1
|
Zhang W, Khan A, Ezati P, Priyadarshi R, Sani MA, Rathod NB, Goksen G, Rhim JW. Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films. Food Chem 2024; 443:138506. [PMID: 38306905 DOI: 10.1016/j.foodchem.2024.138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Researchers are addressing environmental concerns related to petroleum-based plastic packaging by exploring biopolymers from natural sources, chemical synthesis, and microbial fermentation. Despite the potential of individual biopolymers, they often exhibit limitations like low water resistance and poor mechanical properties. Blending polymers emerges as a promising strategy to overcome these challenges, creating films with enhanced performance. This review focuses on recent advancements in chitosan/polyvinyl alcohol (PVA) blend food packaging films. It covers molecular structure, properties, strategies for performance improvement, and applications in food preservation. The blend's excellent compatibility and intermolecular interactions make it a promising candidate for biodegradable films. Future research should explore large-scale thermoplastic technologies and investigate the incorporation of additives like natural extracts and nanoparticles to enhance film properties. Chitosan/PVA blend films offer a sustainable alternative to petroleum-based plastic packaging, with potential applications in practical food preservation.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra State 402 116, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jong-Whan Rhim
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Karabagias VK, Giannakas AE, Andritsos ND, Moschovas D, Karydis-Messinis A, Leontiou A, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Salmas CE. Νovel Polylactic Acid/Tetraethyl Citrate Self-Healable Active Packaging Films Applied to Pork Fillets' Shelf-Life Extension. Polymers (Basel) 2024; 16:1130. [PMID: 38675048 PMCID: PMC11054538 DOI: 10.3390/polym16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, increased food safety and decreased food waste are two of the major global interests. Self-healable active packaging materials are an attractive option to achieve such targets. This property is critical for the hygiene and the consumption appropriateness of the food. Polylactic acid is a very promising polymeric matrix that potentially could replace the widely used low-density polyethylene due to its biobased origin and its easy biodegradable nature. The main drawback of this polymeric matrix is its brittle, fragile nature. On the other hand, tetraethyl citrate is a biobased approved food additive which became an attractive option as a plasticizer for industries seeking alternative materials to replace the traditional petrochemically derived compounds. A novel biobased film exhibiting self-healing behavior suitable for food-active packaging was developed during this study. Polylactic acid's brittleness was reduced drastically by incorporating tetraethyl citrate, and a random cut on the original self-repairing film was fully healed after 120 s. The optimum concentration of tetraethyl citrate in the polylactic acid was around 15% v/w with a water/oxygen barrier close to the relevant of polylactic acid and low migration. According to the EC50 parameter, the antioxidant activity was 300% higher than the relevant of pure polylactic acid, while according to the thiobarbituric acid and heme iron parameters, the film resisted lipid oxidation and deterioration. Finally, the total viable count parameter indicates the strong antimicrobial activity of this sample.
Collapse
Affiliation(s)
- Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.L.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.L.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.L.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece;
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| |
Collapse
|
3
|
Giannakas AE, Baikousi M, Karabagias VK, Karageorgou I, Iordanidis G, Emmanouil-Konstantinos C, Leontiou A, Karydis-Messinis A, Zafeiropoulos NE, Kehayias G, Proestos C, Salmas CE. Low-Density Polyethylene-Based Novel Active Packaging Film for Food Shelf-Life Extension via Thyme-Oil Control Release from SBA-15 Nanocarrier. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:423. [PMID: 38470754 DOI: 10.3390/nano14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques. This TEO@SBA-15 nanohybrid, along with the pure SBA-15, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. Results indicated that TEO loading was higher than other porous materials reported recently, and the addition of both pure SBA-15 and TEO@SBA-15 to the LDPE increased the water/oxygen barrier. The film with the higher thyme-oil@SBA-15 nanohybrid content exhibited a slower release kinetic. The antioxidant activity of the final films ignited after 48 h, was in the range of 60-70%, and was almost constant for 7 days. Finally, all tests indicated a sufficient improvement by the addition of thyme-oil@SBA-15 nanohybrids in the pure LDPE matrix and the concentration of wt. 10% of such nanocarriers provided the optimum final LDPE/10TEO@SBE-15 active packaging film. This material could be a potential future product for active packaging applications.
Collapse
Affiliation(s)
- Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Maria Baikousi
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioanna Karageorgou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - George Iordanidis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | | | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece
| | - Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Elmahdy MM, Yassin MA. Linear and nonlinear optical parameters of biodegradable chitosan/polyvinyl alcohol/sodium montmorillonite nanocomposite films for potential optoelectronic applications. Int J Biol Macromol 2024; 258:128914. [PMID: 38143059 DOI: 10.1016/j.ijbiomac.2023.128914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Innovations in sophisticated optoelectronic devices have increased interest in high-refractive index polymers. Herein, we report innovative nanocomposite films with high linear and nonlinear refractive indices prepared by casting chitosan (Cs) with polyvinyl alcohol (PVA) (50:50 wt%) along with different concentrations (10-50 wt%) of sodium montmorillonite (NaMMT) nanoclay. The refractive indices in addition to other optical parameters of homopolymers and hybrid materials were investigated by UV-Vis. spectroscopy and optical modeling to assess their potential applications in optics. Besides, the structure, morphology, and thermal stability of the prepared films were investigated by a multitude of experimental techniques including X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA/DTG). The ATR-FTIR, XRD, SEM, and AFM measurements confirmed the complete exfoliation of NaMMT nanolayers in the Cs/PVA matrix. The TGA/DTG revealed an increase in the thermal stability of Cs/PVA film with increasing clay content. The UV-Vis. measurements revealed a decrease in the optical energy gap (Eg) and a substantial increase in the linear (nD) and nonlinear (n2) refractive indices as clay content increased. Additionally, the nanohybrids displayed low UV transmission and reflected about 80 % of UV rays, making them excellent candidates for UV protection. For the first time, the dissipation factor (tanδ) in the UV/Vis. region has been calculated and fitted with the Drude-Lorentz model to predict the plasma frequency (ωp), resonance frequency (ω0), and electron lifetime (τ) of pristine polymers and nanocomposites.
Collapse
Affiliation(s)
- Mahdy M Elmahdy
- Department of Physics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia; Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Mohamed A Yassin
- Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre, Cairo 12622, Egypt; Packaging Materials Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
5
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
7
|
Salmas CE, Kollia E, Avdylaj L, Kopsacheili A, Zaharioudakis K, Georgopoulos S, Leontiou A, Katerinopoulou K, Kehayias G, Karakassides A, Proestos C, Giannakas AE. Thymol@Natural Zeolite Nanohybrids for Chitosan/Polyvinyl-Alcohol-Based Hydrogels Applied as Active Pads. Gels 2023; 9:570. [PMID: 37504449 PMCID: PMC10379368 DOI: 10.3390/gels9070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Currently, food saving, a circular economy, and zero environmental fingerprints are of major interest. Scientific efforts for enhanced food preservation using "green" methods have been intensified. Even though chemicals could achieve such targets effectively, the global trend against the "greenhouse effect" suggests the use of environmentally friendly biobased materials for this purpose. In this study, the promising biopolymer chitosan is incorporated with the promising biodegradable polymer polyvinyl alcohol to produce an improved biopolymeric matrix. This biodegradable biopolymer was further mixed homogeneously with 15% thymol/nano-zeolite nanohybrid material. The properties of the final developed film were improved compared to the relevant values of chitosan/polyvinyl alcohol film. The mechanical properties were enhanced significantly, i.e., there was a 34% increase in Young's modulus and a 4.5% increase in the ultimate tensile strength, while the antioxidant activity increased by 53.4%. The antibacterial activity increased by 134% for Escherichia coli, 87.5% for Staphylococcus aureus, 32% for Listeria monocytogenes, and 9% for Salmonella enterica. The water vapor diffusion coefficient and the oxygen permeability coefficient decreased to -51% and -74%, respectively, and thus, the water vapor and oxygen barrier increased significantly. The active pads were used in strawberries, and the antimicrobial activity evaluation against the mold of fungi was carried out. The visual evaluation shows that the active pads could extend the shelf life duration of strawberries.
Collapse
Affiliation(s)
- Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | | | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Anastasios Karakassides
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
8
|
Giannakas AE, Karabagias VK, Moschovas D, Leontiou A, Karabagias IK, Georgopoulos S, Karydis-Messinis A, Zaharioudakis K, Andritsos N, Kehayias G, Avgeropoulos A, Proestos C, Salmas CE. Thymol@activated Carbon Nanohybrid for Low-Density Polyethylene-Based Active Packaging Films for Pork Fillets' Shelf-Life Extension. Foods 2023; 12:2590. [PMID: 37444330 DOI: 10.3390/foods12132590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Τhe replacement of food packaging additives and preservatives with bio-based antioxidant/antibacterial compounds has been a common practice in recent years following the trend of bioeconomy and nanotechnology. Such bio-additives are often enclosed in nanocarriers for a controlled release process. Following this trend in this work, a thymol (TO)-rich activated carbon (AC) nanohybrid was prepared and characterized physicochemically with various techniques. This TO@AC nanohybrid, along with the pure activated carbon, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. The codenames used in this paper were LDPE/xTO@AC and LDPE/xAC for the nanohybrid and the pure activated carbon, respectively. X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy measurements showed high dispersity of both the TO@AC nanohybrid and the pure AC in the LDPE matrix, resulting in enhanced mechanical properties. The active film with 15 wt.% of the TO@AC nanohybrid (LDPE/15TO@AC) exhibited a 230% higher water/vapor barrier and 1928% lower oxygen permeability than the pure LDPE film. For this active film, the highest antioxidant activity referred to the DPPH assay (44.4%), the lowest thymol release rate (k2 ≈ 1.5 s-1), and the highest antibacterial activity were recorded, resulting in a 2-day extension of fresh pork fillets' shelf-life.
Collapse
Affiliation(s)
- Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Ioannis K Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | | | - Nikolaos Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece
| | - Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Kumar L, Deshmukh RK, Hakim L, Gaikwad KK. Halloysite Nanotube as a Functional Material for Active Food Packaging Application: A Review. FOOD BIOPROCESS TECH 2023:1-14. [PMID: 37363381 PMCID: PMC10151217 DOI: 10.1007/s11947-023-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Halloysite nanotubes (HNTs) are naturally occurring nanomaterials with a tubular shape and high aspect ratio, a promising functional additive for active food packaging applications. HNTs have been shown to possess unique properties such as high surface area, thermal stability, and biocompatibility, making them attractive for active food packaging materials. This review summarizes recent research on the use of HNTs as functional additives in active food packaging applications, including antimicrobial packaging, ethylene scavenging packaging, moisture, and gas barrier packaging. The potential benefits and challenges associated with the incorporation of HNTs into food packaging materials are discussed. The various modification methods, such as the physical, chemical, biological, and electrostatic methods, along with their impact on the properties of HNTs, are discussed. The advantages and challenges associated with each modification approach are also evaluated. Overall, the modification of HNTs has opened new possibilities for the development of advanced packaging materials with improved performance for various functional food packaging materials with enhanced properties and extended shelf life.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Lokman Hakim
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| |
Collapse
|
10
|
Hossain SI, Kukushkina EA, Izzi M, Sportelli MC, Picca RA, Ditaranto N, Cioffi N. A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:848. [PMID: 36903726 PMCID: PMC10005688 DOI: 10.3390/nano13050848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/10/2023]
Abstract
One of the crucial challenges of our time is to effectively use metal and metal oxide nanoparticles (NPs) as an alternative way to combat drug-resistant infections. Metal and metal oxide NPs such as Ag, Ag2O, Cu, Cu2O, CuO, and ZnO have found their way against antimicrobial resistance. However, they also suffer from several limitations ranging from toxicity issues to resistance mechanisms by complex structures of bacterial communities, so-called biofilms. In this regard, scientists are urgently looking for convenient approaches to develop heterostructure synergistic nanocomposites which could overcome toxicity issues, enhance antimicrobial activity, improve thermal and mechanical stability, and increase shelf life. These nanocomposites provide a controlled release of bioactive substances into the surrounding medium, are cost effective, reproducible, and scalable for real life applications such as food additives, nanoantimicrobial coating in food technology, food preservation, optical limiters, the bio medical field, and wastewater treatment application. Naturally abundant and non-toxic Montmorillonite (MMT) is a novel support to accommodate NPs, due to its negative surface charge and control release of NPs and ions. At the time of this review, around 250 articles have been published focusing on the incorporation of Ag-, Cu-, and ZnO-based NPs into MMT support and thus furthering their introduction into polymer matrix composites dominantly used for antimicrobial application. Therefore, it is highly relevant to report a comprehensive review of Ag-, Cu-, and ZnO-modified MMT. This review provides a comprehensive overview of MMT-based nanoantimicrobials, particularly dealing with preparation methods, materials characterization, and mechanisms of action, antimicrobial activity on different bacterial strains, real life applications, and environmental and toxicity issues.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | | | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
11
|
Morariu S, Brunchi CE, Honciuc M, Iftime MM. Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite ® RD: Effect of Clay Concentration. Polymers (Basel) 2023; 15:polym15040841. [PMID: 36850125 PMCID: PMC9959284 DOI: 10.3390/polym15040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
In the context of increasing interest in biomaterials with applicability in cosmetics and medicine, this research aims to obtain and characterize some hybrid materials based on chitosan (CS) (antibacterial, biocompatible, and biodegradable), poly(ethylene glycol) (PEG) (non-toxic and prevents the adsorption of protein and cell) and Laponite® RD (Lap) (bioactive). The rheological properties of the starting dispersions were investigated and discussed related to the interactions developed between components. All samples exhibited gel-like properties, and the storage modulus of CS/PEG dispersion increased from 6.6 Pa to 657.7 Pa by adding 2.5% Lap. Structural and morphological characterization of the films, prepared by solution casting method, was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and polarized light microscopy (POM). These analyses proved the incorporation of Lap into CS/PEG films and revealed the morphological changes of the films by the addition of clay. Thereby, at the highest Lap concentration (43.8%), the "house of cards" structure formed by Lap platelets, which incorporate chitosan chains, as evidenced by SEM and POM. Two stages of degradation between 200 °C and 410 °C were evidenced for the films with Lap concentration higher than 38.5%, explained by the existence of a clay-rich phase (given by the clay network) and chitosan-rich one (due to the intercalation of chitosan in the clay network). CS/PEG film with 43.8% Lap showed the highest swelling degree of 240.7%. The analysis of the obtained results led to the conclusion that the addition of clay to the CS/PEG films increases their stability in water and gives them greater thermal stability.
Collapse
|
12
|
Salmas CE, Giannakas AE, Moschovas D, Kollia E, Georgopoulos S, Gioti C, Leontiou A, Avgeropoulos A, Kopsacheili A, Avdylaj L, Proestos C. Kiwi Fruits Preservation Using Novel Edible Active Coatings Based on Rich Thymol Halloysite Nanostructures and Chitosan/Polyvinyl Alcohol Gels. Gels 2022; 8:gels8120823. [PMID: 36547348 PMCID: PMC9777596 DOI: 10.3390/gels8120823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The concept of this study is the replacement of previous fossil-based techniques for food packaging and food shelf-life extension, with novel more green processes and materials following the spirit of circular economy and the global trend for environmentally positive fingerprints. A novel adsorption process to produce thymol-halloysite nanohybrids is presented in this work. The high dispersion of this thymol-halloysite nanostructure in chitosan biopolymer is one of the goals of this study. The incorporation of this biodegradable matrix with poly-vinyl-alcohol produced a very promising food-packaging film. Mechanical, water-oxygen barrier, antimicrobial, and antioxidant properties were measured. Transparency levels were also tested using a UV-vis instrument. Moreover, the developed films were tested in-vivo for the preservation and the extension of the shelf-life of kiwi fruits. In all cases, results indicated that the increased fraction of thymol from thyme oil significantly enhances the antimicrobial and antioxidant activity of the prepared chitosan-poly-vinyl- alcohol gel. The use of the halloysite increases the mechanical and water-oxygen barrier properties and leads to a control release process of thymol which extends the preservation and the shelf-life of kiwi fruits. Finally, the results indicated that the halloysite improves the properties of the chitosan/poly-vinyl-alcohol films, and the thymol makes them further advantageous.
Collapse
Affiliation(s)
- Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (C.E.S.); (A.E.G.); (C.P.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
- Correspondence: (C.E.S.); (A.E.G.); (C.P.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Christina Gioti
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
- Correspondence: (C.E.S.); (A.E.G.); (C.P.)
| |
Collapse
|
13
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|