1
|
Liang W, Long H, Zhang H, Bai J, Jiang B, Wang J, Fu L, Ming W, Zhao J, Zeng B. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Deliv 2024; 31:2391001. [PMID: 39239763 PMCID: PMC11382735 DOI: 10.1080/10717544.2024.2391001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Kanniyappan H, Sundaram MK, Ravikumar A, Chakraborty S, Gnanamani A, Mani U, Kumar N, Muthuvijayan V. Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds. Int J Biol Macromol 2024; 279:135182. [PMID: 39216566 DOI: 10.1016/j.ijbiomac.2024.135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We have fabricated and characterized novel bioactive nanocomposite interpenetrating polymer network (IPN) scaffolds to treat bone defects by loading mesoporous silica nanoparticles (MSNs) into blends of Konjac glucomannan, polyvinyl alcohol, and polycaprolactone. By loading MSNs, we developed a porous nanocomposite scaffold with mechanical strengths comparable to cancellous bone. In vitro cell culture studies proved the cytocompatibility of the nanocomposite scaffolds. RT-PCR studies confirmed that these scaffolds significantly upregulated major osteogenic markers. The in vivo chick chorioallantoic membrane (CAM) assay confirmed the proangiogenic activity of the nanocomposite IPN scaffolds. In vivo studies were performed using Wistar rats to evaluate the scaffolds' compatibility, osteogenic activity, and proangiogenic properties. Liver and renal function tests confirmed that these scaffolds were nontoxic. X-ray and μ-CT results show that the bone defects treated with the nanocomposite scaffolds healed at a much faster rate compared to the untreated control and those treated with IPN scaffolds. H&E and Masson's trichrome staining showed angiogenesis near the newly formed bone and the presence of early-stage connective tissues, fibroblasts, and osteoblasts in the defect region at 8 weeks after surgery. Hence, these advantageous physicochemical and biological properties confirm that the nanocomposite IPN scaffolds are ideal for treating bone defects.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Kumar Sundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akhil Ravikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudip Chakraborty
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - A Gnanamani
- Microbiology Lab, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - U Mani
- Animal House, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Chen S, Qiu Z, Zhao L, Huang X, Xiao X. Functionalized BP@(Zn+Ag)/EPLA Nanofibrous Scaffolds Fabricated by Cryogenic 3D Printing for Bone Tissue Engineering. Adv Healthc Mater 2024; 13:e2401038. [PMID: 38923359 DOI: 10.1002/adhm.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
This study fabricates a functionalized scaffold by cryogenic three-dimensional (3D) printing using an aminated poly-L-lactic acid (EPLA) solution containing nanosilver/zinc-coated black phosphorus (BP@(Zn+Ag)) nanocomposites. The nanocomposites are prepared by a green method of in situ photodeposition of silver and zinc nanoparticles (AgNPs and ZnNPs) on BP nanosheets (BPNs) under visible light irradiation without any chemical reductant. Scanning electron microscope (SEM) and X-ray energy dispersive spectrometer (EDS) confirm the uniform distribution of BP@(Zn+Ag) nanoparticles in the EPLA nanofibrous matrix. The in vitro tests show that the fabricated BP@(Zn+Ag)/EPLA nanofibrous scaffold exhibits excellent antibacterial activity (over 96%) against E. coli and S. aureus, as well as enhanced cell viability and osteogenic activity to facilitate the growth and differentiation of osteoblasts. The in vivo rat calvarial defect model also demonstrates that the BP@(Zn+Ag)/EPLA nanofibrous scaffold promotes new bone tissue formation around the implant site. Therefore, the prepared multifunctional 3D printed BP@(Zn+Ag)/EPLA nanofibrous scaffold has great potential for bone tissue engineering (BTE) applications.
Collapse
Affiliation(s)
- Shunyu Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhoucheng Qiu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| | - Lihua Zhao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| | - Xiufeng Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
4
|
Sousa HC, Ruben RB, Viana JC. On the Fused Deposition Modelling of Personalised Bio-Scaffolds: Materials, Design, and Manufacturing Aspects. Bioengineering (Basel) 2024; 11:769. [PMID: 39199727 PMCID: PMC11352192 DOI: 10.3390/bioengineering11080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Bone tissue engineering (BTE) is an important field of research, essential in order to heal bone defects or replace impaired tissues and organs. As one of the most used additive manufacturing processes, 3D printing can produce biostructures in the field of tissue engineering for bones, orthopaedic tissues, and organs. Scaffold manufacturing techniques and suitable materials with final structural, mechanical properties, and the biological response of the implanted biomaterials are an essential part of BTE. In fact, the scaffold is an essential component for tissue engineering where cells can attach, proliferate, and differentiate to develop functional tissue. Fused deposition modelling (FDM) is commonly employed in the 3D printing of tissue-engineering scaffolds. Scaffolds must have a good architecture, considering the porosity, permeability, degradation, and healing capabilities. In fact, the architecture of a scaffold is crucial, influencing not only the physical and mechanical properties but also the cellular behaviours of mesenchymal stem cells. Cells placed on/or within the scaffolds is a standard approach in tissue engineering. For bio-scaffolds, materials that are biocompatible and biodegradable, and can support cell growth are the ones chosen. These include polymers like polylactic acid (PLA), polycaprolactone (PCL), and certain bioglass or composite materials. This work comprehensively integrates aspects related to the optimisation of biocompatible and biodegradable composites with the low cost, simple, and stable FDM technology to successfully prepare the best designed composite porous bone-healing scaffolds. FDM can be used to produce low-cost bone scaffolds, with a suitable porosity and permeability.
Collapse
Affiliation(s)
- Helena Cardoso Sousa
- IPC/LASI—Institute of Polymers and Composites/Associated Laboratory in Intelligent Systems, Polymer Engineering Department, University of Minho, 4800-058 Guimarães, Portugal;
- ESTG-CDRSP, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal;
| | - Rui B. Ruben
- ESTG-CDRSP, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal;
| | - Júlio C. Viana
- IPC/LASI—Institute of Polymers and Composites/Associated Laboratory in Intelligent Systems, Polymer Engineering Department, University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
5
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Lin S, Patrawalla NY, Zhai Y, Dong P, Kishore V, Gu L. Computational and Experimental Characterization of Aligned Collagen across Varied Crosslinking Degrees. MICROMACHINES 2024; 15:851. [PMID: 39064362 PMCID: PMC11278924 DOI: 10.3390/mi15070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Collagen-based scaffolds have been widely used in tissue engineering. The alignment of collagen fibers and the degree of crosslinking in engineering tissue scaffolds significantly affect cell activity and scaffold stability. Changes in microarchitecture and crosslinking degree also impact the mechanical properties of collagen scaffolds. A clear understanding of the effects of collagen alignment and crosslinking degrees can help properly control these critical parameters for fabricating collagen scaffolds with desired mechanical properties. In this study, combined uniaxial mechanical testing and finite element method (FEM) were used to quantify the effects of fiber alignment and crosslinking degree on the mechanical properties of collagen threads. We have fabricated electrochemically aligned collagen (ELAC) and compared it with randomly distributed collagen at varying crosslinking degrees, which depend on genipin concentrations of 0.1% or 2% for crosslinking durations of 1, 4, and 24 h. Our results indicate that aligned collagen fibers and higher crosslinking degree contribute to a larger Young's modulus. Specifically, aligned fiber structure, compared to random collagen, significantly increases Young's modulus by 112.7% at a 25% crosslinking degree (0.1% (4 h), i.e., 0.1% genipin concentration with a crosslinking duration of 4 h). Moreover, the ELAC Young's modulus increased by 90.3% as the crosslinking degree doubled by changing the genipin concentration from 0.1% to 2% with the same 4 h crosslinking duration. Furthermore, verified computational models can predict mechanical properties based on specific crosslinking degrees and fiber alignments, which facilitate the controlled fabrication of collagen threads. This combined experimental and computational approach provides a systematic understanding of the interplay among fiber alignment, crosslinking parameters, and mechanical performance of collagen scaffolds. This work will enable the precise fabrication of collagen threads for desired tissue engineering performance, potentially advancing tissue engineering applications.
Collapse
Affiliation(s)
- Shengmao Lin
- School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China
| | - Nashaita Y. Patrawalla
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Yingnan Zhai
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Pengfei Dong
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Vipuil Kishore
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Linxia Gu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| |
Collapse
|
7
|
Wang H, Guo Y, Jiang Y, Ge Y, Wang H, Shi D, Zhang G, Zhao J, Kang Y, Wang L. Exosome-loaded biomaterials for tendon/ligament repair. BIOMATERIALS TRANSLATIONAL 2024; 5:129-143. [PMID: 39351162 PMCID: PMC11438604 DOI: 10.12336/biomatertransl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Exosomes, a specialised type of extracellular vesicle, have attracted significant attention in the realm of tendon/ligament repair as a potential biologic therapeutic tool. While the competence of key substances responsible for the delivery function was gradually elucidated, series of shortcomings exemplified by the limited stability still need to be improved. Therefore, how to take maximum advantage of the biological characteristics of exosomes is of great importance. Recently, the comprehensive exploration and application of biomedical engineering has improved the availability of exosomes and revealed the future direction of exosomes combined with biomaterials. This review delves into the present application of biomaterials such as nanomaterials, hydrogels, and electrospun scaffolds, serving as the carriers of exosomes in tendon/ligament repair. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way the future direction of biomaterials in the application of exosomes in tendon/ligament repair in this field.
Collapse
Affiliation(s)
- Haohan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonglin Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Jiang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingyu Ge
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyi Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyang Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Kang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhou H, He Z, Cao Y, Chu L, Liang B, Yu K, Deng Z. An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation. Theranostics 2024; 14:3739-3759. [PMID: 38948054 PMCID: PMC11209720 DOI: 10.7150/thno.97412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
- Department of Ultrasound & Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhongyuan He
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| | - Youde Cao
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Lei Chu
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| | - Bing Liang
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing 400021, P. R. China
| | - Zhongliang Deng
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| |
Collapse
|
9
|
Sadeghian Dehkord E, De Carvalho B, Ernst M, Albert A, Lambert F, Geris L. Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models. Mater Today Bio 2024; 26:101100. [PMID: 38854953 PMCID: PMC11157282 DOI: 10.1016/j.mtbio.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models. Methods The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes. Results A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength. Conclusion The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Bruno De Carvalho
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
| | - Adelin Albert
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
- Department of Public Health Sciences, University of Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
| |
Collapse
|
10
|
Sun H, Luan J, Dong S. Hydrogels promote periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1411494. [PMID: 38827033 PMCID: PMC11140061 DOI: 10.3389/fbioe.2024.1411494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Periodontal defects involve the damage and loss of periodontal tissue, primarily caused by periodontitis. This inflammatory disease, resulting from various factors, can lead to irreversible harm to the tissues supporting the teeth if not treated effectively, potentially resulting in tooth loss or loosening. Such outcomes significantly impact a patient's facial appearance and their ability to eat and speak. Current clinical treatments for periodontitis, including surgery, root planing, and various types of curettage, as well as local antibiotic injections, aim to mitigate symptoms and halt disease progression. However, these methods fall short of fully restoring the original structure and functionality of the affected tissue, due to the complex and deep structure of periodontal pockets and the intricate nature of the supporting tissue. To overcome these limitations, numerous biomaterials have been explored for periodontal tissue regeneration, with hydrogels being particularly noteworthy. Hydrogels are favored in research for their exceptional absorption capacity, biodegradability, and tunable mechanical properties. They have shown promise as barrier membranes, scaffolds, carriers for cell transplantation and drug delivery systems in periodontal regeneration therapy. The review concludes by discussing the ongoing challenges and future prospects for hydrogel applications in periodontal treatment.
Collapse
Affiliation(s)
- Huiying Sun
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiayi Luan
- Foshan Stomatology Hospital and School of Medicine, Foshan, Guangdong, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Zhu Y, Gu H, Yang J, Li A, Hou L, Zhou M, Jiang X. An Injectable silk-based hydrogel as a novel biomineralization seedbed for critical-sized bone defect regeneration. Bioact Mater 2024; 35:274-290. [PMID: 38370865 PMCID: PMC10873665 DOI: 10.1016/j.bioactmat.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
The healing process of critical-sized bone defects urges for a suitable biomineralization environment. However, the unsatisfying repair outcome usually results from a disturbed intricate milieu and the lack of in situ mineralization resources. In this work, we have developed a composite hydrogel that mimics the natural bone healing processes and serves as a seedbed for bone regeneration. The oxidized silk fibroin and fibrin are incorporated as rigid geogrids, and amorphous calcium phosphate (ACP) and platelet-rich plasma serve as the fertilizers and loam, respectively. Encouragingly, the seedbed hydrogel demonstrates excellent mechanical and biomineralization properties as a stable scaffold and promotes vascularized bone regeneration in vivo. Additionally, the seedbed serves a succinate-like function via the PI3K-Akt signaling pathway and subsequently orchestrates the mitochondrial calcium uptake, further converting the exogenous ACP into endogenous ACP. Additionally, the seedbed hydrogel realizes the succession of calcium resources and promotes the evolution of the biotemplate from fibrin to collagen. Therefore, our work has established a novel silk-based hydrogel that functions as an in-situ biomineralization seedbed, providing a new insight for critical-sized bone defect regeneration.
Collapse
Affiliation(s)
- Yuhui Zhu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Hao Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Lingli Hou
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 115 Jinzun Road, Shanghai, 200125, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| |
Collapse
|
12
|
Liu X, Gao J, Liu J, Cheng J, Han Z, Li Z, Chang Z, Zhang L, Li M, Tang P. Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2581-2594. [PMID: 38489227 DOI: 10.1021/acsbiomaterials.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The treatment of bone tissue defects continues to be a complex medical issue. Recently, three-dimensional (3D)-printed scaffold technology for bone tissue engineering (BTE) has emerged as an important therapeutic approach for bone defect repair. Despite the potential of BTE scaffolds to contribute to long-term bone reconstruction, there are certain challenges associated with it including the impediment of bone growth within the scaffolds and vascular infiltration. These difficulties can be resolved by using scaffold structural modification strategies that can effectively guide bone regeneration. This study involved the preparation of biphasic calcium phosphate spherical hollow structural scaffolds (SHSS) with varying pore sizes using 3D printing (photopolymerized via digital light processing). The chemical compositions, microscopic morphologies, mechanical properties, biocompatibilities, osteogenic properties, and impact on repairing critical-sized bone defects of SHSS were assessed through characterization analyses, in vitro cytological assays, and in vivo biological experiments. The results revealed the biomimetic properties of SHSS and their favorable biocompatibility. The scaffolds stimulated cell adhesion, proliferation, differentiation, and migration and facilitated the expression of osteogenic genes and proteins, including Col-1, OCN, and OPN. Furthermore, they could effectively repair a critical-sized bone defect in a rabbit femoral condyle by establishing an osteogenic platform and guiding bone regeneration in the defect region. This innovative strategy presents a novel therapeutic approach for assessing critical-sized bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhenchuan Han
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zijian Li
- Medical School of Chinese PLA, Beijing 100853, China
| | | | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
13
|
Liu X, Gao J, Liu J, Zhang L, Li M. Inhibiting the "isolated island" effect in simulated bone defect repair using a hollow structural scaffold design. Front Bioeng Biotechnol 2024; 12:1362913. [PMID: 38633663 PMCID: PMC11022659 DOI: 10.3389/fbioe.2024.1362913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The treatment of bone tissue defects remains a complicated clinical challenge. Recently, the bone tissue engineering (BTE) technology has become an important therapeutic approach for bone defect repair. Researchers have improved the scaffolds, cells, and bioactive factors used in BTE through various existing bone repair material preparation strategies. However, due to insufficient vascularization, inadequate degradation, and fibrous wrapping, most BTE scaffolds impede new bone ingrowth and the reconstruction of grid-like connections in the middle and late stages of bone repair. These non-degradable scaffolds become isolated and disordered like independent "isolated islands", which leads to the failure of osteogenesis. Consequently, we hypothesized that the "island effect" prevents successful bone repair. Accordingly, we proposed a new concept of scaffold modification-osteogenesis requires a bone temporary shelter (also referred to as the empty shell osteogenesis concept). Based on this concept, we consider that designing hollow structural scaffolds is the key to mitigating the "isolated island" effect and enabling optimal bone regeneration and reconstruction.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jianpeng Gao
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
14
|
Wei H, Chen W, Chen S, Zhang T, Xiao X. 3D printing of MOF-reinforced methacrylated gelatin scaffolds for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:443-462. [PMID: 38104316 DOI: 10.1080/09205063.2023.2295057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Scaffolds based on gelatin (Gel) play a crucial role in bone tissue engineering. However, the low mechanical properties, rapid biodegradation rate, insufficient osteogenic activity and lacking anti-infective properties limit their applications in bone regeneration. Herein, the incorporation of ibuprofen (IBU)-loaded zeolitic imidazolate framework-8 (ZIF-8) in a methacrylated gelatin (GelMA) matrix was proposed as a simple and effective strategy to develop the IBU-ZIF-8@GelMA scaffolds for enhanced bone regeneration capacity. Results indicated that the IBU-loaded ZIF-8 nanoparticles with tiny particle sizes were uniformly distributed in the GelMA matrix of the IBU-ZIF-8@GelMA scaffolds, and the IBU-loaded ZIF-8 growing in the scaffolds enabled the controlled and sustained releasing of Zn2+ and IBU in pH = 5.5 over a long period for efficient bone repair and long-term anti-inflammatory activity. Furthermore, the doping of the IBU-loaded ZIF-8 nanoparticles efficiently enhanced the compression performance of the GelMA scaffolds. In vitro studies indicated that the prepared scaffolds presented no cytotoxicity to MC3T3-E1 cells and the released Zn2+ during the degradation of the scaffolds promoted MC3T3-E1 cell osteogenic differentiation. Thus, the drug-loaded ZIF-8 modified 3D printed GelMA scaffolds demonstrated great potential in treating bone defects.
Collapse
Affiliation(s)
- Haodong Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Weixin Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shunyu Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Tao Zhang
- Department of Orthopedics Institute, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
15
|
Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol 2024; 11:1252636. [PMID: 38312510 PMCID: PMC10834686 DOI: 10.3389/fbioe.2023.1252636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
There has been increasing attention to produce porous scaffolds that mimic human bone properties for enhancement of tissue ingrowth, regeneration, and integration. Additive manufacturing (AM) technologies, i.e., three dimensional (3D) printing, have played a substantial role in engineering porous scaffolds for clinical applications owing to their high level of design and fabrication flexibility. To this end, this review article attempts to provide a detailed overview on the main design considerations of porous scaffolds such as permeability, adhesion, vascularisation, and interfacial features and their interplay to affect bone regeneration and osseointegration. Physiology of bone regeneration was initially explained that was followed by analysing the impacts of porosity, pore size, permeability and surface chemistry of porous scaffolds on bone regeneration in defects. Importantly, major 3D printing methods employed for fabrication of porous bone substitutes were also discussed. Advancements of MA technologies have allowed for the production of bone scaffolds with complex geometries in polymers, composites and metals with well-tailored architectural, mechanical, and mass transport features. In this way, a particular attention was devoted to reviewing 3D printed scaffolds with triply periodic minimal surface (TPMS) geometries that mimic the hierarchical structure of human bones. In overall, this review enlighten a design pathway to produce patient-specific 3D-printed bone substitutions with high regeneration and osseointegration capacity for repairing large bone defects.
Collapse
Affiliation(s)
- Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Sima Yaghoubian
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Laboratory for Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
16
|
Civantos A, Mesa-Restrepo A, Torres Y, Shetty AR, Cheng MK, Jaramillo-Correa C, Aditya T, Allain JP. Nanotextured porous titanium scaffolds by argon ion irradiation: Toward conformal nanopatterning and improved implant osseointegration. J Biomed Mater Res A 2023; 111:1850-1865. [PMID: 37334879 DOI: 10.1002/jbm.a.37582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.
Collapse
Affiliation(s)
- Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Yadir Torres
- Department of Engineering and Materials Science and Transport, University of Seville, Seville, Spain
| | - Akshath R Shetty
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Camilo Jaramillo-Correa
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jean Paul Allain
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
17
|
Liu L, Wu J, Lv S, Xu D, Li S, Hou W, Wang C, Yu D. Synergistic effect of hierarchical topographic structure on 3D-printed Titanium scaffold for enhanced coupling of osteogenesis and angiogenesis. Mater Today Bio 2023; 23:100866. [PMID: 38149019 PMCID: PMC10750103 DOI: 10.1016/j.mtbio.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 12/28/2023] Open
Abstract
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Leyi Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiyu Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Duoling Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
18
|
Kronemberger GS, Palhares TN, Rossi AM, Verçosa BRF, Sartoretto SC, Resende R, Uzeda MJ, Alves ATNN, Alves GG, Calasans-Maia MD, Granjeiro JM, Baptista LS. A Synergic Strategy: Adipose-Derived Stem Cell Spheroids Seeded on 3D-Printed PLA/CHA Scaffolds Implanted in a Bone Critical-Size Defect Model. J Funct Biomater 2023; 14:555. [PMID: 38132809 PMCID: PMC10744288 DOI: 10.3390/jfb14120555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias 25245-390, RJ, Brazil; (G.S.K.); (B.R.F.V.)
- Laboratory of Eukariotic Cells, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias 25250-020, RJ, Brazil
- Post-Graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias 25071-202, RJ, Brazil
| | - Thiago Nunes Palhares
- Brazilian Center for Physics Research, Xavier Sigaud 150, Urca 22290-180, RJ, Brazil; (T.N.P.); (A.M.R.)
| | - Alexandre Malta Rossi
- Brazilian Center for Physics Research, Xavier Sigaud 150, Urca 22290-180, RJ, Brazil; (T.N.P.); (A.M.R.)
| | - Brunno R. F. Verçosa
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias 25245-390, RJ, Brazil; (G.S.K.); (B.R.F.V.)
| | - Suelen C. Sartoretto
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - Rodrigo Resende
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - Marcelo J. Uzeda
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - Adriana T. N. N. Alves
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - Gutemberg G. Alves
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - Mônica D. Calasans-Maia
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - José Mauro Granjeiro
- Laboratory of Eukariotic Cells, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias 25250-020, RJ, Brazil
- Post-Graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias 25071-202, RJ, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 24020-140, RJ, Brazil; (S.C.S.); (R.R.); (M.J.U.); (A.T.N.N.A.); (G.G.A.); (M.D.C.-M.)
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias 25245-390, RJ, Brazil; (G.S.K.); (B.R.F.V.)
- Laboratory of Eukariotic Cells, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias 25250-020, RJ, Brazil
- Post-Graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias 25071-202, RJ, Brazil
| |
Collapse
|
19
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
20
|
Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. Int J Biol Macromol 2023; 251:126238. [PMID: 37567529 DOI: 10.1016/j.ijbiomac.2023.126238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In designing and fabricating scaffolds to fill the bone defects and stimulate new bone formation, the biomimetics of the construct is a crucial factor in invoking the bone microenvironment to promote osteogenic differentiation. Regarding structural traits, changes in porous characteristics of the scaffolds, such as pore size, pore morphology, and percentage porosity, may patronize or jeopardize their other physicochemical and biological properties. Chitosan (CS), a biodegradable naturally occurring polymer, has recently drawn considerable attention as a scaffolding material in tissue engineering and regenerative medicine. CS-based microporous scaffolds have been reported to aid osteogenesis under both in vitro and in vivo conditions by supporting cellular attachment and proliferation of osteoblast cells and the formation of mineralized bone matrix. This related notion may be found in numerous earlier research, even though the precise mechanism of action that encourages the development of new bone still needs to be understood completely. This article presents the potential correlations and the significance of the porous properties of the CS-based scaffolds to influence osteogenesis and angiogenesis during bone regeneration. This review also goes over resolving the mechanical limitations of CS by blending it with other polymers and ceramics.
Collapse
Affiliation(s)
- Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
21
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
22
|
Gürbüz S, Doğan A, Karakeçili A, Toközlü B. In vivo behavior of a collagen-coated nano-hydroxyapatite enriched polycaprolactone membrane in rat mandibular defects. ULUS TRAVMA ACIL CER 2023; 29:1081-1090. [PMID: 37791448 PMCID: PMC10644081 DOI: 10.14744/tjtes.2023.90673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND This research investigated the ability of fabricated collagen (COL) coated nano-hydroxyapatite (nHA) enriched polycaprolactone (PCL) membrane to facilitate new bone formation (NBF) and its biocompatibility. METHODS Unilateral mandibular angulus defects of 28 female 12-week-old long Evans rats were created with a trephine bur with 5 mm in diameter and divided into two groups. While the test group was treated with the membrane (M-1, M-2), the control was left as self-healing (C-1, C-2) and sacrificed at 2nd (M-1, C-1) and 8th week (M-2, C-2) postoperatively. The mandibular bone of the rats was evaluated histopathologically. Density of the regenerated bone was evaluated with PET/CT. RESULTS Histopathologically, NBF which started from the periphery of the defect had rich cellular character in M-1. Significantly higher NBF was found in M-2 when compared to M-1 (P=0.003). Furthermore, significantly lesser degree of inflammation was found in M-2 when compared to M-1 (P<0.05). CONCLUSION This study suggests that the novel COL-coated nHA-enriched PCL membrane can serve a promising design for tissue engineering as guided bone regeneration in alveolar defects.
Collapse
Affiliation(s)
- Sühan Gürbüz
- Department of Periodontology, Gazi University Faculty of Dentistry, Ankara-Türkiye
| | - Altan Doğan
- Department of Periodontology, Gazi University Faculty of Dentistry, Ankara-Türkiye
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Ankara University Faculty of Engineering, Ankara-Türkiye
| | - Burcu Toközlü
- Department of Oral Pathology, Gazi University Faculty of Dentistry, Ankara-Türkiye
| |
Collapse
|
23
|
Martínez Cutillas A, Sanz-Serrano D, Oh S, Ventura F, Martínez de Ilarduya A. Synthesis of Functionalized Triblock Copolyesters Derived from Lactic Acid and Macrolactones for Bone Tissue Regeneration. Macromol Biosci 2023; 23:e2300066. [PMID: 37031382 DOI: 10.1002/mabi.202300066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Synthetic and functional grafts are a great alternative to conventional grafts. They can provide a physical support and the precise signaling for cells to heal damaged tissues. In this study, a novel RGD peptide end-functionalized poly(ethylene glycol)-b-poly(lactic acid)-b-poly(globalide)-b-poly(lactic acid)-b-poly(ethylene glycol) (RGD-PEG-PLA-PGl-PLA-PEG-RGD) is synthetized and used to prepare functional scaffolds. The PGl inner block is obtained by enzymatic ring-opening polymerization of globalide. The outer PLA blocks are obtained by ring-opening polymerization of both, l-lactide or a racemic mixture, initiated by the α-ω-telechelic polymacrolactone. The presence of PGl inner block enhances the toughness of PLA-based scaffolds, with an increase of the elongation at break up to 300% when the longer block of PGl is used. PLA-PGl-PLA copolymer is coupled with α-ω-telechelic PEG diacids by esterification reaction. PEGylation provides hydrophilic scaffolds as the contact angle is reduced from 114° to 74.8°. That difference improves the contact between the scaffolds and the culture media. Moreover, the scaffolds are functionalized with RGD peptides at the surface significantly enhancing the adhesion and proliferation of bone marrow-derived primary mesenchymal stem cells and MC3T3-E1 cell lines in vitro. These results place this multifunctional polymer as a great candidate for the preparation of temporary grafts.
Collapse
Affiliation(s)
- A Martínez Cutillas
- Artificial Nature S.L., Baldiri i Reixac 10, Barcelona, 08028, Spain
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, Barcelona, 08028, Spain
| | - D Sanz-Serrano
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - S Oh
- Artificial Nature S.L., Baldiri i Reixac 10, Barcelona, 08028, Spain
| | - F Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - A Martínez de Ilarduya
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, Barcelona, 08028, Spain
| |
Collapse
|
24
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
25
|
Puricelli C, Gigliotti CL, Stoppa I, Sacchetti S, Pantham D, Scomparin A, Rolla R, Pizzimenti S, Dianzani U, Boggio E, Sutti S. Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics 2023; 15:1772. [PMID: 37376219 DOI: 10.3390/pharmaceutics15061772] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
26
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Kaplin V, Epifanov E, Minaev N, Bardakova K, Solovieva A, Timashev P, Zagaynova E, Kuznetsova D. FLIM imaging revealed spontaneous osteogenic differentiation of stem cells on gradient pore size tissue-engineered constructs. Stem Cell Res Ther 2023; 14:81. [PMID: 37046354 PMCID: PMC10091689 DOI: 10.1186/s13287-023-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.
Collapse
Affiliation(s)
- Svetlana Rodimova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022.
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000.
| | - Artem Mozherov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Ilya Shchechkin
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Dmitry Kozlov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Dmitry Krylov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Alena Gavrina
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Vladislav Kaplin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St, Moscow, Russia, 119991
| | - Evgenii Epifanov
- Research Center "Crystallography and Photonics", Institute of Photonic Technologies, Russian Academy of Sciences, 2 Pionerskaya St, Troitsk, Moscow, Russia, 108840
| | - Nikita Minaev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Ksenia Bardakova
- Research Center "Crystallography and Photonics", Institute of Photonic Technologies, Russian Academy of Sciences, 2 Pionerskaya St, Troitsk, Moscow, Russia, 108840
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Anna Solovieva
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St, Moscow, Russia, 119991
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Elena Zagaynova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Daria Kuznetsova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| |
Collapse
|
27
|
Taheri S, Ghazali HS, Ghazali ZS, Bhattacharyya A, Noh I. Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration. Biomater Res 2023; 27:22. [PMID: 36935512 PMCID: PMC10026525 DOI: 10.1186/s40824-023-00358-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury. MAIN BODY Functional tissue engineering has recently attracted attention for the repair of cartilage damage using a combination of cells, scaffolds (constructs), biochemical factors, and biomechanical stimuli. As cyclic biomechanical loading is the key factor in maintaining the chondrocyte phenotype, many studies have evaluated the effect of biomechanical stimulation on chondrogenesis. The characteristics of hydrogels, such as their mechanical properties, water content, and cell encapsulation, make them ideal for tissue-engineered scaffolds. Induced cell signaling (biochemical and biomechanical factors) and encapsulation of cells in hydrogels as a construct are discussed for biomechanical stimulation-based tissue regeneration, and several notable studies on the effect of biomechanical stimulation on encapsulated cells within hydrogels are discussed for cartilage regeneration. CONCLUSION Induction of biochemical and biomechanical signaling on the encapsulated cells in hydrogels are important factors for biomechanical stimulation-based cartilage regeneration.
Collapse
Affiliation(s)
- Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hanieh Sadat Ghazali
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Functional, Innovative, and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
28
|
Effects of Calcium Carbonate Microcapsules and Nanohydroxyapatite on Properties of Thermosensitive Chitosan/Collagen Hydrogels. Polymers (Basel) 2023; 15:polym15020416. [PMID: 36679297 PMCID: PMC9861171 DOI: 10.3390/polym15020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Thermosensitive chitosan/collagen hydrogels are osteoconductive and injectable materials. In this study, we aimed to improve these properties by adjusting the ratio of nanohydroxyapatite particles to calcium carbonate microcapsules in a β-glycerophosphate-crosslinked chitosan/collagen hydrogel. Two hydrogel systems with 2% and 5% nanohydroxyapatite particles were studied, each of which had varying microcapsule content (i.e., 0%, 1%, 2%, and 5%). Quercetin-incorporated calcium carbonate microcapsules were prepared. Calcium carbonate microcapsules and nanohydroxyapatite particles were then added to the hydrogel according to the composition of the studied system. The properties of the hydrogels, including cytotoxicity and biocompatibility, were investigated in mice. The calcium carbonate microcapsules were 2-6 µm in size, spherical, with rough and nanoporous surfaces, and thus exhibited a burst release of impregnated quercetin. The 5% nanohydroxyapatite system is a solid particulate gel that supports homogeneous distribution of microcapsules in the three-dimensional matrix of the hydrogels. Calcium carbonate microcapsules increased the mechanical and physical strength, viscoelasticity, and physical stability of the nanohydroxyapatite hydrogels while decreasing their porosity, swelling, and degradation rates. The calcium carbonate microcapsules-nanohydroxyapatite hydrogels were noncytotoxic and biocompatible. The properties of the hydrogel can be tailored by adjusting the ratio of calcium carbonate microcapsules to the nanohydroxyapatite particles. The 1% calcium carbonate microcapsules containing 5% nanohydroxyapatite particle-chitosan/collagen hydrogel exhibited mechanical and physical strength, permeability, and prolonged release profiles of quercetin, which were superior to those of the other studied systems and were optimal for promoting bone regeneration and delivering natural flavonoids.
Collapse
|
29
|
Khoramgah MS, Ghanbarian H, Ranjbari J, Ebrahimi N, Tabatabaei Mirakabad FS, Ahmady Roozbahany N, Abbaszadeh HA, Hosseinzadeh S. Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds. BIOIMPACTS : BI 2023; 13:31-42. [PMID: 36817003 PMCID: PMC9923815 DOI: 10.34172/bi.2021.23711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Treatment of critical-sized bone defects is challenging. Tissue engineering as a state-of-the-art method has been concerned with treating these non-self-healing bone defects. Here, we studied the potentials of new three-dimensional nanofibrous scaffolds (3DNS) with and without human adipose mesenchymal stem cells (ADSCs) for reconstructing rat critical-sized calvarial defects (CSCD). Methods: Scaffolds were made from 1- polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA) (PTFE/ PVA group), and 2- PTFE, PVA, and graphene oxide (GO) nanoparticle (PTFE/ PVA/GO group) and seeded by ADSCs and incubated in osteogenic media (OM). The expression of key osteogenic proteins including Runt-related transcription factor 2 (Runx2), collagen type Iα (COL Iα), osteocalcin (OCN), and osteonectin (ON) at days 14 and 21 of culture were evaluated by western blot and immunocytochemistry methods. Next, 40 selected rats were assigned to five groups (n=8) to create CSCD which will be filled by scaffolds or cell-containing scaffolds. The groups were denominated as the following order: Control (empty defects), PTFE/PVA (PTFE/PVA scaffolds implant), PTFE/PVA/GO (PTFE/PVA/GO scaffolds implant), PTFE/PVA/Cell group (PTFE/PVA scaffolds containing ADSCs implant), and PTFE/PVA/GO/Cell group (PTFE/PVA/GO scaffolds containing ADSCs implant). Six and 12 weeks after implantation, the animals were sacrificed and bone regeneration was evaluated using computerized tomography (CT), and hematoxylin-eosin (H&E) staining. Results: Based on the in-vitro study, expression of bone-related proteins in ADSCs seeded on PTFE/PVA/GO scaffolds were significantly higher than PTFE/PVA scaffolds and TCPS (P<0.05). Based on the in-vivo study, bone regeneration in CSCD were filled with PTFE/PVA/GO scaffolds containing ADSCs were significantly higher than PTFE/PVA scaffolds containing ADSCs (P<0.05). CSCD filled with cell-seeded scaffolds showed higher bone regeneration in comparison with CSCD filled with scaffolds only (P<0.05). Conclusion: The data provided evidence showing new freeze-dried nanofibrous scaffolds formed from hydrophobic (PTFE) and hydrophilic (PVA) polymers with and without GO provide a suitable environment for ADSCs due to the expression of bone-related proteins. ADSCs and GO in the implanted scaffolds had a distinct effect on the bone regeneration process in this in-vivo study.
Collapse
Affiliation(s)
- Maryam Sadat Khoramgah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilufar Ebrahimi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biomedical Engineering, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sadat Tabatabaei Mirakabad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Private Practice, Bradford ON, Canada
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Hojjat-Allah Abbaszadeh, ; Simzar Hosseinzadeh,
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Hojjat-Allah Abbaszadeh, ; Simzar Hosseinzadeh,
| |
Collapse
|
30
|
Zenebe CG. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4996530. [PMID: 36560965 PMCID: PMC9767726 DOI: 10.1155/2022/4996530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Millions of people around the world have bone-tissue defects. Autologous and allogeneic bone grafting are frequent therapeutic techniques; however, none has produced the best therapeutic results. This has inspired researchers to investigate novel bone-regeneration technologies. In recent years, the development of bone tissue engineering (BTE) scaffolds has been at the forefront of this discipline. Due to their limitless supply and lack of disease transmission, engineered bone tissue has been advanced for the repair and reconstruction of bone deformities. Bone tissue is a highly vascularized, dynamic tissue that constantly remodels during an individual's lifetime. Bone tissue engineering is aimed at stimulating the creation of new, functional bone by combining biomaterials, cells, and factor treatment synergistically. This article provides a review of wollastonite's biomaterial application in bone tissue engineering. This work includes an explanation of wollastonite minerals including mining, raw materials for the synthesis of artificial wollastonite with various methods, its biocompatibility, and biomedical applications. Future perspectives are also addressed, along with topics like bone tissue engineering, the qualities optimal bone scaffolds must have, and the way a scaffold is designed can have a big impact on how the body reacts.
Collapse
Affiliation(s)
- Chirotaw Getem Zenebe
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| |
Collapse
|
31
|
Suttiat K, Wattanutchariya W, Manaspon C. Preparation and Characterization of Porous Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) (PLA/PBAT) Scaffold with Polydopamine-Assisted Biomineralization for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7756. [PMID: 36363351 PMCID: PMC9658926 DOI: 10.3390/ma15217756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The development of scaffolds that simultaneously provide porous architectures and osteogenic properties is the major challenge in tissue engineering. Herein, a scaffold with high porosity and well interconnected networks, namely poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT), was fabricated using the gas foaming/ammonium bicarbonate particulate leaching technique. Mussel-inspired polydopamine (PDA)-assisted biomineralization generated by two-step simple soaking in dopamine solution and 10× SBF-like solution was performed to improve the material's osteogenicity. Highly porous scaffolds available in less organized opened cell structures with diameters ranging from 10 µm to 100 µm and 200 µm to 500 µm were successfully prepared. The well interconnected porous architectures were observed through the whole thickness of the scaffold. The even deposition of the organic-inorganic bioactive mineralized layer composed of PDA and nano-scale hydroxyapatite (HA) crystals on the scaffold surface was evidenced by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The developed scaffold exhibited high total porosity (84.17 ± 1.29%), a lower surface contact angle (θ = 45.7 ± 5.9°), lower material degradation rate (7.63 ± 2.56%), and a high level of material biocompatibility. The MTT assay and Alizarin Red S staining (ARS) confirmed its osteogenic enhancement property toward human osteoblast-like cells (MG-63). These results clarified that the developed porous PLA/PBAT scaffold with PDA-assisted biomineralization exhibited good potential for application as a biomaterial for bone tissue regeneration and hard tissue engineering.
Collapse
Affiliation(s)
- Kullapop Suttiat
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wassanai Wattanutchariya
- Advanced Manufacturing and Management Technology Research Center, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Layered scaffolds in periodontal regeneration. J Oral Biol Craniofac Res 2022; 12:782-797. [PMID: 36159068 PMCID: PMC9489757 DOI: 10.1016/j.jobcr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Periodontitis is a common inflammatory disease in dentistry that may lead to tooth loss and aesthetic problems. Periodontal tissue has a sophisticated architecture including four sections of alveolar bone, cementum, gingiva, and periodontal ligament fiber; all these four can be damaged during periodontitis. Thus, for whole periodontal regeneration, it is important to form both hard and soft tissue structures simultaneously on the tooth root surface without forming junctional epithelium and ankylosis. This condition makes the treatment of the periodontium a challenging process. Various regenerative methods including Guided Bone/Tissue Regeneration (GBR/GTR) using various membranes have been developed. Although using such GBR/GTR membranes was successful for partial periodontal treatment, they cannot be used for the regeneration of complete periodontium. For this purpose, multilayered scaffolds are now being developed. Such scaffolds may include various biomaterials, stem cells, and growth factors in a multiphasic configuration in which each layer is designed to regenerate specific section of the periodontium. This article provides a comprehensive review of the multilayered scaffolds for periodontal regeneration based on natural or synthetic polymers, and their combinations with other biomaterials and bioactive molecules. After highlighting the challenges related to multilayered scaffolds preparation, features of suitable scaffolds for periodontal regeneration are discussed.
Collapse
|
33
|
Stamnitz S, Krawczenko A, Szałaj U, Górecka Ż, Antończyk A, Kiełbowicz Z, Święszkowski W, Łojkowski W, Klimczak A. Osteogenic Potential of Sheep Mesenchymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold. Cells 2022; 11:3446. [PMID: 36359842 PMCID: PMC9659177 DOI: 10.3390/cells11213446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 08/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) attract interest in regenerative medicine for their potential application in bone regeneration. However, direct transplantation of cells into damaged tissue is not efficient enough to regenerate large bone defects. This problem could be solved with a biocompatible scaffold. Consequently, bone tissue engineering constructs based on biomaterial scaffolds, MSCs, and osteogenic cytokines are promising tools for bone regeneration. The aim of this study was to evaluate the effect of FGF-2 and BMP-2 on the osteogenic potential of ovine bone marrow-derived MSCs seeded onto an nHAP-coated PCL/HAP/β-TCP scaffold in vitro and its in vivo biocompatibility in a sheep model. In vitro analysis revealed that cells preconditioned with FGF-2 and BMP-2 showed a better capacity to adhere and proliferate on the scaffold than untreated cells. BM-MSCs cultured in an osteogenic medium supplemented with FGF-2 and BMP-2 had the highest osteogenic differentiation potential, as assessed based on Alizarin Red S staining and ALP activity. qRT-PCR analysis showed increased expression of osteogenic marker genes in FGF-2- and BMP-2-treated BM-MSCs. Our pilot in vivo research showed that the implantation of an nHAP-coated PCL/HAP/β-TCP scaffold with BM-MSCs preconditioned with FGF-2 and BMP-2 did not have an adverse effect in the sheep mandibular region and induced bone regeneration. The biocompatibility of the implanted scaffold-BM-MSC construct with sheep tissues was confirmed by the expression of early (collagen type I) and late (osteocalcin) osteogenic proteins and a lack of an elevated level of proinflammatory cytokines. These findings suggest that FGF-2 and BMP-2 enhance the osteogenic differentiation potential of MSCs grown on a scaffold, and that such a tissue engineering construct may be used to regenerate large bone defects.
Collapse
Affiliation(s)
- Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Agnieszka Antończyk
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Wojciech Święszkowski
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Witold Łojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
34
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
35
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
36
|
Wang Y, Ling C, Chen J, Liu H, Mo Q, Zhang W, Yao Q. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. BIOMATERIALS ADVANCES 2022; 140:213067. [PMID: 35961187 DOI: 10.1016/j.bioadv.2022.213067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of osteochondral scaffolds with both structural and biochemical cues to regulate endogenous bone marrow-derived mesenchymal stem cells (BMSCs) behavior for cartilage and subchondral bone regeneration is still a challenge. To this end, a composite scaffold (BE-PSA) with gradient structure and programmed biomolecule delivery was prepared by fused deposition modeling (FDM) 3D printing and multi-material-based modification. The 3D-printed polycaprolactone (PCL) scaffold included upper pores of 200 μm for cartilage regeneration and lower pores of 400 μm for bone regeneration. For a sequential modulation of BMSCs behavior, fast-degrading sodium alginate (SA) hydrogel was used to deliver a burst release of E7 peptide to enhance BMSCs migration within 72 h, while a slowly-degrading silk fibroin (SF) porous matrix was used to provide a sustained release of B2A peptide to improve BMSCs dual-lineage differentiation lasting for >300 h, depending on the different degradation rates of SA hydrogel and SF matrix. The BE-PSA scaffold had good biocompatibility and could improve the migration and osteogenic/chondrogenic differentiation of BMSCs. Benefiting from the synergistic effects of spatial structures and programmed biomolecule delivery, the BE-PSA scaffold showed enhanced cartilage and subchondral bone regeneration in rabbit osteochondral defect model. This work not only provides a promising scaffold to guide BMSCs behavior for osteochondral regeneration but also offers a method for the fabrication of tissue engineering biomaterials based on the structural and biochemical modification.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| |
Collapse
|
37
|
Fernández-Lizárraga M, García-López J, Rodil SE, Ribas-Aparicio RM, Silva-Bermudez P. Evaluation of the Biocompatibility and Osteogenic Properties of Metal Oxide Coatings Applied by Magnetron Sputtering as Potential Biofunctional Surface Modifications for Orthopedic Implants. MATERIALS 2022; 15:ma15155240. [PMID: 35955174 PMCID: PMC9369574 DOI: 10.3390/ma15155240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Biomaterials with adequate properties to direct a biological response are essential for orthopedic and dental implants. The surface properties are responsible for the biological response; thus, coatings with biologically relevant properties such as osteoinduction are exciting options to tailor the surface of different bulk materials. Metal oxide coatings such as TiO2, ZrO2, Nb2O5 and Ta2O5 have been suggested as promising for orthopedic and dental implants. However, a comparative study among them is still missing to select the most promising for bone-growth-related applications. In this work, using magnetron sputtering, TiO2, ZrO2, Ta2O5, and Nb2O5 thin films were deposited on Si (100) substrates. The coatings were characterized by Optical Profilometry, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Diffraction, Water Contact Angle measurements, and Surface Free Energy calculations. The cell adhesion, viability, proliferation, and differentiation toward the osteoblastic phenotype of mesenchymal stem cells plated on the coatings were measured to define the biological response. Results confirmed that all coatings were biocompatible. However, a more significant number of cells and proliferative cells were observed on Nb2O5 and Ta2O5 compared to TiO2 and ZrO2. Nevertheless, Nb2O5 and Ta2O5 seemed to induce cell differentiation toward the osteoblastic phenotype in a longer cell culture time than TiO2 and ZrO2.
Collapse
Affiliation(s)
- Mariana Fernández-Lizárraga
- Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Julieta García-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa María Ribas-Aparicio
- Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (R.M.R.-A.); (P.S.-B.)
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
- Correspondence: (R.M.R.-A.); (P.S.-B.)
| |
Collapse
|
38
|
He C, Yu B, Lv Y, Huang Y, Guo J, Li L, Chen M, Zheng Y, Liu M, Guo S, Shi X, Yang J. Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32799-32812. [PMID: 35839332 DOI: 10.1021/acsami.2c04323] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The surface structure and topography of biomaterials play a crucial role in directing cell behaviors and fates. Meanwhile, asymmetric dressings that mimic the natural skin structure have been identified as an effective strategy for enhancing wound healing. Inspired by the skin structure and the superhydrophobic structure of the lotus leaf, an asymmetric composite dressing was obtained by constructing an asymmetric structure and wettability surface modification on both sides of the sponge based on electrospinning. Among them, the collagen and quaternized chitosan sponge was fabricated by freeze-drying, followed by an aligned poly(ε-caprolactone) (PCL)/gelatin nanofiber hydrophilic inner layer and hierarchical micronanostructure PCL/polystyrene microsphere highly hydrophobic outer layer constructed on each side of the sponge. The proposed asymmetric composite dressing combines topological morphology with the material's properties to effectively prevent bacterial colonization/infection and promote wound healing by directing cellular behavior. In vitro experimental results confirmed that the aligned nanofiber inner layer effectively promotes cell adhesion, proliferation, directed cell growth, and migration. Meanwhile, the sponge has good water absorption and antibacterial properties, while the biomimetic hydrophobic outer layer exhibits strong mechanical properties and resistance to bacterial adhesion. In vivo results showed that the composite dressing can reduce inflammatory response, prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of severe burns. Thus, the proposed bionic asymmetric dressing is expected to be a promising candidate for severe burn wound healing.
Collapse
Affiliation(s)
- Chenhui He
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Bangrui Yu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yufeng Huang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiadong Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Liang Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Minghua Liu
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
39
|
Chen Y, Yang W, Hu Z, Gao X, Ye J, Song X, Chen B, Li Z. Preparation and properties of oriented microcellular Poly(l-lactic acid) foaming material. Int J Biol Macromol 2022; 211:460-469. [PMID: 35569677 DOI: 10.1016/j.ijbiomac.2022.05.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022]
Abstract
Poly(l-lactic acid) (PLLA) displays simultaneous repair and regeneration properties. Therefore, it is vital for developing bone repair materials while improving their mechanical strength, and biocompatibility is essential for guaranteeing its application. In this manuscript, using solid hot drawing (SHD) technology to fabricate an oriented shish-kebab like structure, furthermore, the interface-oriented grain boundary controlled the nucleation site and cell morphology during low temperature supercritical carbon dioxide (SC-CO2) foaming process, resulted in an oriented microcellular structure which was similar to load-bearing bone. The tensile strength, elastic modulus, and elongation at break of the oriented microcellular PLLA were 98.4 MPa, 3.3 GPa, and 16.4%, respectively. Furthermore, the biomimetic structure improved osteoblast cells (MC3T3) attachment, proliferation, and propagation. These findings may pave the way for designing novel biomaterials for bone fixation or tissue engineering devices.
Collapse
Affiliation(s)
- Yueling Chen
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Wenchao Yang
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Zikang Hu
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Xiaoyan Gao
- Sichuan Institute for Drug Control, Chengdu 610017, China
| | - Jingbiao Ye
- Hengdian Group TOSPO Engineering Plastics, Co., Ltd, Dongyang 322100, China
| | - Xiangqian Song
- Hengdian Group TOSPO Engineering Plastics, Co., Ltd, Dongyang 322100, China
| | - Baoshu Chen
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Zhengqiu Li
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China.
| |
Collapse
|
40
|
Singh YP, Bhaskar R, Agrawal AK, Dasgupta S. Effect of monetite reinforced into the chitosan-based lyophilized 3D scaffolds on physicochemical, mechanical, and osteogenic properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
- Department of Nano, Medical & Polymer Materials, Yeungnam University, South Korea
| | | | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
41
|
Tulyaganov DU, Fiume E, Akbarov A, Ziyadullaeva N, Murtazaev S, Rahdar A, Massera J, Verné E, Baino F. In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration. J Funct Biomater 2022; 13:jfb13020074. [PMID: 35735929 PMCID: PMC9224601 DOI: 10.3390/jfb13020074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 01/04/2023] Open
Abstract
Bioactive glasses are often designed as porous implantable templates in which newly-formed bone can grow in three dimensions (3D). This research work aims to investigate the bone regenerative capability of silicate bioactive glass scaffolds produced by robocasting in comparison with powder and granule-like materials (oxide system: 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5, mol.%). Morphological and compositional analyses performed by scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS) after the bioactivity studies in a simulated body fluid (SBF) confirmed the apatite-forming ability of the scaffolds, which is key to allowing bone-bonding in vivo. The scaffolds exhibited a clear osteogenic effect upon implantation in rabbit femur and underwent gradual resorption followed by ossification. Full resorption in favor of new bone growth was achieved within 6 months. Osseous defect healing was accompanied by the formation of mature bone with abundant osteocytes and bone marrow cells. These in vivo results support the scaffold’s suitability for application in bone tissue engineering and show promise for potential translation to clinical assessment.
Collapse
Affiliation(s)
- Dilshat U. Tulyaganov
- Department of Natural-Mathematical Sciences, Turin Polytechnic University in Tashkent, Tashkent 100095, Uzbekistan;
| | - Elisa Fiume
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Turin, Italy; (E.F.); (E.V.)
| | - Avzal Akbarov
- Department of Prosthodontics, Tashkent State Dental Institute, Tashkent 100047, Uzbekistan; (A.A.); (N.Z.); (S.M.)
| | - Nigora Ziyadullaeva
- Department of Prosthodontics, Tashkent State Dental Institute, Tashkent 100047, Uzbekistan; (A.A.); (N.Z.); (S.M.)
| | - Saidazim Murtazaev
- Department of Prosthodontics, Tashkent State Dental Institute, Tashkent 100047, Uzbekistan; (A.A.); (N.Z.); (S.M.)
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran;
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Turin, Italy; (E.F.); (E.V.)
| | - Francesco Baino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Turin, Italy; (E.F.); (E.V.)
- Correspondence:
| |
Collapse
|
42
|
Nguyen TT, Hu CC, Sakthivel R, Nabilla SC, Huang YW, Yu J, Cheng NC, Kuo YJ, Chung RJ. Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering. Biomater Res 2022; 26:21. [PMID: 35642070 PMCID: PMC9158383 DOI: 10.1186/s40824-022-00265-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background All types of movements involve the role of articular cartilage and bones. The presence of cartilage enables bones to move over one another smoothly. However, repetitive microtrauma and ischemia as well as genetic effects can cause an osteochondral lesion. Numerous treatment methods such as microfracture surgergy, autograft, and allograft, have been used, however, it possesses treatment challenges including prolonged recovery time after surgery and poses a financial burden on patients. Nowadays, various tissue engineering approaches have been developed to repair bone and osteochondral defects using biomaterial implants to induce the regeneration of stem cells. Methods In this study, a collagen (Col)/γ-polyglutamate acid (PGA)/hydroxyapatite (HA) composite scaffold was fabricated using a 3D printing technique. A Col/γ-PGA/HA 2D membrane was also fabricated for comparison. The scaffolds (four layers) were designed with the size of 8 mm in diameter and 1.2 mm in thickness. The first layer was HA/γ-PGA and the second to fourth layers were Col/γ-PGA. In addition, a 2D membrane was constructed from hydroxyapatite/γ-PGA and collagen/γ-PGA with a ratio of 1:3. The biocompatibility property and degradation activity were investigated for both scaffold and membrane samples. Rat bone marrow mesenchymal stem cells (rBMSCs) and human adipose-derived stem cells (hADSCs) were cultured on the samples and were tested in-vitro to evaluate cell attachment, proliferation, and differentiation. In-vivo experiments were performed in the rat and nude mice models. Results In-vitro and in-vivo results show that the developed scaffold is of well biodegradation and biocompatible properties, and the Col-HA scaffold enhances the mechanical properties for osteochondrogenesis in both in-vitro and animal trials. Conclusions The composite would be a great biomaterial application for bone and osteochondral regeneration.
Collapse
|
43
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
44
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
45
|
Munir MU, Salman S, Ihsan A, Elsaman T. Synthesis, Characterization, Functionalization and Bio-Applications of Hydroxyapatite Nanomaterials: An Overview. Int J Nanomedicine 2022; 17:1903-1925. [PMID: 35530974 PMCID: PMC9075913 DOI: 10.2147/ijn.s360670] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
Hydroxyapatite (HA) is similar to natural bone regarding composition, and its structure favors in biomedical applications. Continuous research and progress on HA nanomaterials (HA-NMs) have explored novel fabrication approaches coupled with functionalization and characterization methods. These nanomaterials have a significant role in many biomedical areas like sustained drug and gene delivery, bio-imaging, magnetic resonance, cell separation, and hyperthermia treatment due to their promising biocompatibility. This review highlighted the HA-NMs chemical composition, recent progress in synthesis methods, characterization and surface modification methods, ion-doping, and role in biomedical applications. HA-NMs have a substantial role as drug delivery vehicles, coating material, bone implant, coating, ceramic, and composite materials. Here, we try to summarize an overview of HA-NMs with the provision of future directions.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ayehsa Ihsan
- Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| |
Collapse
|
46
|
Song JE, Lee DH, Choi JH, Lee SW, Khang G, Yoon SJ. Biomimetic sponge using duck's feet derived collagen and hydroxyapatite to promote bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:769-782. [PMID: 34913857 DOI: 10.1080/09205063.2021.2019366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Collagen, a natural biomaterial derived from animal tissues, has attracted the attention of biomedical material researchers because of its excellent cell affinity and low rejection in vivo. In this study, collagen was extracted using livestock by-product flippers, and an experiment was performed to assess its application as a scaffold for bone tissue implantation. For this purpose, we fabricated 2%, and 3% duck's feet derived collagen (DC) sponges. We then compared them to hydroxyapatite (HAp)-coated DC sponges, and measured the porosity and pore size using scanning electron microscopy (SEM) to analyze the physical properties and morphology of DC and DC/HAp sponges. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were carried out to measure the proliferation of bone marrow stem cells (BMSCs) in DC and DC/HAp sponges. An alkaline phosphatase activity assay confirmed the osteogenic differentiation ability of BMSCs. Polymerase chain reaction (PCR) was performed to confirm the BMSC-specific genetic marker. The osteogenic potential was confirmed by the bone formation in an in vivo environment on the scaffold by histological and immunohistochemical analysis. Overall, this study shows that DC/HAp sponges have biocompatibility and good physical properties. Additionally, DC/HAp sponges show potential use as bone graft materials for tissue engineering applications.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Seong Won Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sun-Jung Yoon
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Orthopedic Surgery, Medical School, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
47
|
Necula MG, Mazare A, Negrescu AM, Mitran V, Ozkan S, Trusca R, Park J, Schmuki P, Cimpean A. Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing-An In Vitro Study. Int J Mol Sci 2022; 23:3558. [PMID: 35408918 PMCID: PMC8998567 DOI: 10.3390/ijms23073558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.7. The cells were maintained in contact with the surfaces of flat titanium (Ti) and anodic TNTs with an intertube spacing of 20 nm (TNT20) and 80 nm (TNT80), under standard or pro-inflammatory conditions. The results revealed that nanotube interspacing can influence macrophage response in terms of cell survival and proliferation, cellular morphology and polarization, cytokine/chemokine expression, and foreign body reaction. While the nanostructured topography did not tune the macrophages' differentiation into osteoclasts, this behavior was significantly reduced as compared to flat Ti surface. Overall, this study provides a new insight into how nanotubes' morphological features, particularly intertube spacing, could affect macrophage behavior.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
| | - Roxana Trusca
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Indendentei, 060042 Bucharest, Romania;
| | - Jung Park
- Department of Pediatrics, Division of Molecular Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
- Regional Centre of Advanced Technologies and Materials, 78371 Olomouc, Czech Republic
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569, Saudi Arabia
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| |
Collapse
|
48
|
Dash S, . P, Arora V, Sachdeva K, Sharma H, Dinda AK, Agrawal AK, Jassal M, Mohanty S. Promoting in-vivo bone regeneration using facile engineered load-bearing 3D bioactive scaffold. Biomed Mater 2022. [DOI: 10.1088/1748-605x/ac58d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
The worldwide incidence of bone disorders has trended steeply upward and is expected to get doubled by 2030. Biological mechanism of bone repair involves both osteo-conductivity and osteo-inductivity. In spite of the self-healing functionality after injury, bone tissue faces multitude of pathological challenges. Several innovative approaches have been developed to prepare biomaterial-based bone grafts. To design a suitable bone material, the freeze-drying technique has achieved significant importance among the other conventional methods. However, the functionality of the polymeric freeze-dried scaffold in in-vivo osteogenesis is in nascent stage. In this study facile, freeze dried, biomaterial-based load bearing 3D porous composite scaffolds have been prepared. The biocompatible scaffolds have been made by using chitosan (C), polycaprolactone (P), hydroxyapatite (H), glass ionomer (G), and graphene (gr). Scaffolds of eight different groups (C, P, CP, CPH, CPHG, CPHGgr1, CPHGgr2, CPHGgr3) have been designed and characterized to evaluate their applicability in orthopaedics. To evaluate the efficacy of the scaffolds a series of physio-chemical, morphological, and in-vitro & in-vivo biological experiments have been performed. From the obtained results it was observed that the CPHGgr1 is the ideal compatible material for Wharton’s Jelly derived mesenchymal stem cells and the blood cells. The in-vitro bone specific gene expression study revealed that, the scaffold assists MSCs osteogenic differentiation. Additionally, the in-vivo study on mice model was also performed for a period of 4 weeks and 8 weeks. The sub-cutaneous implantation of the designed scaffolds didn’t show any altered physiological condition in the animals, which indicated the in-vivo biocompatibility of the designed material. The histopathological study revealed that after 8 weeks of implantation, the CPHGgr1 scaffold supported significantly better collagen deposition and calcification. The facile designing of CPHGgr1 multicomponent nanocomposite provided an osteo-regenerative biomaterial with desired mechanical strength as an ideal regenerative material for cancellous bone tissue regeneration.
Collapse
|
49
|
Wang J, Tang Y, Cao Q, Wu Y, Wang Y, Yuan B, Li X, Zhou Y, Chen X, Zhu X, Tu C, Zhang X. Fabrication and biological evaluation of 3D printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology. Regen Biomater 2022; 9:rbac005. [PMID: 35668922 PMCID: PMC9160879 DOI: 10.1093/rb/rbac005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Abstract
Digital light processing (DLP)-based 3D printing technique holds promise in fabricating scaffolds with high precision. Here raw calcium phosphate (CaP) powders were modified by 5.5% monoalcohol ethoxylate phosphate (MAEP) to ensure high solid loading and low viscosity. The rheological tests found that photocurable slurries composed of 50 wt % modified CaP powders and 2 wt % toners were suitable for DLP printing. Based on geometric models designed by CAD system, three printed CaP ceramics with distinct macroporous structures were prepared, including simple cube, octet-truss, and inverse face-centered cube (fcc), which presented the similar phase composition and microstructure, but the different macropore geometries. Inverse-fcc group showed the highest porosity and compressive strength. The in vitro and in vivo biological evaluations were performed to compare the bioactivity of three printed CaP ceramics, and the traditional foamed ceramic was used as control. It suggested that all CaP ceramics exhibited good biocompatibility, as evidence by an even bone-like apatite layer formation on the surface, and the good cell proliferation and spreading. A mouse intramuscular implantation model found that all of CaP ceramics could induce ectopic bone formation, and Foam group had the strongest osteoinduction, followed by Inverse-fcc, while Cube and Octet-truss had the weakest one. It indicated that macropore geometry was of great importance to affect the osteoinductivity of scaffolds, and spherical, concave macropores facilitated osteogenesis. These findings provide a strategy to design and fabricate high-performance orthopedic grafts with proper pore geometry and desired biological performance via DLP-based 3D printing technique.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yitao Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yitian Wang
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yong Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Chongqi Tu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
50
|
Zhi W, Wang X, Sun D, Chen T, Yuan B, Li X, Chen X, Wang J, Xie Z, Zhu X, Zhang K, Zhang X. Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact Mater 2022; 11:240-253. [PMID: 34977429 PMCID: PMC8668427 DOI: 10.1016/j.bioactmat.2021.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
So far, how to achieve the optimal regenerative repair of large load-bearing bone defects using artificial bone grafts is a huge challenge in clinic. In this study, a strategy of combining osteoinductive biphasic calcium phosphate (BCP) bioceramic scaffolds with intramedullary nail fixation for creating stable osteogenic microenvironment was applied to repair large segmental bone defects (3.0 cm in length) in goat femur model. The material characterization results showed that the BCP scaffold had the initial compressive strength of over 2.0 MPa, and total porosity of 84%. The cell culture experiments demonstrated that the scaffold had the excellent ability to promote the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs). The in vivo results showed that the intramedullary nail fixation maintained the initial stability and structural integrity of the implants at early stage, promoting the osteogenic process both guided and induced by the BCP scaffolds. At 9 months postoperatively, good integration between the implants and host bone was observed, and a large amount of newborn bones formed, accompanying with the degradation of the material. At 18 months postoperatively, almost the complete new bone substitution in the defect area was achieved. The maximum bending strength of the repaired bone defects reached to the 100% of normal femur at 18 months post-surgery. Our results demonstrated the good potential of osteoinductive BCP bioceramics in the regenerative repair of large load-bearing bone defects. The current study could provide an effective method to treat the clinical large segmental bone defects. A novel strategy of achieving regenerative repair for large segmental bone defects with osteoinductive calcium phosphate bioceramics was developed successfully. The critical-sized goat femur defects (3.0 cm in length) were completely repaired by osteoinductive calcium phosphate bioceramics without using exogenous active factors or cells. The current study could provide an effective method to solve the clinical problem about large load-bearing bone defect repair.
Collapse
Affiliation(s)
- Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaohua Wang
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University(Army Medical University), Gaotanyan No.30, 400038, Chongqing, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University(Army Medical University), Gaotanyan No.30, 400038, Chongqing, China
| | - Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhao Xie
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University(Army Medical University), Gaotanyan No.30, 400038, Chongqing, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|