1
|
Li Q, Gao C, Shen X, Xing D. Graphene oxide-functionalized molecular beacon for real-time interference-free detection of Ki-67 mRNA in living cells. Talanta 2024; 278:126538. [PMID: 39002264 DOI: 10.1016/j.talanta.2024.126538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Molecular beacons (MBs) based on hairpin-shaped oligonucleotides are captivating owing to their capability to enable effective real-time detection of cytosolic mRNA in living cells. However, DNase in the nucleus and lysosome could induce the degradation of oligonucleotides in MBs, leading to the generation of false-positive signals. Herein, a graphene oxide (GO) nanosheet was applied as a nanocarrier for MBs to greatly enhance the anti-interference of the easily designed nanoprobe. Advantageously, the absorption capacity of GO for MBs increased with the decrease in pH values, providing the MB-GO nanoprobe with the ability to detect the expression of cytosolic Ki-67 mRNA without interference from DNase Ⅱ in lysosomes. Moreover, the size of GO nanosheets was considerably higher than that of the nuclear pore complex (NPC), which prevented nanoprobes from transition through the NPCs, thereby avoiding the generation of false-positive signals in the nucleus. Altogether, the present work affords a convenient approach for the successful detection of Ki-67 mRNA expression in the cytosol without interference from DNase Ⅰ/Ⅱ in the nucleus/lysosome, which may be potentially further applied for the detection of other cytosolic RNAs.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Qingdao Cancer Institute, Qingdao, 266071, China.
| | - Chihao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xin Shen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dongming Xing
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Qingdao Cancer Institute, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
4
|
Akash A, Bencurova E, Dandekar T. How to make DNA data storage more applicable. Trends Biotechnol 2024; 42:17-30. [PMID: 37591721 DOI: 10.1016/j.tibtech.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
The storage of digital data is becoming a worldwide problem. DNA has been recognized as a biological solution due to its ability to store genetic information without alteration over long periods. The first demonstrations of high-capacity long-lasting DNA digital data storage have been shown. However, high storage costs and slow retrieval of the data must be overcome to make DNA data storage more applicable and marketable. Herein, we discuss the issues and recent advances in DNA data storage methods and highlight pathways to make this technology more applicable to real-world digital data storage. We envision that a combination of molecular biology, nanotechnology, novel polymers, electronics, and automation with systematic development will allow DNA data storage sufficient for everyday use.
Collapse
Affiliation(s)
- Aman Akash
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Ratajczak K, Stobiecka M. DNA Aptamer Beacon Probe (ABP) for Monitoring of Adenosine Triphosphate Level in SW480 Cancer Cells Treated with Glycolysis Inhibitor 2-Deoxyglucose. Int J Mol Sci 2023; 24:ijms24119295. [PMID: 37298245 DOI: 10.3390/ijms24119295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Early cancer screening enables timely detection of carcinogenesis, and aids in prompt clinical intervention. Herein, we report on the development of a simple, sensitive, and rapid fluorometric assay based on the aptamer probe (aptamer beacon probe, ABP) for monitoring the energy-demand biomarker adenosine triphosphate (ATP), an essential energy source that is released into the tumor microenvironment. Its level plays a significant role in risk assessment of malignancies. The operation of the ABP for ATP was examined using solutions of ATP and other nucleotides (UTP, GTP, CTP), followed by monitoring of ATP production in SW480 cancer cells. Then, the effect of a glycolysis inhibitor, 2-deoxyglucose (2-DG), on SW480 cells was investigated. The stability of predominant ABP conformations in the temperature range of 23-91 °C and the effects of temperature on ABP interactions with ATP, UTP, GTP, and CTP were evaluated based on quenching efficiencies (QE) and Stern-Volmer constants (KSV). The optimized temperature for best selectivity of ABP toward ATP was 40 °C (KSV = 1093 M-1, QE = 42%). We have found that the inhibition of glycolysis in SW480 cancer cells by 2-deoxyglucose resulted in lowering of ATP production by 31.7%. Therefore, monitoring and modulation of ATP concentration may aid in future cancer treatment.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland
| |
Collapse
|
6
|
Bencurova E, Akash A, Dobson RC, Dandekar T. DNA storage-from natural biology to synthetic biology. Comput Struct Biotechnol J 2023; 21:1227-1235. [PMID: 36817961 PMCID: PMC9932295 DOI: 10.1016/j.csbj.2023.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macramé , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).
Collapse
Affiliation(s)
- Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Aman Akash
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany,Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Corresponding author at: Department of Bioinformatics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
The Impact of Molecular Biology in the Seeding, Treatment Choices and Follow-Up of Colorectal Cancer Liver Metastases-A Narrative Review. Int J Mol Sci 2023; 24:ijms24021127. [PMID: 36674640 PMCID: PMC9863977 DOI: 10.3390/ijms24021127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
There is a clear association between the molecular profile of colorectal cancer liver metastases (CRCLM) and the degree to which aggressive progression of the disease impacts patient survival. However, much of our knowledge of the molecular behaviour of colorectal cancer cells comes from experimental studies with, as yet, limited application in clinical practice. In this article, we review the current advances in the understanding of the molecular behaviour of CRCLM and present possible future therapeutic applications. This review focuses on three important steps in CRCLM development, progression and treatment: (1) the dissemination of malignant cells from primary tumours and the seeding to metastatic sites; (2) the response to modern regimens of chemotherapy; and (3) the possibility of predicting early progression and recurrence patterns by molecular analysis in liquid biopsy.
Collapse
|
8
|
Xu C, Ren XH, Han D, Peng Y, Lei JJ, Yu LX, Liu LJ, Xu WC, Cheng SX. Precise Detection on Cell-Cell Fusion by a Facile Molecular Beacon-Based Method. Anal Chem 2022; 94:17334-17340. [PMID: 36456915 DOI: 10.1021/acs.analchem.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jin-Ju Lei
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Luo-Xiao Yu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Ling-Juan Liu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Wei-Chao Xu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
9
|
Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology 2022; 20:415. [PMID: 36109734 PMCID: PMC9479390 DOI: 10.1186/s12951-022-01613-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal cancer (GIC) is a common malignant tumour of the digestive system that seriously threatens human health. Due to the unique organ structure of the gastrointestinal tract, endoscopic and MRI diagnoses of GIC in the clinic share the problem of low sensitivity. The ineffectiveness of drugs and high recurrence rates in surgical and drug therapies are the main factors that impact the curative effect in GIC patients. Therefore, there is an urgent need to improve diagnostic accuracies and treatment efficiencies. Nanotechnology is widely used in the diagnosis and treatment of GIC by virtue of its unique size advantages and extensive modifiability. In the diagnosis and treatment of clinical GIC, surface-enhanced Raman scattering (SERS) nanoparticles, electrochemical nanobiosensors and magnetic nanoparticles, intraoperative imaging nanoparticles, drug delivery systems and other multifunctional nanoparticles have successfully improved the diagnosis and treatment of GIC. It is important to further improve the coordinated development of nanotechnology and GIC diagnosis and treatment. Herein, starting from the clinical diagnosis and treatment of GIC, this review summarizes which nanotechnologies have been applied in clinical diagnosis and treatment of GIC in recent years, and which cannot be applied in clinical practice. We also point out which challenges must be overcome by nanotechnology in the development of the clinical diagnosis and treatment of GIC and discuss how to quickly and safely combine the latest nanotechnology developed in the laboratory with clinical applications. Finally, we hope that this review can provide valuable reference information for researchers who are conducting cross-research on GIC and nanotechnology.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kun Dai
- Department of Neonatal Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qianyuan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
10
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
11
|
A rapid anti-Helicobacter pylori biofilm drug screening biosensor based on AlpB outer membrane protein and colloidal gold/nanoporous gold framework. Biosens Bioelectron 2022; 215:114599. [DOI: 10.1016/j.bios.2022.114599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022]
|
12
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
13
|
Cheng W, Xiang L, Adeel K, Zhang J, Sun Y, Zhang Z, Li J. Ultrasensitive fluorescent detection of telomerase activity based on tetrahedral DNA nanostructures as carriers for DNA-templated silver nanoclusters. Anal Bioanal Chem 2022; 414:2431-2438. [PMID: 35037986 DOI: 10.1007/s00216-022-03883-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Precise evaluation of telomerase activity is essential for the clinical diagnosis of early tumors. Herein, we have ingeniously designed a tetrahedral DNA nanostructure, with hairpin-shaped DNA probes rich in cytosine bases at four vertices for telomerase detection. The DNA-templated silver nanoclusters can be formed after the addition of Ag. Then the introduction of telomerase adds the single-strand TTAGGG extension, which can "turn on" the fluorescence of silver nanoclusters quickly by the proximity of the resulting guanine-rich sequences to silver nanoclusters and realize accurate detection of telomerase activity. In this study, integration of high stability tetrahedral DNA nanostructure and fluorescence signal amplification of four DNA-templated silver nanoclusters offers the advantage of high sensitivity, with a low detection limit of 1 cell. More than that, this method is low-cost, facile, and feasible for practical clinical applications.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Liangliang Xiang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Khan Adeel
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jianchun Zhang
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Ying Sun
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Zhaoli Zhang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
14
|
Flauzino JMR, Nguyen EP, Yang Q, Rosati G, Panáček D, Brito-Madurro AG, Madurro JM, Bakandritsos A, Otyepka M, Merkoçi A. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens Bioelectron 2022; 195:113628. [PMID: 34543917 DOI: 10.1016/j.bios.2021.113628] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
With the increased demand for beef in emerging markets, the development of quality-control diagnostics that are fast, cheap and easy to handle is essential. Especially where beef must be free from pork residues, due to religious, cultural or allergic reasons, the availability of such diagnostic tools is crucial. In this work, we report a label-free impedimetric genosensor for the sensitive detection of pork residues in meat, by leveraging the biosensing capabilities of graphene acid - a densely and selectively functionalized graphene derivative. A single stranded DNA probe, specific for the pork mitochondrial genome, was immobilized onto carbon screen-printed electrodes modified with graphene acid. It was demonstrated that graphene acid improved the charge transport properties of the electrode, following a simple and rapid electrode modification and detection protocol. Using non-faradaic electrochemical impedance spectroscopy, which does not require any electrochemical indicators or redox pairs, the detection of pork residues in beef was achieved in less than 45 min (including sample preparation), with a limit of detection of 9% w/w pork content in beef samples. Importantly, the sample did not need to be purified or amplified, and the biosensor retained its performance properties unchanged for at least 4 weeks. This set of features places the present pork DNA sensor among the most attractive for further development and commercialization. Furthermore, it paves the way for the development of sensitive and selective point-of-need sensing devices for label-free, fast, simple and reliable monitoring of meat purity.
Collapse
Affiliation(s)
- José M R Flauzino
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Emily P Nguyen
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Qiuyue Yang
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Panáček
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Ana G Brito-Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil
| | - João M Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
15
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
16
|
The Potential Role of Nanoparticles as an Anticancer Therapy in the Treatment of Rectal Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanotechnology is a rapidly developing science and is applied in a variety of diagnostic and treatment technologies. Colorectal cancer is one of the deadliest human diseases, and hence, wide research is underway regarding its preventative measures. This review demonstrated that “nano” drug delivery systems have successfully transferred pharmaceutical drug particles at the nanoscale as compared to larger particles. Research has shown a higher rate of disease progression among patients who receive conventional drugs compared to those who were given nanoscale drugs. However, the behavior of the cellular components differs from the performance of larger cellular components of the same type; these differences are due to the physical interactions between the nanoparticles (NPs). The review aimed to discuss several recent research studies focused on delivering NPs for the treatment of colorectal cancer (CRC). The reviewed experiments have primarily compared the use of NPs alone or with the addition of an anticancer drug or nanocarriers. These three research methods may help solve past problems and propose new future approaches for colorectal cancer by utilizing the available nanotechnologies. Furthermore, the review illustrated the underlying idea behind NP carriers and stem cell delivery that can be used to create a rapid delivery system for stem cells.
Collapse
|
17
|
Bilal M, Cheng H, González-González RB, Parra-Saldívar R, Iqbal HM. Bio-applications and biotechnological applications of nanodiamonds. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1016/j.jmrt.2021.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Yim Y, Shin H, Ahn SM, Min DH. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem Commun (Camb) 2021; 57:9820-9833. [PMID: 34494621 DOI: 10.1039/d1cc02157e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graphene oxide (GO), an oxidized derivative of graphene, has received much attention for developing novel fluorescent bioanalytic platforms due to its remarkable optical properties and biocompatibility. The reliable performance and robustness of GO-based biosensors have enabled various applications in the biomedical field including diagnosis and drug discovery. Here, recent advances in the development of GO-based fluorescent biosensors are overviewed, particularly nucleic acid detection and enzyme activity assay. In addition, practical applications in biomarker detection and high-throughput screening are also examined. Lastly, basic design principles and remaining challenges of these types of biosensors are discussed for further progress.
Collapse
Affiliation(s)
- Yeajee Yim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Min Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
19
|
Li L, Liu T, Wang M, Ren Y, Jia N, Bu H, Xie G, Xu H, Wu Y, Ouyang X. Snowflake-like DNA crystals templated Cu clusters as a fluorescent turn-on probe for sensing actin. Anal Chim Acta 2021; 1173:338700. [PMID: 34172154 DOI: 10.1016/j.aca.2021.338700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022]
Abstract
Herein, we synthesized snowflake-like DNA crystals (SDC) via hybridization chain reaction and used it for the first time in the synthesis of copper nanoclusters with enhanced fluorescence. Atomic force microscopy (AFM) and laser confocal microscopy characterization confirmed that SDC/CuNCs are self-assembled successfully on SDC. Aggregation induced emission allows SDC/CuNCs to exhibit better stability and stronger emission intensity. Thus, we developed the "turn-on" label-free fluorescence detection method of actin based on SDC/CuNCs which offer simplicity, low cost, good selectivity, and high sensitivity. The detection limit was determined to be 0.0124 μg mL-1, which was an order of magnitude lower than that of reported fluorescent methods (0.12 μg mL-1). Compared with previous method, the linear range is also much wider. We also performed standard recovery experiments in actual samples for evaluating the practicality of this strategy and proved that the capability of the proposed approach for the determination of actin is feasible and the interference from complex biological samples is negligible. These results indicate that SDC/CuNCs are expected to play a more important role in the field of biosensors.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Meifang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yong'an Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Nan Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Huaiyu Bu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Hang Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yongli Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| |
Collapse
|
20
|
Pavase TR, Lin H, Soomro MA, Zheng H, Li X, Wang K, Li Z. Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:382-394. [PMID: 37073291 PMCID: PMC10077205 DOI: 10.1007/s42995-020-00085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
A gold nanoparticle-based label-free colorimetric assay was developed to detect the shrimp allergenic protein tropomyosin (TM), an important biomarker responsible for severe clinical reactivity to shellfish. In a gold nanoparticles (AuNPs)-tropomyosin-binding aptamer (TMBA) complex, the aptamer adsorbs onto the surface of AuNPs and dissociates in the presence of TM. In addition, AuNPs tend to aggregate in the presence of ionic salt, revealing a color change (i.e., wine-red to purple/blue) with a shift in the maximum absorption peak from 520 nm. In the presence of specific binding TM, the aptamer folds into a tertiary structure where it more efficiently stabilizes AuNPs toward the salt-induced aggregation with a hypsochromic shift in the absorption spectra compared to the stabilized AuNPs by aptamer alone. Based on the aggregation and sensitive spectral transformation principle, the AuNPs-based colorimetric aptasensor was successfully applied to detect TM with a range of 10-200 nmol/L and a low detection limit of 40 nmol/L in water samples. The reliability, selectivity, and sensitivity of the aptasensor was then tested with food samples spiked with TM. The observed detection limit was as low as 70 nmol/L in shrimp, 90 nmol/L in tofu, and 80 nmol/L in eggs, respectively. We anticipate the proposed AuNPs-based colorimetric aptasensor assay possesses a high potential for the easy and efficient visual colorimetric detection of TM. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00085-5.
Collapse
Affiliation(s)
- Tushar Ramesh Pavase
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Maqsood Ahmed Soomro
- Fish Molecular Immunology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Hongwei Zheng
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaxia Li
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Kexin Wang
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Zhenxing Li
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
21
|
Berneschi S, D'Andrea C, Baldini F, Banchelli M, de Angelis M, Pelli S, Pini R, Pugliese D, Boetti NG, Janner D, Milanese D, Giannetti A, Matteini P. Ion-exchanged glass microrods as hybrid SERS/fluorescence substrates for molecular beacon-based DNA detection. Anal Bioanal Chem 2021; 413:6171-6182. [PMID: 34278523 DOI: 10.1007/s00216-021-03418-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.
Collapse
Affiliation(s)
- Simone Berneschi
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Marella de Angelis
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Pelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Roberto Pini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Diego Pugliese
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138, Turin, Italy
| | - Davide Janner
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Daniel Milanese
- Department of Engineering and Architecture and RU INSTM, Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
22
|
Royo-Rubio E, Rodríguez-Izquierdo I, Moreno-Domene M, Lozano-Cruz T, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Jiménez JL. Promising PEGylated cationic dendrimers for delivery of miRNAs as a possible therapy against HIV-1 infection. J Nanobiotechnology 2021; 19:158. [PMID: 34049570 PMCID: PMC8161934 DOI: 10.1186/s12951-021-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The appearance of resistance against new treatments and the fact that HIV-1 can infect various cell types and develop reservoirs and sanctuaries makes it necessary to develop new therapeutic approaches to overcome those failures. RESULTS Studies of cytotoxicity, genotoxicity, complexes formation, stability, resistance, release and particle size distribution confirmed that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG-FITC and G3-SN31-PEG-FITC dendrimers can form complexes with miRNAs being biocompatible, stable and conferring protection to these nucleic acids. Confocal microscopy and flow cytometry showed effective delivery of these four dendrimers into the target cells, confirming their applicability as delivery systems. Dendriplexes formed with the dendrimers and miRNAs significantly inhibited HIV-1 infection in PBMCs. CONCLUSIONS These dendrimers are efficient delivery systems for miRNAs and they specifically and significantly improved the anti-R5-HIV-1 activity of these RNA molecules.
Collapse
Affiliation(s)
- E Royo-Rubio
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain
| | - I Rodríguez-Izquierdo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain
| | - M Moreno-Domene
- Laboratorio Dosimetría Biológica, HGUGM, IiSGM, Madrid, Spain
| | - T Lozano-Cruz
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - F J de la Mata
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - R Gómez
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - M A Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain.
| | - J L Jiménez
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain.
| |
Collapse
|
23
|
Zhou D, Gopinath SCB, Mohamed Saheed MS, Siva Sangu S, Lakshmipriya T. MXene Surface on Multiple Junction Triangles for Determining Osteosarcoma Cancer Biomarker by Dielectrode Microgap Sensor. Int J Nanomedicine 2020; 15:10171-10181. [PMID: 33363373 PMCID: PMC7754095 DOI: 10.2147/ijn.s284752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background In recent years, nanomaterials have justified their dissemination for biosensor application towards the sensitive and selective detections of clinical biomarkers at the lower levels. MXene is a two-dimensional layered transition metal, attractive for biosensing due to its chemical, physical and electrical properties along with the biocompatibility. Materials and Methods This work was focused on diagnosing osteosarcoma (OS), a common bone cancer, on MXene-modified multiple junction triangles by dielectrode sensing. Survivin protein gene is highly correlated with OS, identified on this sensing surface. Capture DNA was immobilized on MXene by using 3-glycidoxypropyltrimethoxysilane as an amine linker and duplexed by the target DNA sequence. Results The limitation and sensitivity of detection were found as 1 fM with the acceptable regression co-efficient value (y=1.0037⨰ + 0.525; R2=0.978) and the current enhancement was noted when increasing the target DNA concentrations. Moreover, the control sequences of single- and triple-mismatched and noncomplementary to the target DNA sequences failed to hybridize on the capture DNA, confirming the specificity. In addition, different batches were prepared with capture probe immobilized sensing surfaces and proved the efficient reproducibility. Conclusion This microgap device with Mxene-modified multiple junction triangles dielectrode surface is beneficial to quantify the survivin gene at its lower level and diagnosing OS complication levels.
Collapse
Affiliation(s)
- Dakai Zhou
- Department of Spinal Surgery, Xinxiang Central Hospital, Xinxiang City, Henan Province 453000, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia.,Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Sangeetha Siva Sangu
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia.,Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia
| |
Collapse
|
24
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
25
|
Nazerdeylami S, Ghasemi JB, Amiri A, Mohammadi Ziarani G, Badiei A. A highly sensitive fluorescence measurement of amphetamine using 8-hydroxyquinoline-β-cyclodextrin grafted on graphene oxide. DIAMOND AND RELATED MATERIALS 2020; 109:108032. [DOI: 10.1016/j.diamond.2020.108032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
26
|
Mirsalari M, Elhami S. Colorimetric detection of insulin in human serum using GO/AuNPs/TX-100 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118617. [PMID: 32593845 DOI: 10.1016/j.saa.2020.118617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, graphene oxide/gold nanoparticles/Triton X-100 nanocomposites (GO/AuNPs/TX-100) were synthesized using the sonochemical method and their ability in ultrasound-assisted colorimetric detection of insulin was investigated. The synthesized GO/AuNPs/TX-100 nanocomposites were characterized by UV-visible absorption spectroscopy and TEM analysis. The interaction between the nanocomposites and insulin was observed by both naked eye and optical absorption spectroscopy. The GO/AuNPs/TX-100 nanocomposites displayed apparent color changes (red to blue) and absorption spectra changes (decreasing of the band around 528 nm and appearance of a new red-shifted band at 640 nm) in presence of insulin. The interaction mechanism of the nanocomposites and insulin was discussed. It is based on the special structure of insulin, that insulin can be easily self-assemble into the GO/AuNP/TX-100 nanocomposites and can also play the role of a bridge between two different GO/AuNPs/TX-100 nanocomposites by peptide chains. The effective parameters for insulin detection were optimized. The colorimetric method was used for quantification of insulin in the range of 2-300 ng mL-1 with a detection limit of 0.1 ng mL-1. Moreover, the relative standard deviation of the method was 3.1 and 2.7% (n = 10) at concentrations of 50 and 200 ng mL-1, respectively on the same day and 4.8% at a concentration (200.0 ng mL-1) on five consecutive days. The present method was utilized for insulin assay in human blood serums with satisfactory results.
Collapse
Affiliation(s)
- Marzieh Mirsalari
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Shahla Elhami
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| |
Collapse
|
27
|
Ramasamy T, Munusamy S, Ruttala HB, Kim JO. Smart Nanocarriers for the Delivery of Nucleic Acid-Based Therapeutics: A Comprehensive Review. Biotechnol J 2020; 16:e1900408. [PMID: 32702191 DOI: 10.1002/biot.201900408] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Nucleic acid-based therapies are promising therapeutics for the treatment of several systemic disorders, and they offer an exciting opportunity to address emerging biological challenges. The scope of nucleic acid-based therapeutics in the treatment of multiple disease states including cancers has been widened by recent progress in Ribonucleic acids (RNA) biology. However, cascades of systemic and intracellular barriers, including rapid degradation, renal clearance, and poor cellular uptake, hinder the clinical effectiveness of nucleic acid-based therapies. These barriers can be circumvented by utilizing advanced smart nanocarriers that efficiently deliver and release the encapsulated nucleic acids into the target tissues. This review describes the current status of clinical trials on nucleic acid-based therapeutics and highlights representative examples that provide an overview on the current and emerging trends in nucleic acid-based therapies. A better understanding of the design of advanced nanocarriers is essential to promote the translation of therapeutic nucleic acids into a clinical reality.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, 50311, USA
| | - Hima Bindu Ruttala
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| |
Collapse
|
28
|
Grel H, Ratajczak K, Jakiela S, Stobiecka M. Gated Resonance Energy Transfer (gRET) Controlled by Programmed Death Protein Ligand 1. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1592. [PMID: 32823551 PMCID: PMC7466588 DOI: 10.3390/nano10081592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023]
Abstract
The resonance energy transfer (RET) between an excited fluorescent probe molecule and a plasmonic nanoparticle (AuNP) has been investigated to evaluate the effect of protein molecules on the RET efficiency. We have found that the energy transfer to a functionalized AuNP can be modulated by a sub-monolayer film of programmed death-ligand 1 (PD-L1) protein. The interactions of PD-L1 with AuNP@Cit involve incorporation of the protein in AuNP shell and formation of a submonolayer adsorption film with voids enabling gated surface plasmon resonance energy transfer (SPRET). A model of the gated-RET system based on the protein size, estimated using Fisher-Polikarpov-Craievich density approximation, has been developed and can be utilized for other proteins, with minimum data requirement, as well. The value of the equilibrium constant KL determined for the Langmuir isotherm is high: KL = 1.27 × 108 M-1, enabling highly sensitive control of the gated-RET by PD-L1. Thus, with the gated-RET technique, one can determine PD-L1 within the dynamic range, extending from 1.2 to 50 nM. Moreover, we have found that the Gibbs free energy for PD-L1 binding to AuNP@Cit is -46.26 kJ/mol (-11.05 kcal/mol), indicating a strong adsorption with supramolecular interactions. The proposed gated-RET system, with the fluorescence intensity of the fluorophore probe molecule modulated by plasmonic quenching with AuNP and shielding of energy transfer by the adsorbed PD-L1 can be further developed for determination of PD-L1 in pharmaceutical formulations for immune checkpoint control in cancer therapy.
Collapse
Affiliation(s)
- Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| | - Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| |
Collapse
|
29
|
A Label-Free Fluorescent Sensor Based on the Formation of Poly(thymine)-Templated Copper Nanoparticles for the Sensitive and Selective Detection of MicroRNA from Cancer Cells. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, a simple and label-free fluorescence “off” to “on” platform was designed for the sensitive and selective detection of microRNA (miRNA) in cancer cells. This method utilized a padlock DNA-based rolling circle amplification (P-RCA) to synthesize fluorescent poly(thymine) (PolyT) which acted as a template for the synthesis of copper nanoparticles (CuNPs) within 10 minutes under mild conditions. While the repeated PolyT sequence was used as the template for CuNP synthesis, other non-PolyT parts (single strand-DNAs without the capacity to act as the template for CuNP formation) served as “smart glues” or rigid linkers to build complex nanostructures. Under the excitation wavelength of 340 nm, the synthesized CuNPs emitted strong red fluorescence effectively at 620 nm. To demonstrate the use of this method as a universal biosensor platform, lethal-7a (let-7a) miRNA was chosen as the standard target. This sensor could achieve highly sensitive and selective detection of miRNA in the presence of other homologous analogues for the combination of P-RCA with the fluorescent copper nanoparticle. Overall, this novel label-free method holds great potential in the sensitive detection of miRNA with high specificity in real samples.
Collapse
|
30
|
Li Z, Jiang H, Liu S, Li Y, Yuchi Z, Gao Q. Ryanodine receptor-targeting small molecule fluorescent probes enables non-isotopic labeling and efficient drug screening for green insecticides. Anal Chim Acta 2020; 1108:108-117. [PMID: 32222232 DOI: 10.1016/j.aca.2020.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
Ryanodine receptors (RyRs) are calcium release channels located on endoplasmic reticulum (ER) membrane, which play important role in excitation-contraction coupling in muscular response. Flubendiamide represents a novel chemical family of green insecticides which selectively activate invertebrate RyR by interacting with the receptor distinct from the ryanodine binding site and has almost no effect on mammalian ryanodine receptors. Traditional methods to screen RyR modulators involve either radio-labeled RyR substrates or calcium signal-based indirect approaches. However, there is lack of RyR-directed non-isotope molecular tools for RyR agonists/antagonists screening and bioimaging. Here we developed a series of fluorescent probes based on the pharmacophore of flubendiamide with the aims to elucidate the mechanism of diamide insecticides and screen novel RyR-targeting insecticides. These probes revealed the specific RyR staining and in vivo RyR targeting properties in diamondback moth RyR transfected Sf9 cells (Sf9-RyR) and RyR enriched insect tissues. The designed fluorescent probes could induce an effective calcium release from ER membrane of Sf9-RyR cells and also showed competitive RyR binding effect with flubendiamide in cell-based fluorometric assay. Having the non-isotope RyR recognition probes will not only accelerate the screening process of new green agrochemicals but also enables deciphering molecular mechanisms of the high selectivity and the drug resistance associated with the diamides.
Collapse
Affiliation(s)
- Zizhen Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Central Institute of Pharmaceutical Research, CSPC Pharmaceutical Group, 226 Huanhe Road, Shijiazhuang, Hebei, 050035, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shengnan Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Weijin Road 94th, Tianjin, 300071, China.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Institute of Molecular Plus, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Department of Biology, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin, 300384, China.
| |
Collapse
|
31
|
Zhang Z, Wang S, Ma J, Zhou T, Wang F, Wang X, Zhang G. Rolling Circle Amplification-Based Polyvalent Molecular Beacon Probe-Assisted Signal Amplification Strategies for Sensitive Detection of B16 Cells. ACS Biomater Sci Eng 2020; 6:3114-3121. [PMID: 33463255 DOI: 10.1021/acsbiomaterials.0c00288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We developed a simple and sensitive signal amplification method for the detection of B16 cells based on the combination of rolling circle amplification (RCA) and molecular beacons (MBs). A long-chain structure of DNA synthesized by RCA was used to turn on aptamer-based MBs. Because of the multiple complementary repeat units, the RCA scaffold hybridized tens or hundreds of MBs to form polyvalent aptamer probes. The unfold ability and the fluorescence intensity of MBs were both improved by RCA, as compared to short single chains. The cell experiment results demonstrated that RCA-based polyvalent MBs were significantly more effective than monovalent MBs in targeting B16 cells and signal sensitivity because of their multivalent effects. The establishment of this strategy would provide a powerful platform for early clinical diagnostics of cancer cells.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shanshan Wang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jie Ma
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Ting Zhou
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Wang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiufeng Wang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Guodong Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
32
|
Park S, Choi KS, Kim S, Gwon Y, Kim J. Graphene Oxide-Assisted Promotion of Plant Growth and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E758. [PMID: 32326526 PMCID: PMC7221628 DOI: 10.3390/nano10040758] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
The control and promotion of plant and crop growth are important challenges globally. In this study, we have developed a nanomaterial-assisted bionic strategy for accelerating plant growth. Although nanomaterials have been shown to be toxic to plants, we demonstrate herein that graphene oxide can be used as a regulator tool for enhancing plant growth and stability. Graphene oxide was added to the growth medium of Arabidopsis thaliana L. as well as injected into the stem of the watermelon plant. We showed that with an appropriate amount provided, graphene oxide had a positive effect on plant growth in terms of increasing the length of roots, the area of leaves, the number of leaves, and the formation of flower buds. In addition, graphene oxide affected the watermelon ripeness, increasing the perimeter and sugar content of the fruit. We believe that graphene oxide may be used as a strategy for enabling the acceleration of both plant growth and the fruit ripening process.
Collapse
Affiliation(s)
- Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Kyoung Soon Choi
- National Research Facilities & Equipment center (NFEC), Korea Basic Science Institute (KBSI), 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea;
| | - Sujin Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| |
Collapse
|
33
|
Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr Polym 2020; 229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
|
34
|
Abstract
The field of nanomedicine has recently emerged as a product of the expansion of a range of nanotechnologies into biomedical science, pharmacology and clinical practice. Due to the unique properties of nanoparticles and the related nanostructures, their applications to medical diagnostics, imaging, controlled drug and gene delivery, monitoring of therapeutic outcomes, and aiding in medical interventions, provide a new perspective for challenging problems in such demanding issues as those involved in the treatment of cancer or debilitating neurological diseases. In this review, we evaluate the role and contributions that the applications of magnetic nanoparticles (MNPs) have made to various aspects of nanomedicine, including the newest magnetic particle imaging (MPI) technology allowing for outstanding spatial and temporal resolution that enables targeted contrast enhancement and real-time assistance during medical interventions. We also evaluate the applications of MNPs to the development of targeted drug delivery systems with magnetic field guidance/focusing and controlled drug release that mitigate chemotherapeutic drugs’ side effects and damage to healthy cells. These systems enable tackling of multiple drug resistance which develops in cancer cells during chemotherapeutic treatment. Furthermore, the progress in development of ROS- and heat-generating magnetic nanocarriers and magneto-mechanical cancer cell destruction, induced by an external magnetic field, is also discussed. The crucial roles of MNPs in the development of biosensors and microfluidic paper array devices (µPADs) for the detection of cancer biomarkers and circulating tumor cells (CTCs) are also assessed. Future challenges concerning the role and contributions of MNPs to the progress in nanomedicine have been outlined.
Collapse
|
35
|
Batule BS, Seok Y, Kim MG. Paper-based nucleic acid testing system for simple and early diagnosis of mosquito-borne RNA viruses from human serum. Biosens Bioelectron 2019; 151:111998. [PMID: 31999593 DOI: 10.1016/j.bios.2019.111998] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
The recent outbreaks of mosquito-borne diseases (e.g., zika, dengue, and chikungunya) increased public health burden in developing countries. To control the spread of these infectious diseases, a simple, economic, reliable, sensitive, and selective diagnostic platform is required. Considering demand for affordable and accessible methods, we have demonstrated a two-step strategy for extraction and detection of viral RNAs of infectious diseases within 1 h. Ready-to-use devices for viral RNA extraction and detection were successfully fabricated using paper as a substrate. Viral RNA (e.g., zika, dengue, and chikungunya) was captured and eluted using a handheld RNA extraction paper-strip device, and another paper-chip device was used for reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with a detection limit of a single copy and 10 copies of viral RNA in phosphate buffer solution (PBS) and serum, respectively. With these proposed devices, we have detected viral RNAs of zika and dengue in clinical human serum samples. The proposed paper-based extraction and detection platforms could be employed for detection of infectious viral diseases from complex clinical samples in resource-limited settings.
Collapse
Affiliation(s)
- Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju, 61005, Republic of Korea
| | - Youngung Seok
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju, 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
36
|
He Y, Wang S, Wang J. Detection and quantification of folic acid in serum via a dual-emission fluorescence nanoprobe. Anal Bioanal Chem 2019; 411:7481-7487. [PMID: 31511949 DOI: 10.1007/s00216-019-02121-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 02/05/2023]
Abstract
Folic acid (FA) is an essential vitamin in humans, and thus, rapid, accurate, and sensitive methods for its quantification in different biological samples are needed. This work describes a novel, simple, and effective dual-emission fluorescence nanoprobe for FA detection and quantification. The probe was covalently linked to amino-modified orange quantum dots (QDs) and carboxyl-modified blue graphene quantum dots (GQDs). The resulting material exhibited two emission peaks at 401 and 605 nm upon excitation at 310 nm. The probe had good selectivity and sensitivity toward FA with an exceptionally low detection limit (LOD = 0.09 nM). This probe was effectively used to quantify FA in animal serum samples. The method has potential utility for FA analysis in different types of biological samples. Graphical abstract.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology and Food Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology and Food Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
37
|
Deng S, Yan J, Wang F, Su Y, Zhang X, Li Q, Liu G, Fan C, Pei H, Wan Y. In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. Biosens Bioelectron 2019; 137:263-270. [DOI: 10.1016/j.bios.2019.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
|
38
|
Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: Focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron 2019; 137:58-71. [PMID: 31078841 DOI: 10.1016/j.bios.2019.04.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The development of biosensors for cancer biomarkers has recently been expanding rapidly, offering promising biomedical applications of these sensors as highly sensitive, selective, and inexpensive bioanalytical tools that can provide alternative methodology to that afforded by the advanced hyphenated-instrumental techniques. In this review, we focus particularly on the detection of a member of the inhibitor of apoptosis proteins (IAP) family, protein survivin (Sur), a ubiquitous re-organizer of the cell life cycle with the ability to inhibit the apoptosis and induce an enhanced proliferation leading to the unimpeded cancer growth and metastasis. Herein, we critically evaluate the progress in the development of novel biosensing systems and biosensors for the detection of two survivin (Sur) biomarkers: the Sur protein and its messenger RNA (Sur mRNA), including immunosensors, electrochemical piezo- and impedance-sensors, electrochemi-luminescence biosensors, genosensors based on oligonucleotide molecular beacons (MBs) with fluorescent or electrochemical transduction, as well as the microfluidic and related analytical platforms based on solution chemistry. The in-situ applications of survivin biomarkers' detection technologies to equip nanocarriers of the controlled drug delivery systems with MB-based fluorescence imaging capability, apoptosis control, and mitigation of the acquired drug resistance are also presented and critically evaluated. Finally, we turn the attention to the application of biosensors for the analysis of Sur biomarkers in exosomes and circulating tumor cells for a non-invasive liquid biopsy. The prospect of a widespread screening for early cancers, based on inexpensive point-of-care testing using biosensors and multiplex biosensor arrays, as a means of reducing the high cancer fatality rate, is discussed.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| | - Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| |
Collapse
|
39
|
Trnski D, Gregorić M, Levanat S, Ozretić P, Rinčić N, Vidaković TM, Kalafatić D, Maurac I, Orešković S, Sabol M, Musani V. Regulation of Survivin Isoform Expression by GLI Proteins in Ovarian Cancer. Cells 2019; 8:cells8020128. [PMID: 30736319 PMCID: PMC6406444 DOI: 10.3390/cells8020128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal female gynecological malignancy, mostly due to diagnosis in late stages when treatment options are limited. Hedgehog-GLI (HH-GLI) signaling is a major developmental pathway involved in organogenesis and stem cell maintenance, and is activated in OC. One of its targets is survivin (BIRC5), an inhibitor of apoptosis protein (IAP) that plays a role in multiple processes, including proliferation and cell survival. We wanted to investigate the role of different GLI proteins in the regulation of survivin isoform expression (WT, 2α, 2B, 3B, and Δex3) in the SKOV-3 OC cell line. We demonstrated that survivin isoforms are downregulated in GLI1 and GLI2 knock-out cell lines, but not in the GLI3 knock-out. Treatment of GLI1 knock-out cells with GANT-61 shows an additional inhibitory effect on several isoforms. Additionally, we examined the expression of survivin isoforms in OC samples and the potential role of BIRC5 polymorphisms in isoform expression. Clinical samples showed the same pattern of survivin isoform expression as in the cell line, and several BIRC5 polymorphisms showed the correlation with isoform expression. Our results showed that survivin isoforms are regulated both by different GLI proteins and BIRC5 polymorphisms in OC.
Collapse
Affiliation(s)
- Diana Trnski
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Maja Gregorić
- Zagreb Health School, Medvedgradska 55, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Nikolina Rinčić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Tajana Majić Vidaković
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
- PP Orahovica, Pustara 1, 33513 Zdenci, Croatia.
| | - Držislav Kalafatić
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, Petrova 13, 10000 Zagreb, Croatia.
- School of Medicine, University of Zagreb, Petrova 13, 10000 Zagreb, Croatia.
| | - Ivana Maurac
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, Petrova 13, 10000 Zagreb, Croatia.
| | - Slavko Orešković
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, Petrova 13, 10000 Zagreb, Croatia.
- School of Medicine, University of Zagreb, Petrova 13, 10000 Zagreb, Croatia.
| | - Maja Sabol
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
40
|
MHY440, a Novel Topoisomerase Ι Inhibitor, Induces Cell Cycle Arrest and Apoptosis via a ROS-Dependent DNA Damage Signaling Pathway in AGS Human Gastric Cancer Cells. Molecules 2018; 24:molecules24010096. [PMID: 30597845 PMCID: PMC6337620 DOI: 10.3390/molecules24010096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
We investigated the antitumor activity and action mechanism of MHY440 in AGS human gastric cancer cells. MHY440 inhibited topoisomerase (Topo) Ι activity and was associated with a DNA damage response signaling pathway. It exhibited a stronger anti-proliferative effect on AGS cells relative to Hs27 human foreskin fibroblast cells, and this effect was both time- and concentration-dependent. MHY440 also increased cell arrest in the G2/M phase by decreasing cyclin B1, Cdc2, and Cdc25c, and upregulating p53 and p73. MHY440 induced AGS cell apoptosis through the upregulation of Fas-L, Fas, and Bax as well as the proteolysis of BH3 interacting-domain death agonist and poly(ADP-ribose) polymerase. It also contributed to the loss of mitochondrial membrane potential. The apoptotic cell death induced by MHY440 was inhibited by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, indicating that apoptosis was caspase-dependent. Moreover, the apoptotic effect of MHY440 was reactive oxygen species (ROS)-dependent, as evidenced by the inhibition of MHY440-induced PARP cleavage and ROS generation via N-acetylcysteine-induced ROS scavenging. Taken together, MHY440 showed anticancer effects by inhibiting Topo I, regulating the cell cycle, inducing apoptosis through caspase activation, and generating ROS, suggesting that MHY440 has considerable potential as a therapeutic agent for human gastric cancer.
Collapse
|
41
|
Investigation of the Effects of Polymer Dispersants on Dispersion of GO Nanosheets in Cement Composites and Relative Microstructures/Performances. NANOMATERIALS 2018; 8:nano8120964. [PMID: 30469503 PMCID: PMC6316744 DOI: 10.3390/nano8120964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
This study focused on the uniform distribution of graphene oxide (GO) nanosheets in cement composites and their effect on microstructure and performance. For this, three polymer dispersants with different level of polar groups (weak, mild, and strong) poly(acrylamide-methacrylic acid) (PAM), poly(acrylonitrile-hydroxyethyl acrylate) (PAH), and poly(allylamine-acrylamide) (PAA) were used to form intercalation composites with GO nanosheets. The results indicated that GO nanosheets can exist as individual 1⁻2, 2⁻5, and 3⁻8 layers in GO/PAA, GO/PAH, and GO/PAM intercalation composites, respectively. The few-layered (1⁻2 layers) GO can be uniformly distributed in cement composites and promote the formation of regular-shaped crystals and a compact microstructure. The compressive strengths of the blank, control, GO/PAM, GO/PAH, and GO/PAA cement composites were 55.72, 78.31, 89.75, 116.82, and 128.32 MPa, respectively. Their increase ratios relative to the blank sample were 40.54%, 61.07%, 109.66%, and 130.29%, respectively. Their corresponding flexural strengths were 7.53, 10.85, 12.35, 15.97, and 17.68 MPa, respectively, which correspond to improvements of 44.09%, 64.01%, 112.09%, and 134.79%.
Collapse
|
42
|
Halim A, Luo Q, Ju Y, Song G. A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E736. [PMID: 30231556 PMCID: PMC6163376 DOI: 10.3390/nano8090736] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Stem cells are undifferentiated cells that can give rise to any types of cells in our body. Hence, they have been utilized for various applications, such as drug testing and disease modeling. However, for the successful of those applications, the survival and differentiation of stem cells into specialized lineages should be well controlled. Growth factors and chemical agents are the most common signals to promote the proliferation and differentiation of stem cells. However, those approaches holds several drawbacks such as the negative side effects, degradation or denaturation, and expensive. To address such limitations, nanomaterials have been recently used as a better approach for controlling stem cells behaviors. Graphene oxide is the derivative of graphene, the first two-dimensional (2D) materials in the world. Recently, due to its extraordinary properties and great biological effects on stem cells, many scientists around the world have utilized graphene oxide to enhance the differentiation potential of stem cells. In this mini review, we highlight the key advances about the effects of graphene oxide on controlling stem cell growth and various types of stem cell differentiation. We also discuss the possible molecular mechanisms of graphene oxide in controlling stem cell growth and differentiation.
Collapse
Affiliation(s)
- Alexander Halim
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Qing Luo
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Guanbin Song
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
43
|
Lv Y, Xing B, Zheng M, Yi G, Huang G, Zhang C, Yuan R, Chen Z, Cao Y. Hydrothermal Synthesis of Ultra-Light Coal-Based Graphene Oxide Aerogel for Efficient Removal of Dyes from Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E670. [PMID: 30158446 PMCID: PMC6164370 DOI: 10.3390/nano8090670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
A novel carboxymethyl cellulose (CMC)-supported graphene oxide aerogel (CGOA) was fabricated from a cost-effective and abundant bituminous coal by a mild hydrothermal process and freeze-drying treatment. Such an aerogel has cross-linked graphene oxide layers supported by CMC, and therefore, displays high mechanical strength while having ultra-low density (8.257 mg·cm-3). The CGOA has a 3D interconnected porous structure, beneficial graphene framework defects and abundant oxygen-containing functional groups, which offer favorable diffusion channels and effective adsorption sites for the transport and adsorption of dye molecules. The adsorption performance of rhodamine B by an optimized CGOA shows a maximum monolayer adsorption capacity of 312.50 mg·g-1, as determined by Langmuir isotherm parameters. This CGOA exhibited a better adsorption efficiency (99.99%) in alkaline solution, and satisfactory stability (90.60%) after three cycles. In addition, adsorption experiments on various dyes have revealed that CGOA have better adsorption capacities for cationic dyes than anionic dyes.
Collapse
Affiliation(s)
- You Lv
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Baolin Xing
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingkun Zheng
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| | - Guiyun Yi
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Guangxu Huang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ruifu Yuan
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Zhengfei Chen
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yijun Cao
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
44
|
Yuan X, Niu J, Zeng J, Jing Q. Cement-Induced Coagulation of Aqueous Graphene Oxide with Ultrahigh Capacity and High Rate Behavior. NANOMATERIALS 2018; 8:nano8080574. [PMID: 30060440 PMCID: PMC6116235 DOI: 10.3390/nano8080574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
Abstract
Graphene oxide (GO) has excellent physicochemical properties and is used in multiple areas. However, the potential toxicity and environmental problems associated with GO increase its risk to the ecological system. In this study, cement was employed as a coagulant to eliminate GO from aqueous solutions. The effects of the cement dosage, the contact time, and the concentration and volume of the aqueous GO solution on the GO coagulation capacity were investigated in detail. The results showed that the dosage of cement had a significant effect on the coagulation process, and coagulation equilibrium was achieved in less than 1 h. Compared to coagulants used to remove GO from water in other reports, cement exhibited an ultrahigh coagulation capacity of approximately 5981.2 mg/g with 0.4 mg/mL GO solution. The kinetic analysis showed that the GO removal behavior could be described by a pseudo second-order model. The in-depth mechanism of GO coagulation using cement included Ca2+-induced coagulation of GO and adsorption by the hydrated product of cement paste. The present study revealed that cement could be a very cheap and promising material for the efficient elimination of GO from aqueous solutions.
Collapse
Affiliation(s)
- Xiaoya Yuan
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jiawei Niu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Junjie Zeng
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Qiuye Jing
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|