs in TE-RM are considered, focusing on challenges and future perspectives.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences Shiraz Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences Kerman Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences Kerman Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| |
Collapse
|
30
|
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1887. [PMID: 37100045 DOI: 10.1002/wnan.1887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
Carbon dots (CDs) correspond to carbon-based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by "top-down" or "bottom-up" approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad-spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large-scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina J Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - David García
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | | | | | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Natalia Inada
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Vanderlei Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | | |
Collapse
|
31
|
Kanungo S, Gupta N, Rawat R, Jain B, Solanki A, Panday A, Das P, Ganguly S. Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo. J Funct Biomater 2023; 14:jfb14030166. [PMID: 36976090 PMCID: PMC10057248 DOI: 10.3390/jfb14030166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of investigation for materials scientists. CQDs confined polymeric hydrogel nanocomposites have emerged as novel materials with integrated properties of the individual constituents, resulting in vital uses in the realm of soft nanomaterials. Immobilizing CQDs within hydrogels has been shown to be a smart tactic for preventing the aggregation-caused quenching effect and also for manipulating the characteristics of hydrogels and introducing new properties. The combination of these two very different types of materials results in not only structural diversity but also significant improvements in many property aspects, leading to novel multifunctional materials. This review covers the synthesis of doped CQDs, different fabrication techniques for nanostructured materials made of CQDs and polymers, as well as their applications in sustained drug delivery. Finally, a brief overview of the present market and future perspectives are discussed.
Collapse
Affiliation(s)
- Shweta Kanungo
- Department of Engineering Science and Humanities, Indore Institute of Science and Technology, Indore 452001, Madhya Pradesh, India
| | - Neeta Gupta
- Department of Chemistry, Govt. E. Raghavendra Rao P. G. Science College, Bilaspur 495001, Chhattisgarh, India
| | - Reena Rawat
- Department of Chemistry, Echelon Institute of Technology, Faridabad 121101, Haryana, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V.Y.T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Aruna Solanki
- Department of Chemistry, JNS Govt PG College Shujalpur, Affiliated to Vikram University Ujjain (M.P.), Dist Shajapur 465333, Madhya Pradesh, India
| | - Ashutosh Panday
- Department of Physics, Dr. C.V. Raman University, Kota, Bilaspur 495113, Chhattisgarh, India
| | - P Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - S Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
32
|
Huang S, Song Y, Zhang JR, Chen X, Zhu JJ. Antibacterial Carbon Dots-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207385. [PMID: 36799145 DOI: 10.1002/smll.202207385] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emergence and global spread of bacterial resistance to conventionally used antibiotics have highlighted the urgent need for new antimicrobial agents that might replace antibiotics. Currently, nanomaterials hold considerable promise as antimicrobial agents in anti-inflammatory therapy. Due to their distinctive functional physicochemical characteristics and exceptional biocompatibility, carbon dots (CDs)-based composites have attracted a lot of attention in the context of these antimicrobial nanomaterials. Here, a thorough assessment of current developments in the field of antimicrobial CDs-based composites is provided, starting with a brief explanation of the general synthesis procedures, categorization, and physicochemical characteristics of CDs-based composites. The many processes driving the antibacterial action of these composites are then thoroughly described, including physical destruction, oxidative stress, and the incorporation of antimicrobial agents. Finally, the obstacles that CDs-based composites now suffer in combating infectious diseases are outlined and investigated, along with the potential applications of antimicrobial CDs-based composites.
Collapse
Affiliation(s)
- Shan Huang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yuexin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaojun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
33
|
Huang P, Xu S, Liu W, Liu C, Ou H, Luo Y, Yan Z, Zhou X, Wu P, Liao X. ZnO@Carbon Dot Nanoparticles Stimulating the Antibacterial Activity of Polyvinylidene Fluoride-Hexafluoropropylene with a Higher Electroactive Phase for Multifunctional Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6735-6746. [PMID: 36696096 DOI: 10.1021/acsami.2c18859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further advance the application of flexible piezoelectric materials in wearable/implantable devices and robot electronic skin, it is necessary to endow them with a new function of antibacterial properties and with higher piezoelectric performance. Introducing a specially designated nanomaterial based on the nanocomposite effect is a feasible strategy to improve material properties and achieve multifunctionalization of composites. In this paper, carbon dots (CDs) were sensitized onto the surface of ZnO to form ZnO@CDs nanoparticles, which were then incorporated into polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) to obtain a multifunctional composite. On the one hand, the antibacterial property of ZnO was improved because CDs had good optical absorption of visible light and their surface functional groups were favorable for electrostatic adsorption with bacteria. Therefore, ZnO@CDs endowed the composite with an outstanding antibacterial rate of 69.1% for Staphylococcus aureus. On the other hand, CDs played a bridging role between ZnO and PVDF-HFP, reducing the negative effect of ZnO aggregation and interface incompatibility with PVDF-HFP. As a result, ZnO@CDs induced β-phase formation of 80.4% in PVDF-HFP with a d33 value of 33.8 pC N-1. The multifunctional device exhibited excellent piezoelectric and antibacterial performance in the application of energy harvesters and self-powered pressure sensors.
Collapse
Affiliation(s)
- Ping Huang
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Shunjian Xu
- School of Intelligent Manufacturing, Huzhou College, Huzhou313000, China
| | - Wei Liu
- School of Public Health, Xinyu University, Xinyu338004, China
| | - Chen Liu
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Hui Ou
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Yongping Luo
- School of Intelligent Manufacturing, Huzhou College, Huzhou313000, China
| | - Zhimin Yan
- School of Mechanical and Electrical Engineering, Xinyu University, Xinyu338004, China
| | - Xu Zhou
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Pengjun Wu
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Xingyu Liao
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| |
Collapse
|
34
|
Shahraki HS, Bushra R, Shakeel N, Ahmad A, Quratulen, Ahmad M, Ritzoulis C. Papaya Peel Waste Carbon Dots/Reduced Graphene Oxide Nanocomposite: from Photocatalytic Decomposition of Methylene Blue to Antimicrobial Activity. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
35
|
Kostov K, Andonova-Lilova B, Smagghe G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kaloyan Kostov
- Department of Functional Genetics, Abiotic and Biotic Stress, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Boika Andonova-Lilova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Guy Smagghe
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
36
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
37
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
38
|
Thu HT, Anh LT, Phuc LH, Vinh LK, Tung NT, Phuong PH. Green preparation of carbon quantum dots and its silver nanoparticles composite against carbapenem-resistant Acinetobacter baumannii. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Castro RC, N.M.J. Páscoa R, Lúcia M.F.S. Saraiva M, Lapa RA, Fernandes JO, Cunha SC, Santos JL, Ribeiro DS. Fluorometric kinetic determination of Aflatoxin B1 by combining Cd-free ternary quantum dots induced photocatalysis and chemometrics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Sadaqat MH, Mobarez AM, Nikkhah M. Curcumin carbon dots inhibit biofilm formation and expression of esp and gelE genes of Enterococcus faecium. Microb Pathog 2022; 173:105860. [DOI: 10.1016/j.micpath.2022.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
41
|
Rajapandi S, Pandeeswaran M, Kousalya G. Novel green synthesis of N-doped carbon dots from fruits of Opuntia ficus Indica as an effective catalyst for the photocatalytic degradation of methyl orange dye and antibacterial studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Synthesis of Green fluorescent Nitrogen doped Vitis vinifera derived Carbon dots and their in-vitro antimicrobial studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wang B, Xu Y, Shao D, Li L, Ma Y, Li Y, Zhu J, Shi X, Li W. Inorganic nanomaterials for intelligent photothermal antibacterial applications. Front Bioeng Biotechnol 2022; 10:1047598. [PMID: 36338117 PMCID: PMC9633683 DOI: 10.3389/fbioe.2022.1047598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Antibiotics are currently the main therapeutic agent for bacterial infections, but they have led to bacterial resistance, which has become a worldwide problem that needs to be addressed. The emergence of inorganic nanomaterials provides a new opportunity for the prevention and treatment of bacterial infection. With the continuous development of nanoscience, more and more inorganic nanomaterials have been used to treat bacterial infections. However, single inorganic nanoparticles (NPs) are often faced with problems such as large dosage, strong toxic and side effects, poor therapeutic effect and so on, so the combination of inorganic nano-materials and photothermal therapy (PTT) has become a promising treatment. PTT effectively avoids the problem of bacterial drug resistance, and can also reduce the dosage of inorganic nanomaterials to a certain extent, greatly improving the antibacterial effect. In this paper, we summarize several common synthesis methods of inorganic nanomaterials, and discuss the advantages and disadvantages of several typical inorganic nanomaterials which can be used in photothermal treatment of bacterial infection, such as precious metal-based nanomaterials, metal-based nanomaterials and carbon-based nanomaterials. In addition, we also analyze the future development trend of the remaining problems. We hope that these discussions will be helpful to the future research of near-infrared (NIR) photothermal conversion inorganic nanomaterials.
Collapse
Affiliation(s)
- Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Yan Xu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Donghan Shao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Jianwei Zhu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Xincui Shi
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Wenliang Li
- Engineering Research Center of Antibody, Jilin Medical University, Jilin, China
| |
Collapse
|
45
|
Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials. Molecules 2022; 27:molecules27196186. [PMID: 36234727 PMCID: PMC9573568 DOI: 10.3390/molecules27196186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Today, sustainable and natural resources including biowastes have been considered attractive starting materials for the fabrication of biocompatible and biodegradable carbon dots (CDs) due to the benefits of availability, low cost, biorenewability, and environmentally benign attributes. These carbonaceous nanomaterials have been widely explored in the field of sensing/imaging, optoelectronics, photocatalysis, drug/gene delivery, tissue engineering, regenerative medicine, and cancer theranostics. Designing multifunctional biowaste-derived CDs with a high efficacy-to-toxicity ratio for sustained and targeted drug delivery, along with imaging potentials, opens a new window of opportunity toward theranostic applications. However, crucial challenges regarding the absorption/emission wavelength, up-conversion emission/multiphoton fluorescence mechanisms, and phosphorescence of these CDs still need to be addressed to attain the maximum functionality and efficacy. Future studies ought to focus on optimizing the synthesis techniques/conditions, evaluating the influence of nucleation/growth process on structures/properties, controlling their morphology/size, and finding the photoluminescence mechanisms. Reproducibility of synthesis techniques is another critically important factor that needs to be addressed in the future. Herein, the recent developments related to the biowaste-derived CDs with respect to their biomedical applications are deliberated, focusing on important challenges and future perspectives.
Collapse
|
46
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
47
|
Abraham WL, Demirci S, Wypyski MS, Ayyala RS, Bhethanabotla VR, Lawson LB, Sahiner N. Biofilm inhibition and bacterial eradication by C-dots derived from polyethyleneimine-citric acid. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Zhao L, Zhang M, Mujumdar AS, Adhikari B, Wang H. Preparation of a Novel Carbon Dot/Polyvinyl Alcohol Composite Film and Its Application in Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37528-37539. [PMID: 35944155 DOI: 10.1021/acsami.2c10869] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) were synthesized with the facile hydrothermal method to produce CDs/polyvinyl alcohol (PVA) active food packaging films. The CDs had a diameter ranging from 2.01 to 5.61 nm and were well-dispersed. The effects of different concentrations of CDs on mechanical strength, water resistance, morphology, optical, and thermal performance of the CDs/PVA films were discussed. The incorporation of CDs in the PVA film improved its mechanical properties, water resistance properties, UV blocking properties, and thermal stability and endowed the composite film with antioxidant and antimicrobial properties. The maximum scavenging rates of 2,2-diphenyl-1-picrylhydrazyl and ABTS free radicals by the 0.50% CDs/PVA film were 72.81 and 97.08%, respectively. The inhibition zone diameters of the 0.50% CDs/PVA solution against Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), and Escherichia coli (E. coli) were 9.52, 8.21, and 9.05 mm, respectively. Using the 0.50% CDs/PVA film as active packaging, the shelf life of banana, jujube, and fried meatballs was observed to be extended significantly. These results demonstrate the viability of the CDs/PVA composite film as a promising active food packaging material.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X3V9 Ste Anne de Bellevue, Quebec, Canada
| | - Benu Adhikari
- School of Applied Sciences, RMIT University, VIC3083 Melbourne, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
49
|
Green Synthesis of Multicolor Emissive Nitrogen-Doped Carbon Dots for Bioimaging of Human Cancer Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Cui F, Ning Y, Wang D, Li J, Li X, Li T. Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Crit Rev Food Sci Nutr 2022; 64:203-219. [PMID: 35912471 DOI: 10.1080/10408398.2022.2105801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-resistant bacteria are caused by antibiotic abuse and/or biofilm formation and have become a threat to the food industry. Carbon dot (CD)-based nanomaterials are a very promising tools for combating pathogenic and spoilage bacteria, and they possess exceptional and adjustable photoelectric and chemical properties. In view of the rapid development of CD-based nanomaterials and their increasing popularity in the food industry, a comprehensive and updated review is needed to summarize their antimicrobial mechanisms and applications in foods. This review discusses the synthesis of CDs, antimicrobial mechanisms, and their applications for extending the shelf life of food. It includes the synthesis of CDs using small molecules, polymers, and biomass. It also discusses the different antimicrobial mechanisms of CDs and their use as antibacterial agents and carriers/ligands. CD-based materials have proven effective against pathogenic and spoilage bacteria in food by inhibiting planktonic bacteria and biofilms. Optimization of the production parameters of CDs can help them achieve a full-spectral response, but degradability still requires further research.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Yuanyuan Ning
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
- College of Food Science and Technology, Jiangnan University, Wuxi Jiangsu, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian Liaoning, China
| |
Collapse
|