1
|
Hlekelele L, Setshedi K, Mandiwana V, Kalombo L, Lemmer Y, Chauke V, Maity A. Carboxy-PEG-thiol functionalized gold nanoparticle conjugates for the detection of SARS-CoV-2: Detection tools and analytical method development. J Virol Methods 2024; 330:115028. [PMID: 39236987 DOI: 10.1016/j.jviromet.2024.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Addressing the need for accessible SARS-CoV-2 testing, carboxy-PEG 12-thiol functionalized gold nanoparticles conjugates were developed for rapid point-of-care (POC) detection against SARS-CoV-2 spike protein, pseudo-SARS-CoV-2, and authentic Beta SARS-CoV-2 virus particles. These conjugates leverage gold nanoparticles (AuNPs) as signal transducers, cross-linked to either angiotensin-converting enzyme 2 (ACE2) or SARS-CoV-2 spike protein receptor-binding domain (RBD) antibodies as bioreceptors and showed a distinct color shift from pink to blue. To assess their POC feasibility, the conjugates were integrated into facemasks and breathalyzers, wherein aerosolized SARS-CoV-2 antigens were successfully detected, producing a color change within 10 and 30 minutes for the breathalyzer and facemask prototypes, respectively. Furthermore, we explored quantitative analysis using varying concentrations of SARS-CoV-2 spike protein. Both conjugates demonstrated a linear relationship between blue color intensity and virus concentration, with linear ranges of 0.08-0.6 ng/mL and 0.04-0.5 ng/mL, respectively. Low limits of detection and quantification were also achieved. They exhibited specificity, responding solely to SARS-CoV-2 even in complex matrices containing diverse proteins, including the SARS-CoV-1 spike protein. Precision tests yielded coefficient of variations below 2 %, showcasing their remarkable reproducibility. This work presents a promising approach for rapid, sensitive, and specific POC detection of SARS-CoV-2 paving the way for improved pandemic response and management.
Collapse
Affiliation(s)
- Lerato Hlekelele
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| | - Katlego Setshedi
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Vusani Mandiwana
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Lonji Kalombo
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Yolandy Lemmer
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Vongani Chauke
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Arjun Maity
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Tunakhun P, Ngernpimai S, Tippayawat P, Choowongkomon K, Anutrakulchai S, Charoensri N, Tavichakorntrakool R, Daduang S, Srichaiyapol O, Maraming P, Boonsiri P, Daduang J. Development of gold nanoparticle-based lateral-flow strips for NGAL protein detection in urine samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7033-7042. [PMID: 39283692 DOI: 10.1039/d4ay00838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This study focuses on enhancing the sensitivity of lateral-flow strips (LFSs) based on gold nanoparticles (AuNPs) for the detection of Neutrophil Gelatinase-Associated Lipocalin (NGAL) protein in urine samples. Several sizes of AuNP-based LFS biosensors were tested to optimize colorimetric signals for NGAL detection based on improved conjugation conditions. AuNPs of 39.8 nm diameter at pH 8 were the most sensitive for the detection of NGAL. Through systematic enhancements to the AuNP-based LFS, the study significantly improves the sensitivity, enabling the reliable detection of NGAL protein in urine samples at a level as low as 12.5 ng mL-1. These advances contribute to the refinement of diagnostic tools for the early detection of kidney injury, specifically in cases associated with the presence of NGAL protein, offering a more precise and effective screening approach.
Collapse
Affiliation(s)
- Paweena Tunakhun
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sawinee Ngernpimai
- Centre for Innovation and Standard for Medical Technology and Physical Therapy (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nicha Charoensri
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Centre for Innovation and Standard for Medical Technology and Physical Therapy (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Li G, Wang X, Guo J, Wang Y, Liu X, Wei Q, Zhang Y, Sun Y, Fan L, Xing Y, Li Q, Zhang G. Differential detection of SARS-CoV-2 variants and influenza A viruses utilizing a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies. Int J Biol Macromol 2024; 280:136067. [PMID: 39341304 DOI: 10.1016/j.ijbiomac.2024.136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the seasonal influenza virus are spreading among humans concurrently, especially with the ongoing replacement of mutant strains. It is challenging to differentiate between symptoms for therapy due to the comparable symptoms following infection with the SARS-CoV-2 variants and influenza viruses. Meanwhile, in order to achieve rapid point-of-care testing (POCT) to manage the spread of the disease, we developed a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies that can perform differential detection of SARS-CoV-2 variants and influenza A viruses (IAV) in this study. High-affinity monoclonal antibodies (mAbs) targeting SARS-CoV-2 and IAV were prepared to capture antigens and labeled with colloidal gold nanoparticles (AuNPs). Based on high-affinity mAbs, two targets were immobilized on one nitrocellulose (NC) membrane to establish the lateral flow strip (LFS) for differential diagnosis of SARS-CoV-2 and IAV. With no reactivity to other viruses, this LFS is extremely specific and can only identify SARS-CoV-2 and IAV. The LFS showed a limit of detection (LOD) of 4.88 ng/mL for the Omicron BA.2 RBD protein and 2.44 ng/mL for the nucleoprotein (NP) protein of H1N1. When analyzing 16 SARS-CoV-2 positive clinical samples, eight IAV positive clinical samples, and six negative samples that had already been pre-confirmed by commercial kits, its clinical application is effectively and accurately proven. These results demonstrated that the LFS integrated with AuNPs has great potential to facilitate quick, easy, and reliable POCT diagnosis for promoting the control of infectious diseases.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xun Wang
- College of Food and Drug, Luoyang Polytechnic, Luoyang 471023, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Qiang Wei
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaning Sun
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lu Fan
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmei Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Bastos-Soares EA, da Silva Morais MS, Funes-Huacca M, Sousa RMO, Brilhante-Da-Silva N, Roberto SA, Prado NDR, Dos Santos CND, Marinho ACM, Soares AM, Stabeli RG, Pereira SDS, Fernandes CFC. Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses. Mol Diagn Ther 2024; 28:479-494. [PMID: 38796660 DOI: 10.1007/s40291-024-00713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection. METHODS Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs. RESULTS The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 μg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆85). DISCUSSION Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ85 at concentrations up to 25 ng/μL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.
Collapse
Affiliation(s)
- Erika A Bastos-Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Michelle Suelen da Silva Morais
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maribel Funes-Huacca
- Departamento de Química, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rosa Maria O Sousa
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | | | | - Anna C M Marinho
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Andreimar M Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil
- Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rodrigo G Stabeli
- Fundação Oswaldo Cruz, FIOCRUZ, Plataforma Bi-institucional de Medicina Translacional, Ribeirão Preto, SP, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | |
Collapse
|
5
|
Ahmad S, Lohiya S, Taksande A, Meshram RJ, Varma A, Vagha K. A Comprehensive Review of Innovative Paradigms in Microbial Detection and Antimicrobial Resistance: Beyond Traditional Cultural Methods. Cureus 2024; 16:e61476. [PMID: 38952583 PMCID: PMC11216122 DOI: 10.7759/cureus.61476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
Microbial detection and antimicrobial resistance (AMR) surveillance are critical components of public health efforts to combat infectious diseases and preserve the efficacy of antimicrobial agents. While foundational in microbial identification, traditional cultural methods are often laborious, time-consuming, and limited in their ability to detect AMR markers. In response to these challenges, innovative paradigms have emerged, leveraging advances in molecular biology, genomics, proteomics, nanotechnology, and bioinformatics. This comprehensive review provides an overview of innovative approaches beyond traditional cultural methods for microbial detection and AMR surveillance. Molecular-based techniques such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) offer enhanced sensitivity and specificity, enabling the rapid identification of microbial pathogens and AMR determinants. Mass spectrometry-based methods provide rapid and accurate detection of microbial biomarkers, including matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and biosensor technologies. Nanotechnology approaches, such as nanoparticle-based assays and nanopore sequencing, offer novel platforms for sensitive and label-free detection of pathogens and AMR markers. Embracing these innovative paradigms holds immense promise for improving disease diagnosis, antibiotic stewardship, and AMR containment efforts. However, challenges such as cost, standardization, and integration with existing healthcare systems must be addressed to realize the full potential of these technologies. By fostering interdisciplinary collaboration and innovation, we can strengthen our ability to detect, monitor, and combat AMR, safeguarding public health for generations.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
- Pediatrics, Acharya Vinoba Bhave Rural Hospital, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Ashish Varma
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Keta Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| |
Collapse
|
6
|
Bahamondes Lorca VA, Ávalos-Ovando O, Sikeler C, Ijäs H, Santiago EY, Skelton E, Wang Y, Yang R, Cimatu KLA, Baturina O, Wang Z, Liu J, Slocik JM, Wu S, Ma D, Pastukhov A, Kabashin AV, Kordesch ME, Govorov AO. Lateral Flow Assay Biotesting by Utilizing Plasmonic Nanoparticles Made of Inexpensive Metals─Replacing Colloidal Gold. NANO LETTERS 2024; 24:6069-6077. [PMID: 38739779 DOI: 10.1021/acs.nanolett.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.
Collapse
Affiliation(s)
- Veronica A Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Oscar Ávalos-Ovando
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Christoph Sikeler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Heini Ijäs
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Eva Yazmin Santiago
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Eli Skelton
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Yong Wang
- Institut National de la Recherche Scientifique, Varennes, Québec J3X 1P7, Canada
| | - Ruiqi Yang
- Institut National de la Recherche Scientifique, Varennes, Québec J3X 1P7, Canada
| | - Katherine Leslee Asetre Cimatu
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Olga Baturina
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Zhewei Wang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Jundong Liu
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, Ohio 45433-7750, United States
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Dongling Ma
- Institut National de la Recherche Scientifique, Varennes, Québec J3X 1P7, Canada
| | - Andrei Pastukhov
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Andrei V Kabashin
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Martin E Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
7
|
Vasylaki A, Ghosh P, Jaimes EA, Williams RM. Targeting the Kidneys at the Nanoscale: Nanotechnology in Nephrology. KIDNEY360 2024; 5:618-630. [PMID: 38414130 PMCID: PMC11093552 DOI: 10.34067/kid.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.
Collapse
Affiliation(s)
- Anastasiia Vasylaki
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Pratyusha Ghosh
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Edgar A. Jaimes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ryan M. Williams
- Department of Biomedical Engineering, The City College of New York, New York, New York
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, New York
| |
Collapse
|
8
|
Bahamondes Lorca VA, Ávalos-Ovando O, Sikeler C, Ijäs H, Santiago EY, Skelton E, Wang Y, Yang R, Cimatu KLA, Baturina O, Wang Z, Liu J, Slocik JM, Wu S, Ma D, Pastukhov AI, Kabashin AV, Kordesch ME, Govorov AO. Lateral Flow Assays Biotesting by Utilizing Plasmonic Nanoparticles Made of Inexpensive Metals - Replacing Colloidal Gold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574723. [PMID: 38260353 PMCID: PMC10802436 DOI: 10.1101/2024.01.08.574723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold NPs-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic nanoparticles (NPs) based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. To the best of our knowledge, our study represents the 1st application of laser-ablation-fabricated nanoparticles (TiN) in the LFA and dot-blot biotesting. Since the main cost of the Au NPs in commercial testing kits is in the colloidal synthesis, our development with TiN is very exciting, offering potentially very inexpensive plasmonic nanomaterials for various bio-testing applications. Moreover, our machine learning study showed that the bio-detection with TiN is more accurate than that with Au.
Collapse
Affiliation(s)
- Veronica A. Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Departamento de Tecnología médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Ávalos-Ovando
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Christoph Sikeler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Heini Ijäs
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Eva Yazmin Santiago
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Eli Skelton
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Yong Wang
- Institut National de la Recherche Scientifique,Varennes, Québec J3X 1P7, Canada
| | - Ruiqi Yang
- Institut National de la Recherche Scientifique,Varennes, Québec J3X 1P7, Canada
| | - Katherine Leslee A. Cimatu
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Olga Baturina
- Chemistry Division, United States Naval Research Laboratory, Washington DC 20375, United States
| | - Zhewei Wang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Jundong Liu
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Joseph M. Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Dongling Ma
- Institut National de la Recherche Scientifique,Varennes, Québec J3X 1P7, Canada
| | - Andrei I. Pastukhov
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Andrei V. Kabashin
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Martin E. Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Alexander O. Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
9
|
Chen X, Dong S, Shi Y, Wu Z, Wu X, Zeng X, Yang X, Zhao Q, Xiao Z, Zhou Q. Biosensor-based multiple cross displacement amplification platform for visual and rapid identification of hepatitis C virus. J Med Virol 2024; 96:e29481. [PMID: 38425184 DOI: 10.1002/jmv.29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Hepatitis C remains a global health problem, especially in poverty-stricken areas. A rapid and sensitive point-of-care (POC) diagnostic tool is critical for the early detection and timely treatment of hepatitis C virus (HCV) infection. Here, for the first time, we reported a novel molecular diagnostic assay, termed reverse transcription multiple cross displacement amplification integrated with a gold-nanoparticle-based lateral flow biosensor (RT-MCDA-AuNPs-LFB), which was developed for rapid, sensitive, specific, and visual identification of HCV. HCV-RT-MCDA induced rapid isothermal amplification through a specific primer set targeting the 5'untranslated region gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a that are prevalent in China. The optimal reaction temperature and time for RT-MCDA-AuNPs-LFB were 68°C and 25 min, respectively. The limit of detection of the assay was 10 copies per test, and the specificity was 100% for the experimental strains. The whole detection procedure, including crude nucleic acid isolation (~5 min), RT-MCDA (68°C, 25 min), and visual AuNPs-LFB result confirmation (less than 2 min), was performed within 35 min. The preliminary results indicated that the HCV-RT-MCDA-AuNPs-LFB assay could be a valuable tool for sensitive, specific, visual, cost-saving, and rapid detection of HCV and has potential as a POC diagnostic platform for field screening and early clinical detection of HCV infection.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Yuanfang Shi
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zengguang Wu
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xue Wu
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xiaoyan Zeng
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xinggui Yang
- Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Qi Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zhenghua Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Natarajan S, Priye A. Enhancing the Sensitivity of Lateral Flow Assay with Europium Nanoparticles for Accurate Human IgG Quantification. MICROMACHINES 2023; 14:1993. [PMID: 38004850 PMCID: PMC10673117 DOI: 10.3390/mi14111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Accurate quantification of immunoglobulin G (IgG) levels is vital for understanding immune status and diagnosing various medical conditions. Lateral flow assays (LFAs) offer rapid and convenient diagnostic tools, but their sensitivity has been a limitation. Our research introduces a refined method incorporating europium nanoparticles, enhancing both sensitivity and accuracy of LFAs in human IgG measurement. Utilizing a unique sandwich format, carboxylate-modified polystyrene Eu (III) chelate microparticles (CM-EUs) acted as the primary reporters. The concentrations of both detection and capture antibodies on the strip were optimized to bolster the LFA's quantitative performance. The subsequent calibration curve between the IgG concentration and the measured intensity ratio (VR) established the linearity and analytical sensitivity of our method with a high correlation coefficient (r = 0.99) and an impressively low limit of detection (LoD = 0.04 ng/mL). Our precision assessment, segmented into intra-assay and inter-assay evaluations, showcases the method's consistency and reproducibility. The LFA assay's stability was established by demonstrating its resistance to degradation and affirming its potential for extended storage without a dip in performance. The study's findings underscore the potential of this method to contribute to diagnostic medicine and improve patient care.
Collapse
Affiliation(s)
- Satheesh Natarajan
- Healthcare Technology Innovation Center, Indian Institute of Technology, Chennai 600113, India;
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Digital Futures, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Khachornsakkul K, Del-Rio-Ruiz R, Zeng W, Sonkusale S. Highly Sensitive Photothermal Microfluidic Thread-Based Duplex Immunosensor for Point-of-Care Monitoring. Anal Chem 2023; 95:12802-12810. [PMID: 37578458 DOI: 10.1021/acs.analchem.3c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we successfully developed a thread-based analytical device (μTAD) for simultaneous immunosensing of two biomolecules with attomolar sensitivity by using a photothermal effect. A photothermal effect exploits a strong light-to-heat energy conversion of plasmonic metallic nanoparticles at localized surface plasmon resonance. The key innovation is to utilize the cotton thread to realize this sensor and the use of chitosan modification for enhancing the microfluidic properties, for improving the efficiency of photothermal conversion, and for sensor stability. The developed μTAD sensor consists of (i) a sample zone, (ii) a conjugation zone coated with gold nanoparticles bound with an antibody (AuNPs-Ab2), and (iii) a test zone immobilized with a capture antibody (anti-Ab1). The prepared μTAD is assembled in a custom three-dimensional (3D) printed device which holds the laser for illumination and the thermometer for readout. The 3D-printed supportive device enhances signal response by focusing light and localizing the heat generated. For proof of concept, simultaneous sensing of two key stress and inflammation biomarkers, namely, cortisol and interleukin-6 (IL-6), are monitored using this technique. Under optimization, this device exhibited a detection linear range of 2.0-14.0 ag/mL (R2 = 0.9988) and 30.0-360.0 fg/mL (R2 = 0.9942) with a detection limit (LOD) of 1.40 ag/mL (∼3.86 amol/L) and 20.0 fg/mL (∼950.0 amol/L) for cortisol and IL-6, respectively. Furthermore, the analysis of both biomolecules in human samples indicated recoveries in the range of 98.8%-102.88% with the highest relative standard deviation being 3.49%, offering great accuracy and precision. These results are the highest reported sensitivity for these analytes using an immunoassay method. Our PT-μTAD strategy is therefore a promising approach for detecting biomolecules in resource-limited point-of-care settings.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
12
|
Canton-Vitoria R, Sato K, Motooka Y, Toyokuni S, Liu Z, Kitaura R. Field-effect transistor antigen/antibody-TMDs sensors for the detection of COVID-19 samples. NANOSCALE 2023; 15:4570-4580. [PMID: 36762571 DOI: 10.1039/d2nr06630k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We fabricated sensors by modifying the surface of MoS2 and WS2 with COVID-19 antibodies and investigated their characteristics, including stability, reusability, sensitivity, and selectivity. Thiols and disulfanes in antibodies strongly interact with vacant Mo or W sites of MoS2 or WS2, yielding durable devices that are stable for several days in the air or water. More importantly, detachment of the antibodies is suppressed even during the aggressive cleaning process of the devices at pH 3, which allows reusing the same device in several experiments without appreciable loss of sensitivity. Therefore, the nanodevice may be employed in samples of different patients. Further, we found a limit of detection (LOD) of 1 fg ml-1 at room temperature, time responses of 1 second, and selectivity against interferences such as KLH protein or Albumin.
Collapse
Affiliation(s)
- Ruben Canton-Vitoria
- Department of Chemistry, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
| | - Ryo Kitaura
- Department of Chemistry, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
13
|
Singh DD, Han I, Choi EH, Yadav DK. A Clinical Update on SARS-CoV-2: Pathology and Development of Potential Inhibitors. Curr Issues Mol Biol 2023; 45:400-433. [PMID: 36661514 PMCID: PMC9857284 DOI: 10.3390/cimb45010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Even with the tremendous progress made, creating effective drugs remains difficult. To develop COVID-19 treatment alternatives, clinical studies are examining a variety of therapy categories, including antibodies, antivirals, cell-based therapy, repurposed diagnostic medicines, and more. In this article, we discuss recent clinical updates on SARS-CoV-2 infection, clinical characteristics, diagnosis, immunopathology, the new emergence of variant, SARS-CoV-2, various approaches to drug development and treatment options. The development of therapies has been complicated by the global occurrence of many SARS-CoV-2 mutations. Discussion of this manuscript will provide new insight into drug pathophysiology and drug development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of R&D Center, Arontier Co., Seoul 06735, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| |
Collapse
|
14
|
Castrejón-Jiménez NS, García-Pérez BE, Reyes-Rodríguez NE, Vega-Sánchez V, Martínez-Juárez VM, Hernández-González JC. Challenges in the Detection of SARS-CoV-2: Evolution of the Lateral Flow Immunoassay as a Valuable Tool for Viral Diagnosis. BIOSENSORS 2022; 12:bios12090728. [PMID: 36140114 PMCID: PMC9496238 DOI: 10.3390/bios12090728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is an emerging infectious disease of zoonotic origin that caused the coronavirus disease in late 2019 and triggered a pandemic that has severely affected human health and caused millions of deaths. Early and massive diagnosis of SARS-CoV-2 infected patients is the key to preventing the spread of the virus and controlling the outbreak. Lateral flow immunoassays (LFIA) are the simplest biosensors. These devices are clinical diagnostic tools that can detect various analytes, including viruses and antibodies, with high sensitivity and specificity. This review summarizes the advantages, limitations, and evolution of LFIA during the SARS-CoV-2 pandemic and the challenges of improving these diagnostic devices.
Collapse
Affiliation(s)
- Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Blanca Estela García-Pérez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, México City 11340, Mexico
| | - Nydia Edith Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Víctor Manuel Martínez-Juárez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
- Correspondence: ; Tel.: +52-775-756-0308
| |
Collapse
|
15
|
Pandey SK, Mohanta GC, Kumar V, Gupta K. Diagnostic Tools for Rapid Screening and Detection of SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1200. [PMID: 36016088 PMCID: PMC9414050 DOI: 10.3390/vaccines10081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has severely impacted human health and the health management system globally. The ongoing pandemic has required the development of more effective diagnostic strategies for restricting deadly disease. For appropriate disease management, accurate and rapid screening and isolation of the affected population is an efficient means of containment and the decimation of the disease. Therefore, considerable efforts are being directed toward the development of rapid and robust diagnostic techniques for respiratory infections, including SARS-CoV-2. In this article, we have summarized the origin, transmission, and various diagnostic techniques utilized for the detection of the SARS-CoV-2 virus. These higher-end techniques can also detect the virus copy number in asymptomatic samples. Furthermore, emerging rapid, cost-effective, and point-of-care diagnostic devices capable of large-scale population screening for COVID-19 are discussed. Finally, some breakthrough developments based on spectroscopic diagnosis that could revolutionize the field of rapid diagnosis are discussed.
Collapse
Affiliation(s)
- Satish Kumar Pandey
- Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl 796004, India
| | - Girish C. Mohanta
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India;
| | - Vinod Kumar
- Department of Dermatology, Venerology and Leprology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India;
| | - Kuldeep Gupta
- Russel H. Morgan, Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|