1
|
Tee WT, Loh NYL, Hiew BYZ, Show PL, Hanson S, Gan S, Lee LY. Evaluation of adsorption performance and mechanisms of a highly effective 3D boron-doped graphene composite for amitriptyline pharmaceutical removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118363. [PMID: 37413724 DOI: 10.1016/j.jenvman.2023.118363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Three-dimensional heteroatom-doped graphene presents a state-of-the-art approach for effective remediation of pharmaceutical wastewater on account of its distinguished adsorption and physicochemical attributes. Amitriptyline is an emerging tricyclic antidepressant pollutant posing severe risks to living habitats through water supply and food chain. With ultra-large surface area and plentiful chemical functional groups, graphene oxide is a favorable adsorbent for decontaminating polluted water. Herein, a new boron-doped graphene oxide composite reinforced with carboxymethyl cellulose was successfully developed via solution-based synthesis. Characterization study revealed that the adsorbent was formed by graphene sheets intertwined into a porous network and engrafted with 13.37 at% of boron. The adsorbent has a zero charge at pH 6 and contained various chemical functional groups favoring the attachment of amitriptyline. It was also found that a mere 10 mg of adsorbent was able to achieve relatively high amitriptyline removal (89.31%) at 50 ppm solution concentration and 30 °C. The amitriptyline adsorption attained equilibrium within 60 min across solution concentrations ranging from 10 to 300 ppm. The kinetic and equilibrium of amitriptyline adsorption were well correlated to the pseudo-second-order and Langmuir models, respectively, portraying the highest Langmuir adsorption capacity of 737.4 mg/g. Notably, the predominant mechanism was chemisorption assisted by physisorption that contributed to the outstanding removal of amitriptyline. The saturated adsorbent was sufficiently regenerated using ethanol eluent. The results highlighted the impressive performance of the as-synthesized boron-doped adsorbent in treating amitriptyline-containing waste effluent.
Collapse
Affiliation(s)
- Wan Ting Tee
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Nicholas Yung Li Loh
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Billie Yan Zhang Hiew
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, 62200 Putrajaya, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Chemical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Svenja Hanson
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Suyin Gan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Lai Yee Lee
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
2
|
Mohamed EN, Abd-Elhamid AI, El-Bardan AA, Soliman HMA, Mohy-Eldin MS. Development of carboxymethyl cellulose-graphene oxide biobased composite for the removal of methylene blue cationic dye model contaminate from wastewater. Sci Rep 2023; 13:14265. [PMID: 37652988 PMCID: PMC10471753 DOI: 10.1038/s41598-023-41431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023] Open
Abstract
Utilizing Glutaraldehyde crosslinked sodium carboxymethyl cellulose (CMC-GA) hydrogel and its nanographene oxide composite (CMC-GA-GOx), an effective carboxymethyl cellulose-graphene oxide biobased composites adsorbent was developed for the adsorption removal of methylene blue (MB) cationic dye contaminate from industrial wastewater. The CMC-GA-GOx composites developed were characterized using FTIR, RAMAN, TGA, SEM, and EDX analysis instruments. Through batch experiments, several variables affecting the removal of MB dye, including the biocomposites GO:CMC composition, adsorption time, pH and temperature, initial MB concentration, adsorbent dosage, and NaCl concentration, were investigated under different conditions. The maximum dye removal percentages ranged between 93 and 98%. They were obtained using biocomposites CMC-GA-GO102 with 20% GO weight percent, adsorption time 25 min, adsorption temperature 25 °C, MB concentrations 10-30 ppm, adsorption pH 7.0, and 0.2 g adsorbent dose. The experimental data of the adsorption process suit the Langmuir isotherm more closely with a maximal monolayer adsorption capacity of 76.92 mg/g. The adsorption process followed the kinetic model of pseudo-second order. The removal of MB was exothermic and spontaneous from a thermodynamic standpoint. In addition, thermodynamic results demonstrated that adsorption operates most effectively at low temperatures. Finally, the reusability of the developed CMC-GA-GO102 has been proved through 10 successive cycles where only 14% of the MB dye removal percentage was lost. These results suggest that the developed CMC-GA-GO102 composite may be an inexpensive and reusable adsorbent for removing organic cationic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Eman N Mohamed
- Department of Chemistry, Faculty of Science, Alexandria University, P.O.Box 426, Alexandria, 21321, Egypt.
| | - Ahmed I Abd-Elhamid
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| | - Ali A El-Bardan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O.Box 426, Alexandria, 21321, Egypt
| | - Hesham M A Soliman
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, 21934, Alexandria, Egypt
| |
Collapse
|
3
|
Kang WW, Zhao YN, Zhang WQ, Sun Y, Zhang XQ, Yi GY, Huang GX, Xing BL, Zhang CX, Lin BP. High-performance aqueous rechargeable nickel//bismuth batteries with Bi 2MoO 6@rGO and Co 0.5Ni 0.5MoO 4@rGO as electrode materials. NEW J CHEM 2023. [DOI: 10.1039/d2nj05911h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Aqueous rechargeable nickel–bismuth batteries have surfaced as a prospective energy storage and conversion system because of their merits of good safety, high power density, and low cost.
Collapse
Affiliation(s)
- Wei-Wei Kang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Ya-Nan Zhao
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wen-Qing Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xue-Qin Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Gui-Yun Yi
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Guang-Xu Huang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Bao-Lin Xing
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chuan-Xiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Li P, Yang C, Xu X, Miao C, He T, Jiang B, Wu W. Preparation of Bio-Based Aerogel and Its Adsorption Properties for Organic Dyes. Gels 2022; 8:755. [PMID: 36421576 PMCID: PMC9689576 DOI: 10.3390/gels8110755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2023] Open
Abstract
The effective utilization of biomass and the purification of dye wastewater are urgent problems. In this study, a biomass aerogel (CaCO3@starch/polyacrylamide/TEMPO-oxidized nanocellulose, CaCO3@STA/PAM/TOCN) was prepared by combining nanocellulose with starch and introducing calcium carbonate nanoparticles, which exhibited a rich three-dimensional layered porous structure with a very light mass. Starch and nanocellulose can be grafted onto the molecular chain of acrylamide, while calcium carbonate nanopores can make the gel pore size uniform and have excellent swelling properties. Here, various factors affecting the adsorption behavior of this aerogel, such as pH, contact time, ambient temperature, and initial concentration, are investigated. From the kinetic data, it can be obtained that the adsorption process fits well with the pseudo-second-order. The Langmuir isotherm model can fit the equilibrium data well. The thermodynamic data also demonstrated the spontaneous and heat-absorbing properties of anionic and cationic dyes on CaCO3@STA/PAM/TOCN aerogels. The adsorption capacity of Congo red (CR) and methylene blue (MB) by CaCO3@STA/PAM/TOCN was 277.76 mg/g and 101.01 mg/g, respectively. Therefore, cellulose and starch-based aerogels can be considered promising adsorbents for the treatment of dye wastewater.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianjiao He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Han Y, Ma Z, Cong H, Wang Q, Wang X. Surface Chitosan-coated Fe3O4 immobilized lignin for adsorbed phosphate radicals in solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zhang L, Feng G, Zhou W, Zhang Y, Wang L, Wang L, Liu Z, Zhao T, Zhu W, Zhang B. Core-shell sp3@sp2 nanocarbon for adsorption of anionic and cationic organic dyes: Effect of the graphitization of nanocarbon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Sonochemical synthesis of improved graphene oxide for enhanced adsorption of methylene blue. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rong N, Chen C, Ouyang K, Zhang K, Wang X, Xu Z. Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zhang X, Yi G, Zhang Z, Yu J, Fan H, Li P, Zeng H, Xing B, Chen L, Zhang C. Magnetic graphene-based nanocomposites as highly efficient absorbents for Cr(VI) removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14671-14680. [PMID: 33216298 DOI: 10.1007/s11356-020-11634-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Due to the merits of their high adsorption and convenient separation, magnetic graphene-based composites have become a promising adsorbent in terms of wastewater treatment. However, recycling and regeneration properties of magnetic graphene-based composites are still a conundrum, which remains to be resolved. Here, Fe3O4/reduced graphene oxide (RGO) (Fe3O4/RGO) nanocomposites were synthesized by one-step solvent-thermal reduction route and used as adsorbents for water purification. It was encouraging to find that the nanocomposites possessed many intriguing properties in removing of Cr(VI) ions, including high adsorption efficiency and excellent recycling and regeneration property. The results indicated that the magnetic separation process of the Fe3O4/RGO nanocomposites only took less than 5 s and the maximum removal efficiency of Cr(VI) reached 99.9% under the optimum experimental conditions. Most significantly, the adsorption rate of Cr(VI) can still be as high as 98.13% after 10 cycles and the single recycle quality of the nanocomposites can maintain at more than 80%. As a result, the Fe3O4/RGO nanocomposites could be a potential adsorbent for removing heavy metal ions effectively, especially in environmental protection and restoration.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Guiyun Yi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China.
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China.
| | - Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Haiyang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Huihui Zeng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Baolin Xing
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Lunjian Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| |
Collapse
|
10
|
Li K, Lei Y, Liao J, Zhang Y. A facile synthesis of graphene oxide/locust bean gum hybrid aerogel for water purification. Carbohydr Polym 2021; 254:117318. [PMID: 33357881 DOI: 10.1016/j.carbpol.2020.117318] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
Graphene oxide/locust bean gum (GO/LBG) aerogels, synthesized in an ice crystal template without using any chemical modifiers, were used for the treatment of water pollution. Various characterization results showed that GO/LBG aerogel exhibited a network-like three-dimensional (3D) structure with large specific surface area. The adsorption data revealed that GO/LBG aerogels with GO/LBG mass ratio of 1:4 (GO/LBG-1 aerogels) exhibited more prominent adsorption properties for Rhodamine-B (RhB, 514.5 mgg-1) than Indigo Carmine (IC, 134.6 mgg-1). Simultaneously, GO/LBG-1 aerogels could selectively remove RhB from a binary mixed solution of RhB-IC dyes. Furthermore, GO/LBG-1 aerogels also displayed excellent reusability and could still reach 92.4 % after ten cycles. Based on the above results, GO/LBG-1 aerogel could be considered as an ideal adsorbent with potential application value for removing water-soluble RhB from wastewater.
Collapse
Affiliation(s)
- Keding Li
- State Key Laboratory of Environmental Friendly Energy Materials & School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China; Sichuan Co-Innovation Center for New Energetic Materials, School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yuqing Lei
- State Key Laboratory of Environmental Friendly Energy Materials & School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Jun Liao
- State Key Laboratory of Environmental Friendly Energy Materials & School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yong Zhang
- State Key Laboratory of Environmental Friendly Energy Materials & School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China; Sichuan Co-Innovation Center for New Energetic Materials, School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China.
| |
Collapse
|
11
|
Sadeghi S, Zakeri HR, Saghi MH, Ghadiri SK, Talebi SS, Shams M, Dotto GL. Modified wheat straw-derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3556-3565. [PMID: 32918690 DOI: 10.1007/s11356-020-10647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.
Collapse
Affiliation(s)
- Shahram Sadeghi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Spiritual Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Zakeri
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Li H, Zheng Y, Liu H, Li J, Li Y, Liao X, Wei D. A novel graphene oxide/halloysite hybrid aerogel linked by glassy polymer. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1845570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hongyan Li
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Yinghan Zheng
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Hongli Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Jing Li
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Yajing Li
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Xiaolan Liao
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Dongqing Wei
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| |
Collapse
|
13
|
Zhang D, Qiu J, Shi L, Liu Y, Pan B, Xing B. The mechanisms and environmental implications of engineered nanoparticles dispersion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137781. [PMID: 32199363 DOI: 10.1016/j.scitotenv.2020.137781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Dispersion of engineered nanoparticles (ENPs) has drawn special research attentions because the environmental behavior, risks, and applications of ENPs are greatly dependent on their dispersing status. This review summarizes the latest research progress of dispersion mechanisms, environmental applications in contaminants adsorption, and toxicity of ENPs dispersed in liquid and in solid matrix (3D-ENPs). Dispersion mechanisms of ENPs, including steric hindrance, electrostatic repulsion and "micelle wrapping" are well understood in single dispersing agent, however, the prediction of ENPs dispersion in real environments is not straightforward because of the diversity of structures, components, and properties of natural organic molecule mixtures. The adsorption characteristics, depending on the exposed surface areas in liquid, are significantly different between dispersed and aggregated ENPs. Comparing with the aggregated ENPs, the toxicity of dispersed ENPs is generally enhanced due to the increased uptake, released metal ions, carried contaminants, and induced ROS. 3D-ENPs not only inherit the excellent adsorption performance of ENPs dispersed in liquid, but also are beneficial to the separation and recycle from aqueous solutions due to their 3D rigid structures. However, the adsorption mechanisms as affected by environmental conditions are still unclear. Additionally, the potential risks of 3D-ENPs should be paid more attentions, with an emphasis on free radicals and stability of 3D structure.
Collapse
Affiliation(s)
- Di Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Junke Qiu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Lin Shi
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Yang Liu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
14
|
Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques. Molecules 2020; 25:molecules25112661. [PMID: 32521705 PMCID: PMC7321339 DOI: 10.3390/molecules25112661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
Research on the composition and structure of coal is the most important and complex basic research in the coal chemistry field. Various methods have been used to study the structure of coal from different perspectives. However, due to the complexity of coal and the limitations of research methods, research on the macromolecular structure of coal still lacks systematicness. Huainan coalfield is located in eastern China and is the largest coal production and processing base in the region. In this study, conventional proximate analysis and ultimate analysis, as well as advanced instrumental analysis methods, such as Fourier transform infrared spectroscopy (FITR), X-ray diffraction (XRD), 13C-CP/MAS NMR, and other methods (SEM and AFM), were used to analyze the molecular structure of Huainan coal (HNC) and the distribution characteristics of oxygen in different oxygen-containing functional groups (OCFGs) in an in-depth manner. On the basis of SEM observation, it could be concluded that the high-resolution morphology of HNC’s surface contains pores and fractures of different sizes. The loose arrangement pattern of HNC’s molecular structure could be seen from 3D AFM images. The XRD patterns show that the condensation degree of HNC’s aromatic ring is low, and the orientation degree of carbon network lamellae is poor. The calculated ratio of the diameter of aromatic ring lamellae to their stacking height (La/Lc = 1.05) and the effective stacking number of aromatic nuclei (Nave = 7.3) show that the molecular space structure of HNC is a cube formed of seven stacked aromatic lamellae. The FTIR spectra fitting results reveal that the aliphatic chains in HNC’s molecular structure are mainly methyne and methylene. Oxygen is mainly –O–, followed by –C=O, and contains a small amount of –OH, the ratio of which is about 8:1:2. The molar fraction of binding elements has the approximate molecular structure C100H76O9N of organic matter in HNC. The results of the 13C NMR experiments show that the form of aromatic carbon atoms in HNC’s structure (the average structural size Xb of aromatic nucleus = 0.16) is mainly naphthalene with a condensation degree of 2, and the rest are aromatic rings composed of benzene rings and heteroatoms. In addition, HNC is relatively rich in ≡CH and –CH2– structures.
Collapse
|
15
|
Zheng M, Ma X, Hu J, Zhang X, Li D, Duan W. Novel recyclable BiOBr/Fe3O4/RGO composites with remarkable visible-light photocatalytic activity. RSC Adv 2020; 10:19961-19973. [PMID: 35520430 PMCID: PMC9054123 DOI: 10.1039/d0ra01668c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic BiOBr/Fe3O4/RGO composites with remarkable photocatalytic capability were prepared by a simple hydrothermal method to load 3D flower-like microspherical BiOBr onto the surface of Fe3O4/RGO.
Collapse
Affiliation(s)
- Mingkun Zheng
- School of Science and Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy
- Hubei University of Technology
- Wuhan 430068
- China
| | - Xinguo Ma
- School of Science and Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy
- Hubei University of Technology
- Wuhan 430068
- China
| | - Jisong Hu
- School of Science and Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy
- Hubei University of Technology
- Wuhan 430068
- China
| | - Xinxin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Di Li
- School of Metallurgical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Wangyang Duan
- School of Science and Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy
- Hubei University of Technology
- Wuhan 430068
- China
| |
Collapse
|
16
|
Zhou X, Xu M, Wang L, Liu X. The Adsorption of Methylene Blue by an Amphiphilic Block Co-Poly(Arylene Ether Nitrile) Microsphere-Based Adsorbent: Kinetic, Isotherm, Thermodynamic and Mechanistic Studies. NANOMATERIALS 2019; 9:nano9101356. [PMID: 31546667 PMCID: PMC6835929 DOI: 10.3390/nano9101356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
Dye pollution is a serious problem in modern society. We desired to develop an efficient adsorbent for the decontamination of discharged dyes. In this work, the polymeric microspheres derived from a kind of amphiphilic block of co-poly(arylene ether nitrile) (B-b-S-P) were prepared on the basis of “oil-in-water” (O/W) microemulsion method. The B-b-S-P microspheres were found competent to remove the cationic dye, methylene blue (MB); and various influential factors, such as contact time, initial concentration, solution pH and temperature were investigated. Results indicated that the maximum adsorption capacity of B-b-S-P microspheres for MB was 119.84 mg/g at 25 °C in neutral conditions. Adsorption kinetics and isotherm dates were well fitted to a pseudo-second-order kinetic model and the Langmuir isotherm model, and thermodynamic parameters implied that the adsorption process was endothermic. The B-b-S-P microspheres also exhibited a highly selective adsorption for cationic dye MB, even in the presence of anionic dye methyl orange (MO). In addition, the possible adsorption mechanism was studied, suggesting that the electrostatic interaction and π–π interaction could be the main force in the adsorption process.
Collapse
Affiliation(s)
- Xuefei Zhou
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Mingzhen Xu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lingling Wang
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiaobo Liu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|