1
|
Xu X, Qu H, Wang Y, Wang C, Wu S, Wang C. Serial Nitrogen-Doped Metal/Carbon Composites Derived from Organic Salts for Superior Electromagnetic Wave Absorption and Supercapacitor Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405371. [PMID: 39077942 DOI: 10.1002/smll.202405371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 07/31/2024]
Abstract
The present study provides a facile one-pot pyrolysis strategy to prepare serial nitrogen-doped (N-doped) metal/carbon composites derived from six types of metal ethylenediaminetetraacetic acid (EDTA-M, M = Co, Cu, Mn, Fe, Mg, and Ca). N-doped Co/C composite integrated carbonaceous with magnetic components to attain dielectric-magnetic double loss mechanisms. The minimum reflection loss and effective absorption bandwidth reached -57.6 dB at 1.75 mm and 4.64 GHz at 1.52 mm, respectively. The electromagnetic simulation further confirms that the dissipation ability increases with the improvement of carbonization temperature. Results show that altering the metal species of precursors can significantly improve the electrochemical performance of the composites using the identical strategy. N-doped Cu/C composite performed a maximum specific capacitance of 2383.3 F g-1 at 0.5 A g-1 -1, and maintained 86.3% cycling stability at 20 A g-1 after 5000 cycles. The energy density of a symmetrical two-electrode configuration achieved 350.13 Wh kg-1 at a power density of 4000.04 W kg-1. Density functional theory calculations indicate that nitrogen dopants cause faster ion transport and stronger adsorption capacity. Moreover, the bifunctionality of other composites types are also systematically characterized.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250061, China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Henghui Qu
- Shandong Hi-speed Materials Technology Development Co., Ltd, Jinan, 250014, China
| | - Yanxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250061, China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Chengjuan Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250061, China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Simeng Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250061, China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Chengguo Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250061, China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
2
|
Zhang B, Feng X, Ma R, Sheng R, Wang D, Chen F, Wang Y, Xu M, Ai L, Guo N, Wang L. Constructing the Interconnected and Hierarchical Nanoarchitectonics in Coal-Derived Carbon for High-Performance Supercapacitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13467-13475. [PMID: 38889438 DOI: 10.1021/acs.langmuir.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Because of the deep and zigzag microporous structure, porous carbon materials exhibit inferior capacitive performance and sluggish electrochemical kinetics for supercapacitor electrode materials. Herein, a single-step carbonation and activation approach was utilized to synthesize coal-based porous carbon with an adjustable pore structure, using CaO as a hard template, KOH as an activator, and oxidized coal as precursors to carbon. The obtained sample possesses an interconnected and hierarchical porous structure, higher SSA (1060 m2 g-1), suitable mesopore volume (0.25 cm3 g-1), and abundant surface heteroatomic functional groups. Consequently, the synthesized carbon exhibits an exceptionally high specific capacitance of 323 F g-1 at 1 A g-1, along with 80.3% capacitance retention at 50 A g-1. The assembled two-electrode configuration demonstrates a remarkable capacitance retention of up to 95% and achieves Coulombic efficiency of nearly 100% with 10,000 cycles in a 6 M KOH electrolyte. Furthermore, the Zn-ion hybrid capacitor also exhibits a specific capacity of up to 139.1 mA h g-1 under conditions of 0.2 A g-1. This work offers a simple method in preparation of coal-based porous carbon with controllable pore structure.
Collapse
Affiliation(s)
- Binyuan Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Xia Feng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Danting Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Feifei Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Yuanyuan Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Mengjiao Xu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Lili Ai
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
3
|
Zhai Z, Wang S, Xu Y, Zhang L, Wang X, Yu H, Ren B. Starch-based carbon aerogels prepared by an innovative KOH activation method for supercapacitors. Int J Biol Macromol 2024; 257:128587. [PMID: 38065463 DOI: 10.1016/j.ijbiomac.2023.128587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Biomass-based carbon aerogels hold promising application prospect in the field of supercapacitors. In this research, starch was selected as a raw material for preparing carbon aerogels. The preparation process of starch hydrogels was simplified by using KOH, which can change starch suspension into hydrogels at room temperature. Moreover, the molecular mixing of KOH and starch was realized, so that KOH can be fully utilized in the activation process. The specific surface area of the starch-based carbon aerogels prepared by this method was 1349 m2/g, and the proportion of micropores was 43.7 %. Remarkably, as electrode materials for supercapacitors, the starch-based carbon aerogels exhibited outstanding electrochemical performance. In a three-electrode system, the carbon aerogels exhibited specific capacitance of 211.5 F/g at 0.5 A/g and 138.5 F/g at 10 A/g, suggesting their suitability for high-current applications. In a symmetrical supercapacitor configuration, the materials exhibited an energy density of 11.3 Wh/kg at a power density of 0.5 kW/kg and the specific capacitance can maintain 98.91 % after 10,000 cycles. Overall, this work provides a new method for mixing activators, which will foster potential advances in starch based carbon aerogels.
Collapse
Affiliation(s)
- Zuozhao Zhai
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei 050081, China; Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang, Hebei 050081, China
| | - Shasha Wang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei 050081, China; Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang, Hebei 050081, China
| | - Yuelong Xu
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei 050081, China; Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang, Hebei 050081, China
| | - Lihui Zhang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei 050081, China; Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang, Hebei 050081, China
| | - Xiaolei Wang
- Hebei Yuehai Water Co., Ltd., Shijiazhuang, Hebei 050081, China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Bin Ren
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei 050081, China; Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang, Hebei 050081, China
| |
Collapse
|
4
|
Li P, Yang C, Yi D, Li S, Wang M, Wang H, Jin Y, Wu W. Preparation of spherical porous carbon from lignin-derived phenolic resin and its application in supercapacitor electrodes. Int J Biol Macromol 2023; 252:126271. [PMID: 37572820 DOI: 10.1016/j.ijbiomac.2023.126271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Lignin is the most abundant aromatic biomass resource in nature and is the main by-product of paper industry and biorefinery industry, which has the characteristics of abundant source, renewable and low cost. Deep eutectic solvents (DES) are a nascent environmentally friendly solvent option that is gaining traction. DES composed of p-toluenesulfonic acid and choline chloride is used for batch treatment of alkaline lignin, and the bio-oil obtained is ternary polymerized with formaldehyde and phenol to obtain lignin phenolic resin. The porous carbon material is produced through a two-step carbonization process, utilizing phenolic resin derived from lignin as the primary source of carbon. The morphology and composition of the carbon were analyzed by SEM, TEM, XRD, TGA, XPS and Raman spectroscopy, the specific surface area and pore size distribution were analyzed by BET. The results showed that the specific surface area of the lignin-based phenolic resin was significantly higher than that of the pure phenolic resin carbon, and the porous carbon material that was acquired demonstrated a specific surface area of as much as 1026 m2/g. In the three-electrode system, the specific capacitance of DLPFC can reach 245.8 F/g (0.25 A/g), with a very small decrease in the value of specific capacitance at 10,000 cycles, with a retention of 97.62% (10 A/g). The porous carbon demonstrated a specific capacitance of 112.4 F/g at a current density of 0.5 A/g, and the capacitance retention rate could still reach 98.8% after 5000 charge/discharge cycles, with high cycling stability (in the two-electrode system). The prepared symmetrical supercapacitors exhibited high energy density and power density of 3.9 Wh/kg and 125.0 W/kg. The results suggest a new idea of high value-added application of lignin phenolic resin for high-performance supercapacitor electrodes.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dairenjie Yi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sixian Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingkang Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Wu W, Li P, Su W, Yan Z, Wang X, Xu S, Wei Y, Wu C. Polyaniline as a Nitrogen Source and Lignosulfonate as a Sulphur Source for the Preparation of the Porous Carbon Adsorption of Dyes and Heavy Metal Ions. Polymers (Basel) 2023; 15:4515. [PMID: 38231908 PMCID: PMC10708433 DOI: 10.3390/polym15234515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Using agricultural and forestry wastes as raw materials, adsorbent materials were prepared for dye adsorption in wastewater, which can minimize the environmental load and fully realize sustainability by treating waste with waste. Taking lignosulfonate as a raw material, due to its molecular structure having more reactive groups, it is easy to form composite materials via a chemical oxidation reaction with an aniline monomer. After that, using a sodium lignosulfonate/polyaniline composite as the precursor, the activated high-temperature pyrolysis process is used to prepare porous carbon materials with controllable morphology, structure, oxygen, sulfur, and nitrogen content, which opens up a new way for the preparation of functional carbon materials. When the prepared O-N-S co-doped activated carbon materials (SNC) were used as adsorbents, the adsorption study of cationic dye methylene blue was carried out, and the removal rate of SNC could reach up to 99.53% in a methylene blue solution with an initial concentration of 100 mg/L, which was much higher than that of undoped lignocellulosic carbon materials, and the kinetic model conformed to the pseudo-second-order kinetic model. The adsorption equilibrium amount of NC (lignosulfonate-free) and SNC reached 478.30 mg/g and 509.00 mg/g, respectively, at an initial concentration of 500 mg/L, which was consistent with the Langmuir adsorption isothermal model, and the adsorption of methylene blue on the surface of the carbon material was a monomolecular layer. The adsorption of methylene blue dye on the carbon-based adsorbent was confirmed to be a spontaneous and feasible adsorption process by thermodynamic parameters. Finally, the adsorption of SNC on methylene blue, rhodamine B, Congo red, and methyl orange dyes were compared, and it was found that the material adsorbed cationic dyes better. Furthermore, we also studied the adsorption of SNC on different kinds of heavy metal ions and found that its adsorption selectivity is better for Cr3+ and Pb2+ ions.
Collapse
Affiliation(s)
- Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Zifei Yan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Xinyan Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Siyu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| |
Collapse
|
6
|
Ahmed F, Kumar S, Shaalan NM, Arshi N, Dalela S, Chae KH. Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe 2O 4 Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1870. [PMID: 37368299 DOI: 10.3390/nano13121870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
To meet the growing demand for efficient and sustainable power sources, it is crucial to develop high-performance energy storage systems. Additionally, they should be cost-effective and able to operate without any detrimental environmental side effects. In this study, rice husk-activated carbon (RHAC), which is known for its abundance, low cost, and excellent electrochemical performance, was combined with MnFe2O4 nanostructures to improve the overall capacitance of asymmetric supercapacitors (ASCs) and their energy density. A series of activation and carbonization steps are involved in the fabrication process for RHAC from rice husk. Furthermore, the BET surface area for RHAC was determined to be 980 m2 g-1 and superior porosities (average pore diameter of 7.2 nm) provide abundant active sites for charge storage. Additionally, MnFe2O4 nanostructures were effective pseudocapacitive electrode materials due to their combined Faradic and non-Faradic capacitances. In order to assess the electrochemical performance of ASCs extensively, several characterization techniques were employed, including galvanostatic charge -discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Comparatively, the ASC demonstrated a maximum specific capacitance of ~420 F/g at a current density of 0.5 A/g. The as-fabricated ASC possesses remarkable electrochemical characteristics, including high specific capacitance, superior rate capability, and long-term cycle stability. The developed asymmetric configuration retained 98% of its capacitance even after 12,000 cycles performed at a current density of 6A/g, demonstrating its stability and reliability for supercapacitors. The present study demonstrates the potential of synergistic combinations of RHAC and MnFe2O4 nanostructures in improving supercapacitor performance, as well as providing a sustainable method of using agricultural waste for energy storage.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nagih M Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Saurabh Dalela
- Department of Pure & Applied Physics, University of Kota, Kota 324005, India
| | - Keun Hwa Chae
- Advanced Analysis & Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Pan Z, Yu S, Wang L, Li C, Meng F, Wang N, Zhou S, Xiong Y, Wang Z, Wu Y, Liu X, Fang B, Zhang Y. Recent Advances in Porous Carbon Materials as Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111744. [PMID: 37299646 DOI: 10.3390/nano13111744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Porous carbon materials have demonstrated exceptional performance in various energy and environment-related applications. Recently, research on supercapacitors has been steadily increasing, and porous carbon materials have emerged as the most significant electrode material for supercapacitors. Nonetheless, the high cost and potential for environmental pollution associated with the preparation process of porous carbon materials remain significant issues. This paper presents an overview of common methods for preparing porous carbon materials, including the carbon-activation method, hard-templating method, soft-templating method, sacrificial-templating method, and self-templating method. Additionally, we also review several emerging methods for the preparation of porous carbon materials, such as copolymer pyrolysis, carbohydrate self-activation, and laser scribing. We then categorise porous carbons based on their pore sizes and the presence or absence of heteroatom doping. Finally, we provide an overview of recent applications of porous carbon materials as electrodes for supercapacitors.
Collapse
Affiliation(s)
- Zhengdao Pan
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, Washington, DC 99164, USA
| | - Linfang Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Li
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Meng
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Nan Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shouxin Zhou
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ye Xiong
- Kucap Smart Technology (Nanjing) Co., Ltd., Nanjing 211106, China
| | - Zhoulu Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yutong Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Baizeng Fang
- Department of Energy Storage Science and Technology, University of Science and Technology Beijing, 30 College Road, Beijing 100083, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Li P, Yu J, Wang M, Su W, Yang C, Jiang B, Wu W. Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity. Int J Mol Sci 2023; 24:ijms24108661. [PMID: 37240006 DOI: 10.3390/ijms24108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
As a natural polymer, lignin is only less abundant in nature than cellulose. It has the form of an aromatic macromolecule, with benzene propane monomers connected by molecular bonds such as C-C and C-O-C. One method to accomplish high-value lignin conversion is degradation. The use of deep eutectic solvents (DESs) to degrade lignin is a simple, efficient and environmentally friendly degradation method. After degradation, the lignin is broken due to β-O-4 to produce phenolic aromatic monomers. In this work, lignin degradation products were evaluated as additives for the preparation of polyaniline conductive polymers, which not only avoids solvent waste but also achieves a high-value use of lignin. The morphological and structural characteristics of the LDP/PANI composites were investigated using 1H NMR, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and elemental analysis. The LDP/PANI nanocomposite provides a specific capacitance of 416.6 F/g at 1 A/g and can be used as a lignin-based supercapacitor with good conductivity. Assembled as a symmetrical supercapacitor device, it provides an energy density of 57.86 Wh/kg, an excellent power density of 952.43 W/kg and, better still, a sustained cycling stability. Thus, the combination of polyaniline and lignin degradate, which is environmentally friendly, amplifies the capacitive function on the basis of polyaniline.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingkang Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Feng X, Xu M, Guo N, Ma R, Yan L, Cai L, Jia D, Ai L, Wang L. Dual-Salt-Induced Hierarchical Porous Structure in a Carbon Sheet for High Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6865-6873. [PMID: 37133428 DOI: 10.1021/acs.langmuir.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Porous carbon, one of the characteristic materials for electrochemical energy storage devices, has been paid wide-ranging attention. However, balancing the reconcilable mesopore volume with a large specific surface area (SSA) was still a challenge. Herein, a dual-salt-induced activation strategy was developed to obtain a porous carbon sheet with ultrahigh SSA (3082 m2 g-1), desirable mesopore volume (0.66 cm3 g-1), nanosheet morphology, and high surface O (7.87%) and S (4.0%) content. Hence, as a supercapacitor electrode, the optimal sample possessed a high specific capacitance (351 F g-1 at 1 A g-1) and excellent rate performance (holding capacitance up to 72.2% at 50 A g-1). Furthermore, the assembled zinc-ion hybrid supercapacitor also exhibited superior reversible capacity (142.7 mAh g-1 at 0.2 A g-1) and highly stable cycling (71.2 mAh g-1 at 5 A g-1 after 10,000 cycles with retention of 98.9%). This work was delivered a new possibility for the development of coal resources for the preparation of high performance porous carbon materials.
Collapse
Affiliation(s)
- Xia Feng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Mengjiao Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Lihua Yan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Leiming Cai
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Lili Ai
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| |
Collapse
|