1
|
Orzari LO, Kalinke C, Silva-Neto HA, Rocha DS, Camargo J, Coltro WK, Janegitz BC. Screen-Printing vs Additive Manufacturing Approaches: Recent Aspects and Trends Involving the Fabrication of Electrochemical Sensors. Anal Chem 2025; 97:1482-1494. [PMID: 39817415 PMCID: PMC11780578 DOI: 10.1021/acs.analchem.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring. Modern designs have given rise to innovative manufacturing protocols, including screen and additive printing methods, for creating sophisticated 2D and 3D electrochemical devices. This perspective provides a comprehensive overview of the screen-printing and additive-printing protocols for constructing electrochemical devices. It is also informed that screen-printed sensors offer cost-effectiveness and ease of fabrication, although they may pose challenges due to the use of toxic volatile inks and limited design flexibility. On the other hand, additive manufacturing, especially the fused filament fabrication (or fused deposition modeling) strategies, allows for intricate three-dimensional sensor designs and rapid prototyping of customized equipment. However, the post-treatment processes and material selection can affect production costs. Despite their unique advantages and limitations, both printing techniques show promise for various applications, driving innovation in the field toward more advanced sensor designs. Finally, these advancements pave the way for improved sensor performance and expand possibilities for academic, environmental, and industrial applications. The future is full of exciting opportunities for state-of-the-art sensor technologies that will further improve our ability to detect and determine various substances in a wide range of environments as researchers continue to explore the many possibilities of electrochemical devices.
Collapse
Affiliation(s)
- Luiz O. Orzari
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Cristiane Kalinke
- Institute
of Chemistry, University of Campinas, 13083-859 Campinas, São Paulo, Brazil
- Department
of Chemistry, Federal University of Parana, 81531-980 Curitiba, Paraná, Brazil
| | - Habdias A. Silva-Neto
- Department
of Chemistry, Federal University of Santa
Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Danielly S. Rocha
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Jéssica
R. Camargo
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Wendell K.T. Coltro
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
- National
Institute of Bioanalytical Science and Technology, 13084-971 Campinas, São Paulo, Brazil
| | - Bruno C. Janegitz
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
| |
Collapse
|
2
|
Shao Y, Du S, Huang D. Advancements in Applications of Manufacturing and Measurement Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:454. [PMID: 39860824 PMCID: PMC11769364 DOI: 10.3390/s25020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Manufacturing and measurement sensors are an integral part of advanced manufacturing technology, which requires sensors that can precisely capture and analyze various physical parameters during the manufacturing process [...].
Collapse
Affiliation(s)
- Yiping Shao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
- Ningbo Yongxin Optics Co., Ltd., Ningbo 315040, China
| | - Shichang Du
- School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Delin Huang
- School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China;
| |
Collapse
|
3
|
Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. RETRACTED: Bas et al. Embedded Sensors with 3D Printing Technology: Review. Sensors 2024, 24, 1955. SENSORS (BASEL, SWITZERLAND) 2024; 24:7957. [PMID: 39676604 DOI: 10.3390/s24247957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
The Sensors Editorial Office retracts the article, "Embedded Sensors with 3D Printing Technology: Review" [...].
Collapse
Affiliation(s)
- Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, India
| | - Ignacio Llamas Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland
| | - Satyendra K Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain
| |
Collapse
|
4
|
Humbert C, Barriol M, Varsavas SD, Nicolay P, Brandstötter M. A Simple Method to Manufacture a Force Sensor Array Based on a Single-Material 3D-Printed Piezoresistive Foam and Metal Coating. SENSORS (BASEL, SWITZERLAND) 2024; 24:3854. [PMID: 38931638 PMCID: PMC11207248 DOI: 10.3390/s24123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Nowadays, 3D printing is becoming an increasingly common option for the manufacturing of sensors, primarily due to its capacity to produce intricate geometric shapes. However, a significant challenge persists in integrating multiple materials during printing, for various reasons. In this study, we propose a straightforward approach that combines 3D printing with metal coating to create an array of resistive force sensors from a single material. The core concept involves printing a sensing element using a conductive material and subsequently separating it into distinct parts using metal-coated lines connected to the electrical ground. This post-printing separation process involves manual intervention utilizing a stencil and metallic spray. The primary obstacle lies in establishing a sufficient contact surface between the sprayed metal and the structure, to ensure effective isolation among different zones. To address this challenge, we suggest employing a lattice structure to augment the contact surface area. Through experimental validation, we demonstrate the feasibility of fabricating two sensing elements from a single-material 3D-printed structure, with a maximum electrical isolation ratio between the sensors of above 30. These findings hold promise for the development of a new generation of low-tech 3D-printed force/displacement sensor arrays.
Collapse
Affiliation(s)
- Claude Humbert
- CiSMAT—Carinthia Institute for Smart Materials, Carinthia University of Applied Sciences, 9524 Villach, Austria
| | - Mathis Barriol
- CiSMAT—Carinthia Institute for Smart Materials, Carinthia University of Applied Sciences, 9524 Villach, Austria
| | - Sakine Deniz Varsavas
- ADMiRE—Additive Manufacturing, Intelligent Robotics and Engineering, Carinthia University of Applied Sciences, 9524 Villach, Austria
| | - Pascal Nicolay
- CiSMAT—Carinthia Institute for Smart Materials, Carinthia University of Applied Sciences, 9524 Villach, Austria
| | - Mathias Brandstötter
- ADMiRE—Additive Manufacturing, Intelligent Robotics and Engineering, Carinthia University of Applied Sciences, 9524 Villach, Austria
| |
Collapse
|
5
|
Vassiliou L, Nadeem A, Chatzichristodoulou D, Vryonides P, Nikolaou S. Novel Technologies towards the Implementation and Exploitation of "Green" Wireless Agriculture Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3465. [PMID: 38894256 PMCID: PMC11174655 DOI: 10.3390/s24113465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
This manuscript presents the use of three novel technologies for the implementation of wireless green battery-less sensors that can be used in agriculture. The three technologies, namely, additive manufacturing, energy harvesting, and wireless power transfer from airborne transmitters carried from UAVs, are considered for smart agriculture applications, and their combined use is demonstrated in a case study experiment. Additive manufacturing is exploited for the implementation of both RFID-based sensors and passive sensors based on humidity-sensitive materials. A number of energy-harvesting systems at UHF and ISM frequencies are presented, which are in the position to power platforms of wireless sensors, including humidity and temperature IC sensors used as agriculture sensors. Finally, in order to provide wireless energy to the soil-based sensors with energy harvesting features, wireless power transfer (WPT) from UAV carried transmitters is utilized. The use of these technologies can facilitate the extensive use and exploitation of battery-less wireless sensors, which are environmentally friendly and, thus, "green". Additionally, it can potentially drive precision agriculture in the next era through the implementation of a vast network of wireless green sensors which can collect and communicate data to airborne readers so as to support, the Artificial Intelligence and Machine Learning-based decision-making with data.
Collapse
Affiliation(s)
- Loukia Vassiliou
- Electrical Engineering Department, Frederick University, Nicosia 1036, Cyprus; (L.V.); (A.N.); (D.C.); (P.V.)
- Agricultural Research Institute, Aglantzia 1516, Cyprus
| | - Adnan Nadeem
- Electrical Engineering Department, Frederick University, Nicosia 1036, Cyprus; (L.V.); (A.N.); (D.C.); (P.V.)
| | - David Chatzichristodoulou
- Electrical Engineering Department, Frederick University, Nicosia 1036, Cyprus; (L.V.); (A.N.); (D.C.); (P.V.)
- RF and Microwave Solutions Ltd., Dromolaxia 7020, Cyprus
| | - Photos Vryonides
- Electrical Engineering Department, Frederick University, Nicosia 1036, Cyprus; (L.V.); (A.N.); (D.C.); (P.V.)
- Frederick Research Center, Nicosia 1036, Cyprus
| | - Symeon Nikolaou
- Electrical Engineering Department, Frederick University, Nicosia 1036, Cyprus; (L.V.); (A.N.); (D.C.); (P.V.)
- Frederick Research Center, Nicosia 1036, Cyprus
| |
Collapse
|
6
|
Aronne M, Bertana V, Schimmenti F, Roppolo I, Chiappone A, Cocuzza M, Marasso SL, Scaltrito L, Ferrero S. 3D-Printed MEMS in Italy. MICROMACHINES 2024; 15:678. [PMID: 38930648 PMCID: PMC11205654 DOI: 10.3390/mi15060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
MEMS devices are more and more commonly used as sensors, actuators, and microfluidic devices in different fields like electronics, opto-electronics, and biomedical engineering. Traditional fabrication technologies cannot meet the growing demand for device miniaturisation and fabrication time reduction, especially when customised devices are required. That is why additive manufacturing technologies are increasingly applied to MEMS. In this review, attention is focused on the Italian scenario in regard to 3D-printed MEMS, studying the techniques and materials used for their fabrication. To this aim, research has been conducted as follows: first, the commonly applied 3D-printing technologies for MEMS manufacturing have been illustrated, then some examples of 3D-printed MEMS have been reported. After that, the typical materials for these technologies have been presented, and finally, some examples of their application in MEMS fabrication have been described. In conclusion, the application of 3D-printing techniques, instead of traditional processes, is a growing trend in Italy, where some exciting and promising results have already been obtained, due to these new selected technologies and the new materials involved.
Collapse
Affiliation(s)
- Matilde Aronne
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Valentina Bertana
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Francesco Schimmenti
- Department of Applied Science and Technology, Politecnico di Torino (PoliTo), Corso Duca Degli Abruzzi 24, 10129 Turin, Italy;
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino (PoliTo), Corso Duca Degli Abruzzi 24, 10129 Turin, Italy;
| | - Annalisa Chiappone
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria Blocco D, S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy;
| | - Matteo Cocuzza
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Simone Luigi Marasso
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
- CNR-IMEM, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Luciano Scaltrito
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| | - Sergio Ferrero
- ChiLab Laboratory, Politecnico di Torino (PoliTo), Via Lungo Piazza d’Armi 6, 10034 Chivasso, Italy; (M.A.); (M.C.); (S.L.M.); (L.S.); (S.F.)
| |
Collapse
|
7
|
Wong TI, Ng C, Lin S, Chen Z, Zhou X. Adaptive Fabrication of Electrochemical Chips with a Paste-Dispensing 3D Printer. SENSORS (BASEL, SWITZERLAND) 2024; 24:2844. [PMID: 38732950 PMCID: PMC11086071 DOI: 10.3390/s24092844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
Electrochemical (EC) detection is a powerful tool supporting simple, low-cost, and rapid analysis. Although screen printing is commonly used to mass fabricate disposable EC chips, its mask is relatively expensive. In this research, we demonstrated a method for fabricating three-electrode EC chips using 3D printing of relatively high-viscosity paste. The electrodes consisted of two layers, with carbon paste printed over silver/silver chloride paste, and the printed EC chips were baked at 70 °C for 1 h. Engineering challenges such as bulging of the tubing, clogging of the nozzle, dripping, and local accumulation of paste were solved by material selection for the tube and nozzle, and process optimization in 3D printing. The EC chips demonstrated good reversibility in redox reactions through cyclic voltammetry tests, and reliably detected heavy metal ions Pb(II) and Cd(II) in solutions using differential pulse anodic stripping voltammetry measurements. The results indicate that by optimizing the 3D printing of paste, EC chips can be obtained by maskless and flexible 3D printing techniques in lieu of screen printing.
Collapse
Affiliation(s)
- Ten It Wong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore;
| | - Candy Ng
- School of Materials Science & Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798, Singapore; (C.N.); (Z.C.)
| | - Shengxuan Lin
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore;
| | - Zhong Chen
- School of Materials Science & Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798, Singapore; (C.N.); (Z.C.)
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore;
| |
Collapse
|
8
|
Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. RETRACTED: Embedded Sensors with 3D Printing Technology: Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1955. [PMID: 38544218 PMCID: PMC10974650 DOI: 10.3390/s24061955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/17/2024]
Abstract
Embedded sensors (ESs) are used in smart materials to enable continuous and permanent measurements of their structural integrity, while sensing technology involves developing sensors, sensory systems, or smart materials that monitor a wide range of properties of materials. Incorporating 3D-printed sensors into hosting structures has grown in popularity because of improved assembly processes, reduced system complexity, and lower fabrication costs. 3D-printed sensors can be embedded into structures and attached to surfaces through two methods: attaching to surfaces or embedding in 3D-printed sensors. We discussed various additive manufacturing techniques for fabricating sensors in this review. We also discussed the many strategies for manufacturing sensors using additive manufacturing, as well as how sensors are integrated into the manufacturing process. The review also explained the fundamental mechanisms used in sensors and their applications. The study demonstrated that embedded 3D printing sensors facilitate the development of additive sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, India;
| | - Ignacio Llamas Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
9
|
Yang J, Huang YJ, Liu ZS, Zhang YH, Liang F, Zhao DG. Improving temperature characteristics of GaN-based ultraviolet laser diodes by using InGaN/AlGaN quantum wells. OPTICS LETTERS 2024; 49:1305-1308. [PMID: 38426999 DOI: 10.1364/ol.515502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Temperature characteristics of GaN-based laser diodes are investigated. It is noted that the characteristic temperature of the threshold current (T0) decreases with decreasing lasing wavelength for GaN-based LDs. The performance deteriorates seriously for UV LDs at high temperature. It is ascribed to the increase of carriers escaping from quantum wells due to the lower potential barrier height. In this Letter, AlGaN is used as the barrier layer in UV LDs instead of GaN to improve the temperature characteristic of the threshold current and slope efficiency by increasing the potential barrier height of quantum wells. Based on this structure, a high output power of 4.6 W is obtained at the injection current of 3.8 A; its lasing wavelength is 386.8 nm.
Collapse
|
10
|
Okuniewski W, Walczak M, Szala M. Effects of Shot Peening and Electropolishing Treatment on the Properties of Additively and Conventionally Manufactured Ti6Al4V Alloy: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:934. [PMID: 38399186 PMCID: PMC10890240 DOI: 10.3390/ma17040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
This literature review indicates that the basic microstructure of Ti6Al4V is bimodal, consisting of two phases, namely α + β, and it occurs after fabrication using conventional methods such as casting, plastic forming or machining processes. The fabrication of components via an additive manufacturing process significantly changes the microstructure and properties of Ti6Al4V. Due to the rapid heat exchange during heat treatment, the bimodal microstructure transforms into a lamellar microstructure, which consists of two phases: α' + β. Despite the application of optimum printing parameters, 3D printed products exhibit typical surface defects and discontinuities, and in turn, surface finishing using shot peening is recommended. A literature review signalizes that shot peening and electropolishing processes positively impact the corrosion behavior, the mechanical properties and the condition of the surface layer of conventionally manufactured titanium alloy. On the other hand, there is a lack of studies combining shot peening and electropolishing in one hybrid process for additively manufactured titanium alloys, which could synthesize the benefits of both processes. Therefore, this review paper clarifies the effects of shot peening and electropolishing treatment on the properties of both additively and conventionally manufactured Ti6Al4V alloys and shows the effect process on the microstructure and properties of Ti6Al4V titanium alloy.
Collapse
Affiliation(s)
| | - Mariusz Walczak
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland;
| | - Mirosław Szala
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland;
| |
Collapse
|