1
|
Wang H, Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Mechanistic insights for efficient removal of intracellular and extracellular antibiotic resistance genes by iron-based nanocopper: Intracellular oxidative stress and internalization of nanocopper. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136745. [PMID: 39637796 DOI: 10.1016/j.jhazmat.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of antibiotics has led to a severe pollution issue with antibiotic resistance genes (ARGs), which poses a significant threat to both ecological environments and human health. In this study, we developed an iron-based nanocopper bimetallic material (Fe-nCu) for the efficient removal of ARGs. Our results indicate that nCu can attach to the surface of iron, forming aggregated copper nanoclusters resembling wheat ears. The composition of Fe-nCu particles consists of 75.90 % iron and 20.95 % copper. Fe-nCu demonstrates a unique capability in eliminating ARGs, achieving removal efficiencies of 3.75 and 4.36 logs for intracellular and extracellular ARGs, respectively. Furthermore, Fe-nCu remains stable in complex water environments and is unaffected by organic substances in the water. This material induces oxidative stress in cells within a short period, leading to an imbalance in intracellular redox levels and resulting in cell membrane damage. nCu causes severe membrane damage to E. coli, penetrating the cell due to its size advantage, which leads to the encapsulation and internalization of E. coli by the copper nanoparticles. Once inside, the nCu particles cleave DNA and disrupt the function of ARGs. This study not only provides a cost-effective material for the removal of ARGs but also offers an in-depth understanding of the action mechanism of Fe-nCu, presenting a novel pathway for inhibiting the propagation of ARGs.
Collapse
Affiliation(s)
- Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ping Yu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Zou W, Chang Y, Zhang X, Li X, Jin C, Zhang G, Cao Z, Zhou Q. MoS 2 Nanosheets at Low Doses Induced Cardiotoxicity in Developing Zebrafish via Ferroptosis: Influence of Lateral Size and Surface Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22539-22552. [PMID: 39589763 DOI: 10.1021/acs.est.4c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The widespread applications of molybdenum disulfide (MoS2) nanosheets inevitably result in their release into aquatic environments, necessitating an exploration of their potential toxic effects on aquatic organisms. This study analyzes the cardiac responses of zebrafish larvae exposed to MoS2, with a focus on the influence of size and surface modifications. At higher concentrations (1 and 5 mg/L), MoS2 nanosheets hampered larval growth without influencing cardiomyogenesis. At lower doses (0.5-100 μg/L), small-sized MoS2 (ssMoS2, 187.2 nm) significantly impaired cardiac development, as proved by morphology abnormality, decreased heartbeat, stroke volume, and cardiac output, whereas these undesirable changes were not observed in the cysteine-modified form. Large-sized nanosheets (1.638 μm) did not localize to the heart, barely showing a cardiac disorder. Transcriptomics, biochemical analysis, and computational simulation validated that ssMoS2 aggravated Fe2+ overload through excessive ferritinophagy and ferroportin-1 inhibition, accompanied by down-regulation of glutathione peroxidase 4 and activation of PUFAs esterification, leading to ferroptosis. Significant associations between ferroptosis signals and cardiac indices, along with the ferrostatin-1 inhibition test, confirmed the ferroptosis-mediated cardiotoxicity of ssMoS2. Our study provides a key understanding of molecular events underlying MoS2-induced cardiotoxicity and highlights the importance of size and surface characteristics, which are significant for risk assessment and the safe design of nanoproducts.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Yishuang Chang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Sharma S, Tiwari V. Polyvinylpyrrolidone capped silver nanoparticles enhance the autophagic clearance of Acinetobacter baumannii from human pulmonary cells. DISCOVER NANO 2024; 19:154. [PMID: 39313578 PMCID: PMC11420407 DOI: 10.1186/s11671-024-04107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Acinetobacter baumannii, an opportunistic pathogen has shown an upsurge in its multi-drug resistant isolates. OmpA of A. baumannii induces incomplete autophagy and apoptosis in host cells. Various therapeutic alternatives are under investigation against A. baumannii. Here, the major emphasis has been laid on comparing the efficacy of AgNP with different capping agents. OmpA targeted lead, Ivermectin capped AgNP (IVM-AgNP) has been compared with the antibacterial polyvinylpyrrolidone capped AgNP (PVP-AgNP) for their role in the modulations of host autophagy. Upregulation of p62 and LC3B confirmed by real-time PCR analysis indicated an increased autophagic flux upon the treatment with AgNPs. The elongation and closure of autophagic vacuoles was also supported by upregulated Atg genes (Atg4, Atg3, Atg5) in A. baumannii infected cells after treatment with AgNP. Autophagic flux increased on treatment with PVP-AgNP as suggested by the rise in mcherryLC3B fluorescence in A549 cells treated with PVP-AgNP as compared to the GFP-LC3B of IVM-AgNP. This suggests that PVP-AgNP treatment more effectively promotes the elongation and maturation stages of autophagy by increasing autophagic flux. These results indicate that capped AgNPs have the efficiency to revert the incomplete autophagy induced by A. baumannii back to normal autophagic levels.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
4
|
You HJ, Jo YJ, Kim G, Kwon J, Yoon SB, Youn C, Kim Y, Kang MJ, Cho WS, Kim JS. Disruption of early embryonic development in mice by polymethylmethacrylate nanoplastics in an oxidative stress mechanism. CHEMOSPHERE 2024; 361:142407. [PMID: 38795919 DOI: 10.1016/j.chemosphere.2024.142407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Polymethylmethacrylate (PMMA) has been used in many products, such as acrylic glass, and is estimated to reach 5.7 million tons of production per year by 2028. Thus, nano-sized PMMA particles in the environment are highly likely due to the weathering process. However, information on the hazards of nanoplastics, including PMMA in mammals, especially reproductive toxicity and action mechanism, is scarce. Herein, we investigated the effect of PMMA nanoplastics on the female reproductive system of mice embryos during pre-implantation. The treated plastic particles in embryos (10, 100, and 1000 μg/mL) were endocytosed into the cytoplasm within 30 min, and the blastocyst development and indices of embryo quality were significantly decreased from at 100 μg/mL. Likewise, the transfer of nanoplastic-treated embryos at 100 μg/mL decreased the morula implantation rate on the oviduct of pseudopregnant mice by 70%, calculated by the pregnant individual, and 31.8% by the number of implanted embryos. The PMMA nanoplastics at 100 μg/mL significantly increased the cellular levels of reactive oxygen species in embryos, which was not related to the intrinsic oxidative potential of nanoplastics. This study highlights that the nanoplastics that enter systemic circulation can affect the early stage of embryos. Thus, suitable action mechanisms can be designed to address nanoplastic occurrence.
Collapse
Affiliation(s)
- Hyeong-Ju You
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea; Department of Animal Science, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Changsic Youn
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Yejin Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea.
| |
Collapse
|
5
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Anh NH, Min YJ, Thi My Nhung T, Long NP, Han S, Kim SJ, Jung CW, Yoon YC, Kang YP, Park SK, Kwon SW. Unveiling potentially convergent key events related to adverse outcome pathways induced by silver nanoparticles via cross-species omics-scale analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132208. [PMID: 37544172 DOI: 10.1016/j.jhazmat.2023.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The adverse effects of silver nanoparticles (AgNPs) have been studied in various models. However, there has been discordance between molecular responses across the literature, attributed to methodological biases and the physicochemical variability of AgNPs. In this study, a gene pathway meta-analysis was conducted to identify convergent and divergent key events (KEs) associated with AgNPs and explore common patterns of these KEs across species. We performed a cross-species analysis of transcriptomic data from multiple studies involving various AgNPs exposure. Pathway enrichment analysis revealed a set of pathways linked to oxidative stress, apoptosis, and metabolite and lipid metabolism, which are considered potentially conserved KEs across species. Subsequently, experiments confirmed that oxidative stress responses could be early KEs in both Caenorhabditis elegans and HepG2 cells. Moreover, AgNPs preferentially impaired the mitochondria, as evidenced by mitochondrial fragmentation and dysfunction. Furthermore, disruption of amino acids, nucleotides, sulfur compounds, glycerolipids, and glycerophospholipids metabolism were in good agreement with gene pathway shreds of evidence. Our findings imply that, although there may be organism-specific responses, potentially conserved events could exist regardless of species and physicochemical factors. These results provide valuable insights into the development of adverse outcome pathways of AgNPs across species and the regulatory toxicity of AgNPs.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, the Republic of Korea
| | - Seunghyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
7
|
Suárez-Oubiña C, Herbello-Hermelo P, Mallo N, Vázquez M, Cabaleiro S, Pinheiro I, Rodríguez-Lorenzo L, Espiña B, Bermejo-Barrera P, Moreda-Piñeiro A. Single-cell ICP-MS for studying the association of inorganic nanoparticles with cell lines derived from aquaculture species. Anal Bioanal Chem 2023; 415:3399-3413. [PMID: 37162523 PMCID: PMC10289938 DOI: 10.1007/s00216-023-04723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
The current research deals with the use of single-cell inductively coupled plasma-mass spectrometry (scICP-MS) for the assessment of titanium dioxide nanoparticle (TiO2 NP) and silver nanoparticle (Ag NP) associations in cell lines derived from aquaculture species (sea bass, sea bream, and clams). The optimization studies have considered the avoidance of high dissolved background, multi-cell peak coincidence, and possible spectral interferences. Optimum operating conditions were found when using a dwell time of 50 μs for silver and 100 μs for titanium. The assessment of associated TiO2 NPs by scICP-MS required the use of ammonia as a reaction gas (flow rate at 0.75 mL min-1) for interference-free titanium determinations (measurements at an m/z ratio of 131 from the 48Ti(NH)(NH3)4 adduct). The influence of other parameters such as the number of washing cycles and the cell concentration on accurate determinations by scICP-MS was also fully investigated. Cell exposure trials were performed using PVP-Ag NPs (15 and 100 nm, nominal diameter) and citrate-TiO2 NPs (5, 25, and 45 nm, nominal diameter) at nominal concentrations of 10 and 50 μg mL-1 for citrate-TiO2 NPs and 5.0 and 50 μg mL-1 for PVP-Ag NPs. Results have shown that citrate-TiO2 NPs interact with the outer cell membranes, being quite low in the number of citrate-TiO2 NPs that enters the cells (the high degree of aggregation is the main factor which leads to the aggregates being in the extracellular medium). In contrast, PVP-Ag NPs have been found to enter the cells.
Collapse
Affiliation(s)
- Cristian Suárez-Oubiña
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Paloma Herbello-Hermelo
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Natalia Mallo
- Centro Tecnológico del Cluster de la Acuicultura (CETGA), Punta Couso S-N, Ribeira, 15965, Spain
| | - María Vázquez
- Centro Tecnológico del Cluster de la Acuicultura (CETGA), Punta Couso S-N, Ribeira, 15965, Spain
| | - Santiago Cabaleiro
- Centro Tecnológico del Cluster de la Acuicultura (CETGA), Punta Couso S-N, Ribeira, 15965, Spain
| | - Ivone Pinheiro
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Laura Rodríguez-Lorenzo
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Begoña Espiña
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Gong J, Cheng X, Zuo J, Zhang Y, Lin J, Liu M, Jiang Y, Long Y, Si H, Gao X, Guo D, Gu N. Silver nanoparticles combat Salmonella Typhimurium: Suppressing intracellular infection and activating dendritic cells. Colloids Surf B Biointerfaces 2023; 226:113307. [PMID: 37068446 DOI: 10.1016/j.colsurfb.2023.113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
Salmonella Typhimurium (ST) can hide inside cells, avoid antibiotic therapy and being killed by host's immune system to cause persistent infection in humans and animals. Metal nanoparticles are regarded as an alternative to overcome the above limitations, silver nanoparticles especially have been applied in combating drug-resistant bacteria. However, the therapeutic effects of silver nanoparticles against intracellular infection and their impacts on host immunity remain an area of further investigation. In this work, we synthesized Ganoderma extract-capped silver nanoparticles (Ag@Ge) and explored the therapeutic potential and immune adjuvant effects of Ag@Ge against intracellular ST. Firstly, Ag@Ge had a small particle size of 35.52±7.46 nm, good stability, and biocompatibility. Then, Ag@Ge effectively entered RAW 264.7 cells, suppressed intracellular ST infection. Furthermore, Ag@Ge activated mouse dendritic cells (DCs) in vitro, evidenced by increased phenotypic markers (CD80/CD86/CD40/major compatibility complex II (MHCII)) expression and cytokine and chemokine (interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), and chemokine (C-C motif) receptor-7 (CCR-7)) transcription. More notably, the combination of Ag@Ge with inactivated ST recruited intestinal DCs to mitigate ST infection in mice, evidenced by decreased body weight loss and bacterial loads in the tissues (liver, jejunum, and colon), and improved platelets count. The above findings indicate that Ag@Ge has the potential as an alternative nano-antibiotic against intracellular ST infection.
Collapse
Affiliation(s)
- Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xingxing Cheng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jinjiao Zuo
- College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jian Lin
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Moxin Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Ning Gu
- Medical School, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
9
|
Hong W, Lou B, Gao Y, Zhao H, Ying S, Yang S, Li H, Yang Q, Yang G. Tumor microenvironment responded naturally extracted F OF1-ATPase loaded chromatophores for antitumor therapy. Int J Biol Macromol 2023; 230:123127. [PMID: 36603722 DOI: 10.1016/j.ijbiomac.2022.123127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.
Collapse
Affiliation(s)
- Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Hui Zhao
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Saicheng Yang
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Hanbing Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
10
|
Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, Wu X, Yang F, Luo J, Yang X. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113993. [PMID: 35994909 DOI: 10.1016/j.ecoenv.2022.113993] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Sliver nanoparticles (AgNPs) are widely used in industry, agriculture, and medicine, potentially resulting in adverse effects on human health and aquatic environments. Here, we investigated the developmental toxicity of zebrafish embryos with acute exposure to AgNPs. Our results demonstrated developmental defects in 4 hpf zebrafish embryos after exposure to different concentrations of AgNPs for 72 h. In addition, RNA-seq profiling of zebrafish embryos after AgNPs treatment. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the differentially expressed genes (DEGs) were enriched in DNA replication initiation, oxidoreductase activity, DNA replication, cellular senescence, and oxidative phosphorylation signaling pathways in the AgNPs-treated group. Notably, we also found that AgNPs exposure could result in the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the inhibition of superoxide dismutase (SOD), catalase (CAT), and mitochondrial complex I-V activities, and the downregulated expression of SOD, CAT, and mitochondrial complex I-IV chain-related genes. Moreover, the expression of mitochondrion-mediated apoptosis signaling pathway-related genes, such as bax, bcl2, caspase-3, and caspase-9, was significantly regulated after AgNPs exposure in zebrafish. Therefore, these findings demonstrated that AgNPs exposure could cause oxidative stress, induce mitochondrial dysfunction, and ultimately lead to developmental toxicity.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Ma C, Chen Q, Li J, Li B, Liang W, Su L, Shi H. Distribution and translocation of micro- and nanoplastics in fish. Crit Rev Toxicol 2022; 51:740-753. [PMID: 35166176 DOI: 10.1080/10408444.2021.2024495] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are regarded as emerging particulate contaminants. Here, we first summarize the distribution of plastic particles in fish. Field investigations verify the presence of various kinds of fibrous, spherical, and fragmentary MPs in fish gastrointestinal tract and gills, and specifically in muscle and liver. Laboratory works demonstrate that NPs even penetrate into blood vessels of fish and pass onto next generations. Second, we systematically discuss the translocation ability of MPs and NPs in fish. MPs can enter early-developing fish through adherence, and enter adult fish internal organs by intestine absorption or epidermis infiltration. NPs can not only penetrate into fish embryo blastopores, but also reach adult fish internal organs through blood circulation. Third, the cellular basis for translocation of plastic particles, NPs in particular, into cells are critically reviewed. Endocytosis and paracellular penetration are two main pathways for them to enter cells and intercellular space, respectively. Finally, we compare the chemical and physical properties among various particular pollutants (MPs, NPs, settleable particulate matters, and manufactured nanomaterials) and their translocation processes at different biological levels. In future studies, it is urgent to break through the bottleneck techniques for NPs quantification in field environmental matrix and organisms, re-confirm the existence of MPs and NPs in field organisms, and develop more detailed translocating mechanisms of MPs and NPs by applying cutting-edge tracking techniques.
Collapse
Affiliation(s)
- Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jiawei Li
- Department of Geography, The University of Manchester, Manchester, United Kingdom
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
12
|
C. Quevedo A, Ellis LJA, Lynch I, Valsami-Jones E. Correction: Quevedo et al. Mechanisms of Silver Nanoparticle Uptake by Embryonic Zebrafish Cells. Nanomaterials 2021, 11, 2699. NANOMATERIALS 2022; 12:nano12020225. [PMID: 35055314 PMCID: PMC8781391 DOI: 10.3390/nano12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
|