1
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
2
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
3
|
Kirla H, Wu J, Hamzah J, Henry DJ. One-pot synthesis and covalent conjugation of methylene blue in mesoporous silica nanoparticles - A platform for enhanced photodynamic therapy. Colloids Surf B Biointerfaces 2024; 245:114195. [PMID: 39232478 DOI: 10.1016/j.colsurfb.2024.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Photodynamic therapy (PDT) is an emerging clinical modality for diverse disease conditions, including cancer. This technique involves, the generation of cytotoxic reactive oxygen species by a photosensitizer in the presence of light and oxygen. Methylene blue (MB) is a cationic dye with an ability to act as photosensitizing and bioimaging agent. The direct utilization of MB as photosensitizer for biological applications has often been impeded by its poor photostability and unwanted tissue interactions. Nanocarriers such as mesoporous silica nanoparticles (MSNs) provide an effective means of overcoming these limitations. However, the mere physical adsorption of the dye within the MSN can result in leakage, compromising the effectiveness of PDT. Therefore, in this work, we report the conjugation of MB into MSNs using novel MB-silane derivatives, namely MBS1 and MBS2, to create dye-doped and amine-functionalized MSNs (MBS1-AMSN and MBS2-AMSN). The PDT efficacy and bioimaging capability of these nanoparticles were compared with those of MSNs in which MB was non-covalently encapsulated (MB@AMSN). The synthesized nanoparticles, ultra-small in size (≤ 35 ± 4 nm) with monodispersity, exhibited enhanced fluorescence quantum yields. MBS1-AMSN demonstrated 70-fold increase, while MBS2-AMSN showed 33-fold improvement in fluorescence quantum yields compared to MB@AMSN at the same concentration. Covalent conjugation resulted in a 2-fold enhancement in the singlet oxygen quantum yield of the dye in MBS1-AMSN and 1.2-fold improvement in MBS2-AMSN, compared to non-covalent encapsulation. Assessment on RAW 264.7 macrophages revealed superior fluorescence in cell imaging for MBS1-AMSN, establishing it as a more efficient PDT agent compared to MBS2-AMSN and MB@AMSN. These findings suggest that MBS1-AMSN holds significant potential as a theranostic nanoplatform for image-guided PDT.
Collapse
Affiliation(s)
- Haritha Kirla
- Chemistry and Physics, College of Science, Technology, Engineering and Maths, Murdoch University, WA 6150, Australia; Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, WA 6009, Australia.
| | - Jiansha Wu
- Chemistry and Physics, College of Science, Technology, Engineering and Maths, Murdoch University, WA 6150, Australia; Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, WA 6009, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, WA 6009, Australia
| | - David J Henry
- Chemistry and Physics, College of Science, Technology, Engineering and Maths, Murdoch University, WA 6150, Australia.
| |
Collapse
|
4
|
Hao C, Shao Y, Tian J, Song J, Song F. Dual-Responsive hollow mesoporous organosilicon nanocarriers for photodynamic therapy. J Colloid Interface Sci 2024; 659:582-593. [PMID: 38198935 DOI: 10.1016/j.jcis.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
HYPOTHESIS The nano-delivery platform, -SS-HMONs@MB@MnO2 nanoparticles (SMM NPs) loaded with methylene blue (MB) as photosensitizer have excellent photodynamic therapy (PDT) effect. The disulfide bond and MnO2 give the shell redox-responsive properties. SMM NPs consume glutathione (GSH) in tumor cells, reducing the scavenging of reactive oxygen species (ROS) by GSH and enhancing the PDT effect of MB. EXPERIMENTS The GSH dual-responsive nano-delivery platform, was designed and constructed by using disulfide-doped hollow mesoporous organosilicon nanoparticles (-SS-HMONs) as intermediate responsive layer, loaded with MB as photosensitizer and coated with MnO2 as shells. The MB photosensitizer release and GSH response were characterized. The PDT effect of nanoparticles was evaluated. FINDINGS The SMM NPs were uniform in size and well dispersed. The nanoparticles could react with GSH, leading to the decomposition of MnO2 shells and the breakage of disulfide bonds in -SS-HMONs, resulted in the release of MB photosensitizer. The cell experiment showed that SMM NPs had good ROS generating ability and PDT effect after being sucked by tumor cells, which could effectively kill tumor cells. However, in vivo experiments demonstrated that SMM NPs showed slight inhibition on tumor growth. The actual effect in animals was different from the effect in cells.
Collapse
Affiliation(s)
- Caiqin Hao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China
| | - Yutong Shao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiarui Tian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China
| | - Jitao Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China.
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
5
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
6
|
Jheng PR, Chiang CC, Kang JH, Fan YJ, Wu KCW, Chen YT, Liang JW, Bolouki N, Lee JW, Hsieh JH, Chuang EY. Cold atmospheric plasma-enabled platelet vesicle incorporated iron oxide nano-propellers for thrombolysis. Mater Today Bio 2023; 23:100876. [PMID: 38089433 PMCID: PMC10711232 DOI: 10.1016/j.mtbio.2023.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/08/2023] [Accepted: 11/18/2023] [Indexed: 10/16/2024] Open
Abstract
A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.
Collapse
Affiliation(s)
- Pei-Ru Jheng
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiunn-Horng Kang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kevin C.-W. Wu
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
| |
Collapse
|
7
|
Youness RA, Mohamed AH, Efthimiadou EK, Mekky RY, Braoudaki M, Fahmy SA. A Snapshot of Photoresponsive Liposomes in Cancer Chemotherapy and Immunotherapy: Opportunities and Challenges. ACS OMEGA 2023; 8:44424-44436. [PMID: 38046305 PMCID: PMC10688172 DOI: 10.1021/acsomega.3c04134] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 12/05/2023]
Abstract
To provide precise medical regimens, photonics technologies have been involved in the field of nanomedicine. Phototriggered liposomes have been cast as promising nanosystems that achieve controlled release of payloads in several pathological conditions such as cancer, autoimmune, and infectious diseases. In contrast to the conventional liposomes, this photoresponsive element greatly improves therapeutic efficacy and reduces the adverse effects of gene/drug therapy during treatment. Recently, cancer immunotherpay has been one of the hot topics in the field of oncology due to the great success and therapeutic benefits that were well-recognized by the patients. However, several side effects have been encountered due to the unmonitored augmentation of the immune system. This Review highlights the most recent advancements in the development of photoresponsive liposome nanosystems in the field of oncology, with a specific emphasis on challenges and opportunities in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Rana A. Youness
- Biology
and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 4824201, Egrypt
- Biology
and Biochemistry Department, Molecular Genetics Research Team (MGRT),
School of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Adham H. Mohamed
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Eleni K. Efthimiadou
- Inorganic
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Radwa Y. Mekky
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Maria Braoudaki
- Clinical,
Pharmaceutical, and Biological Science Department, School of Life
and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, U.K.
| | - Sherif Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
8
|
Taldaev A, Terekhov R, Nikitin I, Melnik E, Kuzina V, Klochko M, Reshetov I, Shiryaev A, Loschenov V, Ramenskaya G. Methylene blue in anticancer photodynamic therapy: systematic review of preclinical studies. Front Pharmacol 2023; 14:1264961. [PMID: 37841915 PMCID: PMC10568458 DOI: 10.3389/fphar.2023.1264961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Methylene blue has a long history of clinical application. Thanks to phenothiazine chromophore, it has potential in photodynamic anticancer therapy. In spite of the growing body of literature that has evaluated the action of this dye on different types of cancer, the systematic understanding of this problem is still lacking. Therefore, this systematic review was performed to study the efficacy of methylene blue in photodynamic anticancer therapy. Methods: This systematic review was carried out in accordance with the PRISMA guidelines, and the study protocol was registered in PROSPERO (CRD42022368738). Articles for the systematic review were identified through the PubMed database. SYRCLE's risk of bias tool was used to assess the studies. The results of systematic analysis are presented as narrative synthesis. Results: Ten studies met the inclusion criteria and these full texts were reviewed. In the selected articles, the dosage of dye infusion ranged from 0.04 to 24.12 mg/kg. The effectiveness of photodynamic therapy with methylene blue against different types of cancer was confirmed by a decrease in tumor sizes in seven articles. Conclusion: The results of the systematic review support the suggestions that photodynamic therapy with methylene blue helps against different types of cancer, including colorectal tumor, carcinoma, and melanoma. In cases of nanopharmaceutics use, a considerable increase of anticancer therapy effectiveness was observed. The further research into methylene blue in photodynamic anticancer therapy is needed. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=368738), identifier (CRD42022368738).
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Roman Terekhov
- Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ilya Nikitin
- Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elizaveta Melnik
- Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vera Kuzina
- Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mikhail Klochko
- Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Reshetov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No. 1, Levshin Institute of Cluster Oncology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No. 1, Levshin Institute of Cluster Oncology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Loschenov
- Department of Laser Micro-Nano and Biotechnology, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Galina Ramenskaya
- Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Pereira LM, Portapilla GB, Brancini GTP, Possato B, Bronzon da Costa CM, Abreu-Filho PG, Wainwright M, Yatsuda AP, Braga GÚL. The potential of phenothiazinium dyes as cytotoxicity markers in cisplatin-treated cells. Sci Rep 2023; 13:10203. [PMID: 37353536 PMCID: PMC10290130 DOI: 10.1038/s41598-023-36721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Assessing the in vitro toxicity of compounds on cell cultures is an important step during the screening of candidate molecules for diverse applications. Among the strategies employed to determine cytotoxicity, MTT, neutral red, and resazurin are commonly used. Methylene blue (MB), a phenothiazinium salt, has several uses, such as dye, redox indicator, and even as treatment for human disease and health conditions, such as malaria and methemoglobinemia. However, MB has only been sparsely used as a cellular toxicity indicator. As a viability indicator, MB is mostly applied to fixed cultures at high concentrations, especially when compared to MTT or neutral red. Here we show that MB and its related compounds new methylene blue (NMB), toluidine blue O (TBO), and dimethylmethylene blue (DMMB) can be used as cytotoxicity indicators in live (non-fixed) cells treated for 72 h with DMSO and cisplatin. We compared dye uptake between phenothiazinium dyes and neutral red by analyzing supernatant and cell content via visible spectra scanning and microscopy. All dyes showed a similar ability to assess cell toxicity compared to either MTT or neutral red. Our method represents a cost-effective alternative to in vitro cytotoxicity assays using cisplatin or DMSO, indicating the potential of phenothiazinium dyes for the screening of candidate drugs and other applications.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gisele Bulhões Portapilla
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Guilherme Thomaz Pereira Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Bruna Possato
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Mark Wainwright
- Department of Biology, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil.
- Departamento de Análises Clínicas, Bromatológicas e Toxicológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil.
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil.
- Departamento de Análises Clínicas, Bromatológicas e Toxicológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
10
|
Abbasi H, Kouchak M, Mirveis Z, Hajipour F, Khodarahmi M, Rahbar N, Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv Pharm Bull 2023; 13:7-23. [PMID: 36721822 PMCID: PMC9871273 DOI: 10.34172/apb.2023.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the "first-generation" liposomes.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Mirveis
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| |
Collapse
|
11
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
12
|
In vitro evaluation of the intensifying photodynamic effect due to the presence of plasmonic hollow gold nanoshells loaded with methylene blue on breast and melanoma cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103065. [PMID: 35973551 DOI: 10.1016/j.pdpdt.2022.103065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypoxia is one of the most important limiting factors in photodynamic therapy that can reduce the effectiveness of this treatment. By designing a nanocomplex of plasmonic nanoparticles and photosensitizers with similar optical properties, the rate of free oxygen radical production can be increased and the efficiency of photodynamic therapy can be improved. in this study, we tried to use the outstanding capacities of hollow gold nanoshells (HGNSs) as a plasmonic nanocarrier of methylene blue (MB) to improve the performance of photodynamic therapy. METHODS AND MATERIAL After synthesis and optimization of hollow gold nanoshells loaded with Methylene blue (HGNSs-PEG-MB), the characteristics of MB, HGNSs, HGNSs-PEG, HGNSs-PEG-MB, and their toxicity at different concentrations on the cell lines was determined. After determining of optimum concentration of nano agents, irradiation of cell was performed with non-coherent of light source with 670 nm wavelength and an intensity of 14.9 mW/cm2. Twenty-four hours after irradiation, an MTT assay was used to determine cell survival percentage. To compare the results, we defined different indexes such as treatment efficiency (TE), synergism ratio (SYN), and the amount of exposure required for 50% cell death (ED50). All the tests were repeated at least four times on the DFW and MCF-7 cancer cell lines. RESULTS For combination therapies with Lumacare irradiated HGNSs-PEG-MB, the UC index was less than one for all concentrations (P < 0.05). Also, the IC50 index for this nanostructure in non-irradiated conditions and less than 9 min irradiation time was lower than other treatment groups (P < 0.05). ED50 amounts for HGNSs-PEG-MB in all concentrations were greater than the other groups. TE Index was also reported to be greater than 1 in all irradiation conditions and concentrations. CONCLUSION In this study, HGNSs-PEG in the role of nanocarriers for methylene Blue was used. The results showed that irradiated HGNSs-PEG-MB by 670 nm light severely induced cell death and greatly improved the efficiency of photodynamic therapy in melanoma and breast cancer cells.
Collapse
|
13
|
Liposomes encapsulating methylene blue and acridine orange: An approach for phototherapy of skin cancer. Colloids Surf B Biointerfaces 2022; 220:112901. [DOI: 10.1016/j.colsurfb.2022.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
14
|
Feng CC, Lu WF, Liu YC, Liu TH, Chen YC, Chien HW, Wei Y, Chang HW, Yu J. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J Mater Chem B 2022; 10:4878-4888. [PMID: 35698997 DOI: 10.1039/d2tb00898j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrollable bleeding and infection are two of the most common causes of trauma-related death. Yet, developing safe materials with high hemostatic and antibacterial effectiveness remains a challenge. Keratin-based biomaterials have been reported to exhibit the functions of enhancing platelet binding and activating and facilitating fibrinogen polymerization. In this study, we designed a hemostatic material with good biodegradability, biocompatibility, hemostatic ability, and antibacterial function to solve the shortcomings of common hemostatic materials. Methylene blue-loaded keratin/alginate composite scaffolds were prepared by the freeze-gelation method. The composite scaffolds exhibited over 1600% liquid absorption, well-interconnected pores, good biocompatibility, and biodegradability. We find that the keratin/alginate composite scaffolds' synergistic action may significantly reduce hemostasis time. To prevent infection, the drug-loaded scaffolds generated high burst release by absorbing wound exudate in the early stages of wound healing. The results obtained by the antimicrobial photoinactivation assay in vitro suggest that an antimicrobial photodynamic effect might be triggered, thereby preventing the fast growth of colonies.
Collapse
Affiliation(s)
- Ching-Chih Feng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Chen Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
15
|
Chatterjee A, Sharma AK, Purkayastha P. Development of a carbon dot and methylene blue NIR-emitting FLIM-FRET pair in niosomes for controlled ROS generation. NANOSCALE 2022; 14:6570-6584. [PMID: 35420619 DOI: 10.1039/d2nr01032a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-ionic surfactant vesicular systems (niosomes) are structurally similar to lipid vesicles, differing only in the bilayer composition. Herein we report a unique method to generate reactive oxygen species (ROS) utilizing a FLIM-FRET technique involving niosome-trapped yellow emissive carbon dots (YCDs) and methylene blue (MB) in aqueous medium under neutral conditions. Niosomes are biologically important because of their good stability and extremely low toxicity. Fluorescent CDs, emitting in the higher wavelengths on visible light excitation, are of incredible importance in bio-imaging and optoelectronics. Hence, we prepared nitrogen-containing YCDs from a single precursor, o-phenylenediamine, and explained their detailed photophysics upon incorporation into the niosomal bilayer. The YCDs are polarity sensitive, and are rotationally restricted in niosomes, which increases their fluorescence quantum yield from 29% (in water) to 91%. These YCDs are tactically employed to develop a near infrared (NIR) FRET pair with methylene blue (MB), which is a very well-known type-I and type-II photosensitizer. This FRET pair, which emits in the NIR region, is found to be an ideal system to generate ROS by excitation in the lower visible wavelengths. Interestingly, the ROS production by MB from the dissolved oxygen is enhanced inside the niosomes. The donor and the acceptor moieties in this unique NIR-emitting FRET pair display an unprecedented 300 nm Stokes shift. The findings could be influential in bio-imaging in the NIR region evading cellular autofluorescence and the controllably generated ROS can be further applied as a potential photodynamic therapeutic agent.
Collapse
Affiliation(s)
- Arunavo Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| | - Ankit Kumar Sharma
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
16
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Poly(styrene-co-maleic Acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J Pers Med 2022; 12:jpm12030493. [PMID: 35330492 PMCID: PMC8951206 DOI: 10.3390/jpm12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery.
Collapse
|
18
|
Winterwerber P, Whitfield CJ, Ng DYW, Weil T. Multiple Wavelength Photopolymerization of Stable Poly(Catecholamines)-DNA Origami Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202111226. [PMID: 34813135 PMCID: PMC9303804 DOI: 10.1002/anie.202111226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/23/2022]
Abstract
The synthesis of multicomponent polymer hybrids with nanometer precision is chemically challenging in the bottom-up synthesis of complex nanostructures. Here, we leverage the fidelity of the DNA origami technique to install a multiple wavelength responsive photopolymerization system with nanometer resolution. By precisely immobilizing various photosensitizers on the origami template, which are only activated at their respective maximum wavelength, we can control sequential polymerization processes. In particular, the triggered photosensitizers generate reactive oxygen species that in turn initiate the polymerization of the catecholamines dopamine and norepinephrine. We imprint polymeric layers at designated positions on DNA origami, which modifies the polyanionic nature of the DNA objects, thus promoting their uptake into living cells while preserving their integrity. Our herein proposed method provides a rapid platform to access complex 3D nanostructures by customizing material and biological interfaces.
Collapse
Affiliation(s)
- Pia Winterwerber
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - David Y. W. Ng
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
19
|
Winterwerber P, Whitfield CJ, Ng DYW, Weil T. Multi‐Wellenlängen‐Photopolymerisation von stabilen Poly(katecholamin)‐DNA‐Origami‐Nanostrukturen**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pia Winterwerber
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Colette J. Whitfield
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - David Y. W. Ng
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Tanja Weil
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
20
|
Sharma B, Jain A, Perez-Garcia L, Watts JA, Rawson FJ, Chaudhary GR, Kaur G. Metallocatanionic vesicles mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells. J Mater Chem B 2022; 10:2160-2170. [DOI: 10.1039/d2tb00011c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In clinics, photodynamic therapy (PDT) is established as a non-invasive therapeutic modality for certain types of cancers and skin diseases. However, due to poor water solubility, photobleaching, and dark toxicity...
Collapse
|
21
|
El-Kholy AI, Abdel Fadeel D, Nasr M, El-Sherbiny I, Fadel M. (Rose Bengal)/(Eosin Yellow)-Gold-Polypyrrole Hybrids: A Design for Dual Photo-Active Nano-System with Ultra-High Loading Capacity. Drug Des Devel Ther 2021; 15:5011-5023. [PMID: 34938068 PMCID: PMC8685768 DOI: 10.2147/dddt.s338922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Enhancement of the photodynamic/photothermal efficiency of two water-soluble dyes, rose bengal (RB) and eosin yellow (EY), via conjugation to a polymeric nano-system gold-polypyrrole nanoparticle (AuPpy NPs). Methodology A multi-step synthesis method and an in situ one-pot synthesis method were used. Loading percentage, particle size, zeta potential, morphology, UV-Vis-NIR spectrophotometry and in vitro photothermal activity were measured. Then, both hybrid nanocomposites were examined for their cytotoxicity and photocytotoxicity on HepG2 cell line as a model for cancer cells. Results Dyes loaded in the traditional multi-step method did not exceed 9% w/w, while in the one-pot synthesis method they reached ~67% w/w and ~75% w/w for EY-AuPpy NPs and RB-AuPpy NPs, respectively. UV-Vis-NIR spectrophotometry showed that both nano-systems exhibited intense absorption in the NIR region. The mean size of the nanoparticles was ~31.5 nm (RB-AuPpy NPs) and ~33.6 nm (EY-AuPpy NPs) with zeta potential values of −26.5 mV and −33 mV, respectively. TEM imaging revealed the morphology of both hybrids, showing ultra-nano spherical-shaped gold cores in the case of RB-AuPpy NPs, and different shapes of larger gold cores in the case of EY-AuPpy NPs, both embedded in the polymer film. Conjugation to AuPpy was found to significantly reduce the dark cytotoxicity of both RB and EY, preserving the photocytotoxicity of EY and enhancing the photocytotoxicity of RB. Conclusion Gold-polypyrrole nanoparticles represent an effective delivery system to improve the photodynamic and photothermal properties of RB and EY. The in situ one-pot synthesis method provided a means to greatly increase the loading capacity of AuPpy NPs. While both hybrid nanocomposites exhibited greatly diminished dark cytotoxicity, RB-AuPpy NPs showed significantly enhanced photocytotoxicity compared to the free dyes. This pattern enables the safe use of both dyes in high concentrations with sustained action, reducing dose frequency and side effects.
Collapse
Affiliation(s)
- Abdullah I El-Kholy
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Doaa Abdel Fadeel
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim El-Sherbiny
- Nanomaterials Lab, Center for Materials Science, Zewail City of Science and Technology, 6th October City, Giza, Egypt
| | - Maha Fadel
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Chen GT, Hu TM. Stable Encapsulation of Methylene Blue in Polysulfide Organosilica Colloids for Fluorescent Tracking of Nanoparticle Uptake in Cells. ACS OMEGA 2021; 6:32109-32119. [PMID: 34870032 PMCID: PMC8637969 DOI: 10.1021/acsomega.1c04877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Methylene blue (MB), a century-old drug and a fluorescent dye, has a long history of diverse applications, both in drug therapy and as a tissue-staining agent. However, MB is inherently unstable when exposed to light and reducing agents. In this study, we aim to prepare and characterize polysulfide-based organosilica colloidal particles for efficient, stable, and protective encapsulation of MB. Disulfide- and tetrasulfide-containing organosilane congeners were used as organosilica precursors for direct synthesis of organosilica colloids based on the silica ouzo effect. MB was spontaneously entrapped into the colloidal particles during the particle formation process. The following properties of the colloidal MB were evaluated: particle size, surface charge, atomic distribution, encapsulation efficiency, MB release, photodynamic activity, thiol and ascorbate reactivity, and cytotoxicity. The DLS measurements show that the size of colloidal MB is tunable in a range of 100 nm to 1 μm. SEM images reveal spherical particles with composition-dependent particle sizes of 70-120 nm (coefficient of variation: 15-18%). MB was encapsulated in the colloidal particles with a maximal efficiency of 95%. The release of MB from the colloids was <1% at 4 h and <3.5% at 48 h. The colloidal particles show much reduced photodynamic activity, low reactivity toward reducing agents, and low cytotoxicity. Accordingly, the colloidal MB was proposed and further investigated as a fluorescent particle tracer for the study of cell-nanoparticle interactions. In conclusion, MB can be efficiently and stably loaded into polysulfide organosilica colloidal particles using a simple and convenient physical route.
Collapse
Affiliation(s)
- Guann-Tyng Chen
- Institute
of Biopharmaceutical Sciences, National
Yang Ming Chiao Tung University, Yangming Campus, Taipei 112, Taiwan
- Tri-Service
General Hospital, Beitou-Branch, Taipei 112, Taiwan
| | - Teh-Min Hu
- Institute
of Biopharmaceutical Sciences, National
Yang Ming Chiao Tung University, Yangming Campus, Taipei 112, Taiwan
- Department
of Pharmacy, National Yang Ming Chiao Tung
University, Yangming Campus, Taipei 112, Taiwan
| |
Collapse
|
23
|
Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021; 13:1951. [PMID: 34834367 PMCID: PMC8617654 DOI: 10.3390/pharmaceutics13111951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.
Collapse
Affiliation(s)
| | | | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-L.Y.); (K.L.)
| |
Collapse
|
24
|
Lim DJ. Methylene Blue-Based Nano and Microparticles: Fabrication and Applications in Photodynamic Therapy. Polymers (Basel) 2021; 13:3955. [PMID: 34833254 PMCID: PMC8618133 DOI: 10.3390/polym13223955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Methylene blue (MB) has been used in the textile industry since it was first extracted by the German chemist Heinrich Caro. Its pharmacological properties have also been applied toward the treatment of certain diseases such as methemoglobinemia, ifosfamide-induced encephalopathy, and thyroid conditions requiring surgery. Recently, the utilization of MB as a safe photosensitizer in photodynamic therapy (PDT) has received attention. Recent findings demonstrate that photoactivated MB exhibits not only anticancer activity but also antibacterial activity both in vitro and in vivo. However, due to the hydrophilic nature of MB, it is difficult to create MB-embedded nano- or microparticles capable of increasing the clinical efficacy of the PDT. This review aims to summarize fabrication techniques for MB-embedded nano and microparticles and to provide both in vitro and in vivo examples of MB-mediated PDT, thereby offering a future perspective on improving this promising clinical treatment modality. We also address examples of MB-mediated PDT in both cancer and infection treatments. Both in-vitro and in-vivo studies are summarized here to document recent trends in utilizing MB as an effective photosensitizer in PDT. Lastly, we discuss how developing efficient MB-carrying nano- and microparticle platforms would be able to increase the benefits of PDT.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| |
Collapse
|
25
|
Ayoub AM, Amin MU, Ambreen G, Dayyih AA, Abdelsalam AM, Somaida A, Engelhardt K, Wojcik M, Schäfer J, Bakowsky U. Photodynamic and antiangiogenic activities of parietin liposomes in triple negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112543. [DOI: 10.1016/j.msec.2021.112543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
|
26
|
Plou J, Molina-Martínez B, García-Astrain C, Langer J, García I, Ercilla A, Perumal G, Carracedo A, Liz-Marzán LM. Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopy. NANO LETTERS 2021; 21:8785-8793. [PMID: 34614348 PMCID: PMC8554797 DOI: 10.1021/acs.nanolett.1c03070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Monitoring dynamic processes in complex cellular environments requires the integration of uniformly distributed detectors within such three-dimensional (3D) networks, to an extent that the sensor could provide real-time information on nearby perturbations in a non-invasive manner. In this context, the development of 3D-printed structures that can function as both sensors and cell culture platforms emerges as a promising strategy, not only for mimicking a specific cell niche but also toward identifying its characteristic physicochemical conditions, such as concentration gradients. We present herein a 3D cancer model that incorporates a hydrogel-based scaffold containing gold nanorods. In addition to sustaining cell growth, the printed nanocomposite inks display the ability to uncover drug diffusion profiles by surface-enhanced Raman scattering, with high spatiotemporal resolution. We additionally demonstrate that the acquired information could pave the way to designing novel strategies for drug discovery in cancer therapy, through correlation of drug diffusion with cell death.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Beatriz Molina-Martínez
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Clara García-Astrain
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Judith Langer
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Amaia Ercilla
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160 Derio, Spain
| | - Govindaraj Perumal
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160 Derio, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
- Biochemistry
and Molecular Biology Department, University
of the Basque Country (UPV/EHU), P.O.
Box 644, E-48080 Bilbao, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
27
|
Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021; 13:pharmaceutics13091345. [PMID: 34575424 PMCID: PMC8470396 DOI: 10.3390/pharmaceutics13091345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.
Collapse
|
28
|
Lu TY, Lu WF, Wang YH, Liao MY, Wei Y, Fan YJ, Chuang EY, Yu J. Keratin-Based Nanoparticles with Tumor-Targeting and Cascade Catalytic Capabilities for the Combinational Oxidation Phototherapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38074-38089. [PMID: 34351754 DOI: 10.1021/acsami.1c10160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) holds tantalizing prospects of a prominent cancer treatment strategy. However, its efficacy remains limited by virtue of the hypoxic tumor microenvironment and the inadequate tumor-targeted delivery of photosensitizers, and these can be further exacerbated by the lack of development of a well-controlled nitric oxide (NO) release system at the target site. Inspired by Chinese medicine, we propose a revealing new keratin application. Keratin has garnered attention as an NO generator; however, its oncological use has rarely been investigated. We hypothesized that the incorporation of a phenylboronic acid (PBA) targeting ligand/methylene blue (MB) photosensitizer with a keratin NO donor would facilitate precise tumor delivery, enhancing PDT. Herein, we demonstrated that MB@keratin/PBA/d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) nanoparticles (MB@KPTNPs) specifically targeted breast cancer cells and effectively suppressed their growth. Through MB-mediated biometabolism, the endocytic MB@KPTNPs produced a sufficient amount of intracellular NO that reduced the glutathione level while boosting the efficiency of PDT. A therapeutic combination of NO/PDT was therefore achieved, resulting in significant inhibition of both in vivo tumor growth and lung metastasis. These findings underscore the importance of utilizing keratin-based nanoparticles that simultaneously combine targeting of the tumor and self-generating NO with a cascading catalytic ability as a novel oxidation therapeutic strategy for enhancing PDT.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yin-Hsu Wang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering; and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
29
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
30
|
Liposomes Loaded with Unsaponifiable Matter from Amaranthus hypochondriacus as a Source of Squalene and Carrying Soybean Lunasin Inhibited Melanoma Cells. NANOMATERIALS 2021; 11:nano11081960. [PMID: 34443791 PMCID: PMC8397957 DOI: 10.3390/nano11081960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amaranthus hypochondriacus is a source of molecules with reported health benefits such as antioxidant activity and cancer prevention. The objective of this research was to optimize the conditions for preparing a liposome formulation using amaranth unsaponifiable matter as a source of squalene in order to minimize the particle size and to maximize the encapsulation efficiency of liposomes for carrying and delivering soybean lunasin into melanoma cell lines. Amaranth oil was extracted using supercritical dioxide carbon extraction (55.2 MPa pressure, 80 °C temperature, solvent (CO2)-to-feed (oil) ratio of 20). The extracted oil from amaranth was used to obtain the unsaponifiable enriched content of squalene, which was incorporated into liposomes. A Box–Behnken response surface methodology design was used to optimize the liposome formulation containing the unsaponifiable matter, once liposomes were optimized. Soybean lunasin was loaded into the liposomes and tested on A-375 and B16-F10 melanoma cells. The squalene concentration in the extracted oil was 36.64 ± 0.64 g/ 100 g of oil. The particle size in liposomes was between 115.8 and 163.1 nm; the squalene encapsulation efficiency ranged from 33.14% to 76.08%. The optimized liposome formulation contained 15.27 mg of phospholipids and 1.1 mg of unsaponifiable matter. Cell viability was affected by the liposome formulation with a half-maximum inhibitory concentration (IC50) equivalent to 225 μM in B16-F10 and 215 μM in A-375. The liposomes formulated with lunasin achieved 82.14 ± 3.34% lunasin encapsulation efficiency and improved efficacy by decreasing lunasin IC50 by 31.81% in B16-F10 and by 41.89% in A-375 compared with unencapsulated lunasin.
Collapse
|
31
|
Arylamine Analogs of Methylene Blue: Substituent Effect on Aggregation Behavior and DNA Binding. Int J Mol Sci 2021; 22:ijms22115847. [PMID: 34072560 PMCID: PMC8198855 DOI: 10.3390/ijms22115847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The synthesis of new phenothiazine derivatives, analogs of Methylene Blue, is of particular interest in the design of new drugs, as well as in the development of a new generation of agents for photodynamic therapy. In this study, two new derivatives of phenothiazine, i.e., 3,7-bis(4-aminophenylamino)phenothiazin-5-ium chloride dihydrochloride (PTZ1) and 3,7-bis(4-sulfophenylamino)phenothiazin-5-ium chloride (PTZ2), are synthesized for the first time and characterized by NMR, IR spectroscopy, HRMS and elemental analysis. The interaction of the obtained compounds PTZ1 and PTZ2 with salmon sperm DNA is investigated. It is shown by UV-Vis spectroscopy and DFT calculations that substituents in arylamine fragments play a crucial role in dimer formation and interaction with DNA. In the case of PTZ1, two amine groups promote H-aggregate formation and DNA interactions through groove binding and intercalation. In the case of PTZ2, sulfanilic acid fragments prevent any dimer formation and DNA binding due to electrostatic repulsion. DNA interaction mechanisms are studied and confirmed by UV-vis and fluorescence spectroscopy in comparison with Methylene Blue. The obtained results open significant opportunities for the development of new drugs and photodynamic agents.
Collapse
|
32
|
Yousefi Sadeghloo A, Khorsandi K, Kianmehr Z. Synergistic effect of photodynamic treatment and doxorubicin on triple negative breast cancer cells. Photochem Photobiol Sci 2021; 19:1580-1589. [PMID: 33030191 DOI: 10.1039/d0pp00132e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Breast cancer is a metastatic cancer that can spread to other organs, such as the bone, liver, and brain. There are many treatments for breast cancer, such as surgery and chemotherapy, but they lead to resistance and side effects. Therefore, the discovery of new therapies with high efficacy and low toxicity that selectively affect cancer cells is of great importance. Of late, the combination therapy has been suggested as a novel approach compared to existing treatments. In the present study, the effect of the combined treatment of doxorubicin (DOX) and methylene blue activated in the presence of laser irradiation (PDT) on triple-negative breast cancer cells has been investigated. Human breast cancer cell line MDA-MB-231 was exposed to different concentrations of DOX, methylene blue (MB) and DOX-methylene blue (MB-DOX) combination therapy in two different conditions: first the treatment with DOX and then with MB-PDT, and another treatment first with MB-PDT and then with DOX. Cell viability was evaluated using the MTT assay. Morphological and colonization changes were observed by light microscopy. The occurrence of apoptotic cell death was assessed by double-staining ethidium bromide-acridine orange using fluorescence microscopy and flow cytometry. The results showed that the combination of using MB-PDT, followed by DOX (even at low concentrations), has a better effect on inducing cancer cell death in comparison to DOX alone. The result of this study suggests that the combination therapy of MB-PDT-DOX can be used as a potential strategy for the treatment of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Arghavan Yousefi Sadeghloo
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran. z.kianmehr@.ut.ac.ir
| | - Khatereh Khorsandi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran. z.kianmehr@.ut.ac.ir and Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran. z.kianmehr@.ut.ac.ir
| |
Collapse
|
33
|
de Souza BTL, Klosowski EM, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, da Silva FSI, Menezes PVMDC, Gilglioni EH, Utsunomiya KS, Marchiosi R, Dos Santos WD, Ferrarese-Filho O, Caetano W, de Souza Pereira PC, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology 2021; 455:152766. [PMID: 33775737 DOI: 10.1016/j.tox.2021.152766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 μM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.
Collapse
Affiliation(s)
- Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Gislaine Cristiane Mantovanelli
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Juliana Morais Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Vinicius Moreira da Costa Menezes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Karina Sayuri Utsunomiya
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Cesar de Souza Pereira
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
34
|
Silva ALG, Carvalho NV, Paterno LG, Moura LD, Filomeno CL, de Paula E, Báo SN. Methylene blue associated with maghemite nanoparticles has antitumor activity in breast and ovarian carcinoma cell lines. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Cancer constitutes group of diseases responsible for the second largest cause of global death, and it is currently considered one of the main public health concerns nowadays. Early diagnosis associated with the best choice of therapeutic strategy, is essential to achieve success in cancer treatment. In women, breast cancer is the second most common type, whereas ovarian cancer has the highest lethality when compared to other neoplasms of the female genital system. The present work, therefore, proposes the association of methylene blue with citrate-coated maghemite nanoparticles (MAGCIT–MB) as a nanocomplex for the treatment of breast and ovarian cancer.
Results
In vitro studies showed that T-47D and A2780 cancer cell lines underwent a significant reduction in cell viability after treatment with MAGCIT–MB, an event not observed in non-tumor (HNTMC and HUVEC) cells and MDA-MB-231, a triple-negative breast cancer cell line. Flow cytometry experiments suggest that the main mechanism of endocytosis involved in the interiorization of MAGCIT–MB is the clathrin pathway, whereas both late apoptosis and necrosis are the main types of cell death caused by the nanocomplex. Scanning electron microscopy and light microscopy reveal significant changes in the cell morphology. Quantification of reactive oxygen species confirmed the MAGCIT–MB cytotoxic mechanism and its importance for the treatment of tumor cells. The lower cytotoxicity of individual solution of maghemite nanoparticles with citrate (MAGCIT) and free methylene blue (MB) shows that their association in the nanocomplex is responsible for its enhanced therapeutic potential in the treatment of breast and ovarian cancer in vitro.
Conclusions
Treatment with MAGCIT–MB induces the death of cancer cells but not normal cells. These results highlight the importance of the maghemite core for drug delivery and for increasing methylene blue activity, aiming at the treatment of breast and ovarian cancer.
Graphic Abstract
Collapse
|
35
|
Zafar A, Alruwaili NK, Imam SS, Alharbi KS, Afzal M, Alotaibi NH, Yasir M, Elmowafy M, Alshehri S. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Novel Surface-Modified Bilosomes as Functional and Biocompatible Nanocarriers of Hybrid Compounds. NANOMATERIALS 2020; 10:nano10122472. [PMID: 33321762 PMCID: PMC7763575 DOI: 10.3390/nano10122472] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
In the present contribution, we demonstrate a new approach for functionalization of colloidal nanomaterial consisting of phosphatidylcholine/cholesterol-based vesicular systems modified by FDA-approved biocompatible components, i.e., sodium cholate hydrate acting as a biosurfactant and Pluronic P123—a symmetric triblock copolymer comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks Eight novel bilosome formulations were prepared using the thin-film hydration method followed by sonication and extrusion in combination with homogenization technique. The optimization studies involving the influence of the preparation technique on the nanocarrier size (dynamic light scattering), charge (electrophoretic light scattering), morphology (transmission electron microscopy) and kinetic stability (backscattering profiles) revealed the most promising candidate for the co-loading of model active compounds of various solubility; namely, hydrophilic methylene blue and hydrophobic curcumin. The studies of the hybrid cargo encapsulation efficiency (UV-Vis spectroscopy) exhibited significant potential of the formulated bilosomes in further biomedical and pharmaceutical applications, including drug delivery, anticancer treatment or diagnostics.
Collapse
|
37
|
Effect of photodynamic therapy on expression of HRAS, NRAS and caspase 3 genes at mRNA levels, apoptosis of head and neck squamous cell carcinoma cell line. Photodiagnosis Photodyn Ther 2020; 33:102142. [PMID: 33307231 DOI: 10.1016/j.pdpdt.2020.102142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to assess the effect of photodynamic therapy (PDT) on expression of CASP3, NRAS and HRAS genes at mRNA levels, and apoptosis of head and neck squamous cell carcinoma (HNSCC) cell line. MATERIALS AND METHODS In order to complete the present in vitro study, HNSCC cell line (NCBI C196 HN5) purchased from Pasteur Institute. Cells were divided into four groups; Group 1: photodynamic treatment (laser + methylene blue (MB) as photosensitizer), group 2: MB, group 3: laser (with 660 nm wavelength), and group 4: control (without any treatment). To determine the optimal concentration of MB, in a pilot study, toxicity of MB in different concentration was assessed using MTT assay. Cells in group 1, 2 and 3 was treated at optimal concentration of MB (1.6 μg/mL). Gene expression at mRNA levels was assessed after 24 h incubation, using real-time (qRT)-PCR. The expression of BAX and BCL2 genes at the mRNA levels was analyzed to evaluate apoptosis. 2-ΔΔCt values of BCL2, BAX, CASP3, NRAS, and HRAS in groups was analyzed using ANOVA. Tukey's HSD and Games Howell test was used to compare between two groups. RESULTS Over-expression of BAX (p < 0.001), CASP3 (p < 0.001) and down-regulation of BCL2 (p = 0.004), HRAS (p = 0.023) and NRAS (p = 0.045) were noted in group 1 (PDT), compared with the control group. Treatment by laser alone induce down-regulation of CASP3 (p < 0.05), BAX (p < 0.05), BCL2 (p > 0.05), HRAS (p > 0.05) and NRAS (p > 0.05). CONCLUSION PDT caused down-regulation of NRAS, HRAS and BCL2 and over-expression of CASP3 and BAX genes at mRNA levels in HNSCC cell line. The present study raises the possibility that the role of MB on BCL2 down-regulation and BAX and CASP3 over-expression was higher than laser alone while it seems that laser alone was more effective than MB in HRAS and NRAS down-regulation.
Collapse
|
38
|
Kuo SH, Wu PT, Huang JY, Chiu CP, Yu J, Liao MY. Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2429. [PMID: 33291730 PMCID: PMC7761902 DOI: 10.3390/nano10122429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
In this work we developed methylene blue-immobilized copper-iron nanoparticles (MB-CuFe NPs) through a facile one-step hydrothermal reaction to achieve a better phototherapeutic effect. The Fe/Cu ratio of the CuFe NPs was controllable by merely changing the loading amount of iron precursor concentration. The CuFe NPs could serve as a Fenton catalyst to convert hydrogen peroxide (H2O2) into reactive oxygen species (ROS), while the superparamagnetic properties also suggest magnetic resonance imaging (MRI) potential. Furthermore, the Food and Drug Administration (FDA)-approved MB photosensitizer could strongly adsorb onto the surface of CuFe NPs to facilitate the drug delivery into cells and improve the photodynamic therapy at 660 nm via significant generation of singlet oxygen species, leading to enhanced cancer cell-damaging efficacy. An MTT (thiazolyl blue tetrazolium bromide) assay proved the low cytotoxicity of the CuFe NPs to cervical cancer cells (HeLa cells), namely above 80% at 25 ppm of the sample dose. A slight dissolution of Cu and Fe ions from the CuFe NPs in an acidic environment was obtained, providing direct evidence for CuFe NPs being degradable without the risk of long-term retention in the body. Moreover, the tremendous photo-to-thermal conversion of CuFe NPs was examined, which might be combined with photodynamic therapy (PDT) for promising development in the depletion of cancer cells after a single pulse of deep-red light irradiation at high laser power.
Collapse
Affiliation(s)
- Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Jing-Yin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| | - Chin-Pao Chiu
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| |
Collapse
|
39
|
Khorsandi K, Hosseinzadeh R, Chamani E. Molecular interaction and cellular studies on combination photodynamic therapy with rutoside for melanoma A375 cancer cells: an in vitro study. Cancer Cell Int 2020; 20:525. [PMID: 33132760 PMCID: PMC7596947 DOI: 10.1186/s12935-020-01616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background Melanoma as a type of skin cancer, is associated with a high mortality rate. Therefore, early diagnosis and efficient surgical treatment of this disease is very important. Photodynamic therapy (PDT) involves the activation of a photosensitizer by light at specific wavelength that interacts with oxygen and creates singlet oxygen molecules or reactive oxygen species (ROS), which can lead to tumor cell death. Furthermore, one of the main approches in the prevention and treatment of various cancers is plant compounds application. Phenolic compounds are essential class of natural antioxidants, which play crucial biological roles such as anticancer effects. It was previously suggested that flavonoid such as rutoside could acts as pro-oxidant or antioxidant. Hence, in this study, we aimed to investigate the effect of rutoside on the combination therapy with methylene blue (MB) assisted by photodynamic treatment (PDT) using red light source (660 nm; power density: 30 mW/cm2) on A375 human melanoma cancer cells. Methods For this purpose, the A375 human melanoma cancer cell lines were treated by MB-PDT and rutoside. Clonogenic cell survival, MTT assay, and cell death mechanisms were also determined after performing the treatment. Subsequently, after the rutoside treatment and photodynamic therapy (PDT), cell cycle and intracellular reactive oxygen species (ROS) generation were measured. Results The obtained results showed that, MB-PDT and rutoside had better cytotoxic and antiprolifrative effects on A375 melanoma cancer cells compared to each free drug, whereas the cytotoxic effect on HDF human dermal fibroblast cell was not significant. MB-PDT and rutoside combination induced apoptosis and cell cycle arrest in the human melanoma cancer cell line. Intracellular ROS increased in A375 cancer cell line after the treatment with MB-PDT and rutoside. Conclusion The results suggest that, MB-PDT and rutoside could be considered as novel approaches as the combination treatment of melanoma cancer.![]()
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Elham Chamani
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Clinical Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
40
|
Taguchi S, Kang BS, Suga K, Okamoto Y, Jung HS, Umakoshi H. A novel method of vesicle preparation by simple dilution of bicelle solution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
42
|
SİLİNDİR GÜNAY M. The Formulation of Methylene Blue Encapsulated, Tc-99m Labeled Multifunctional Liposomes for Sentinel Lymph Node Imaging and Therapy. Turk J Pharm Sci 2020; 17:381-387. [PMID: 32939133 PMCID: PMC7489354 DOI: 10.4274/tjps.galenos.2019.86619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/27/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Methylene blue (MB) is a commonly used dye that can be used for near-infrared (NIR) imaging and photodynamic therapy (PDT) by producing reactive oxygen species after light exposure, inducing apoptosis. The limiting factor of MB is its poor penetration through cell membranes. Its decreased cellular uptake can be prevented by encapsulation in drug delivery systems such as liposomes. Additionally, the enhanced permeability and retention effect of tumors enables enhanced accumulation of nanocarriers at the target site. MATERIALS AND METHODS Nanosized, MB encapsulated, Tc-99m radiolabeled Lipoid S PC:PEG2000-PE:Chol: DTPA-PE and DPPC:PEG2000-PE:Chol:DTPA-PE liposomes were formulated to design multifunctional theranostic nanocarriers for: 1) NIR imaging, 2) gamma probe detection of sentinel lymph nodes (SLNs), and 3) PDT, which can provide accurate imaging and therapy helping surgery with a single liposomal system. The characterization of liposomes was performed by measuring particle size, zeta potential, phospholipid content, and encapsulation efficiency. Additionally, the in vitro release profile of MB and physical stability were also evaluated over 6 months at determined time intervals by measuring the mean particle size, zeta potential, encapsulation efficiency, and phospholipid content of liposomes kept at room temperature (25°C) and 4°C. RESULTS Tc-99m radiolabeled, nanosized Lipoid S PC:PEG2000-PE:Chol:DTPA-PE and DPPC:PEG2000-PE:Chol:DTPA-PE liposomes showed suitable particle size (around 100 nm), zeta potential (-9 to -13 mV), encapsulation efficiency (around 10%), phospholipid efficiency (around 85-90%), and release profiles. Additionally, the liposomes found stable for 3 months especially when kept at 4°C. CONCLUSION MB encapsulated, Tc-99m radiolabeled, nanosized Lipoid S PC:PEG2000-PE:Chol:DTPA-PE and DPPC:PEG2000-PE:Chol:DTPA-PE liposomes were found to have potential for SLN imaging by gamma probe detection, NIR imaging, and PDT. In vitro and in vivo imaging and therapeutic efficiency should be definitely evaluated to enable a final decision and our studies on this research topic are continuing.
Collapse
Affiliation(s)
- Mine SİLİNDİR GÜNAY
- Hacettepe University Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey
| |
Collapse
|
43
|
Ambrósio JAR, Pinto BCDS, da Silva BGM, Passos JCDS, Beltrame Junior M, Costa MS, Simioni AR. BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2182-2198. [DOI: 10.1080/09205063.2020.1795461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Milton Beltrame Junior
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| |
Collapse
|
44
|
Klosowski EM, de Souza BTL, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, Menezes PVMDC, Gilglioni EH, Utsunomiya KS, Marchiosi R, Dos Santos WD, Filho OF, Caetano W, Pereira PCDS, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: A balance of the useful and harmful effects of this photosensitizer. Free Radic Biol Med 2020; 153:34-53. [PMID: 32315767 DOI: 10.1016/j.freeradbiomed.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
According to the literature, methylene blue (MB) is a photosensitizer (PS) with a high affinity for mitochondria. Therefore, several studies have explored this feature to evaluate its photodynamic effects on the mitochondrial apoptotic pathway under normoxic conditions. We are aware only of limited reports regarding MB's photodynamic effects on mitochondrial energy metabolism, especially under hypoxic conditions. Thus, the purposes of this study were to determine the direct and photodynamic acute effects of MB on the energy metabolism of rat liver mitochondria under hypoxic conditions and its direct acute effects on several parameters linked to energy metabolism in the isolated perfused rat liver. MB presented a high affinity for mitochondria, irrespective of photostimulation or proton gradient formation. Upon photostimulation, MB demonstrated high in vitro oxidizing species generation ability. Consequently, MB damaged the mitochondrial macromolecules, as could be evidenced by the elevated levels of lipid peroxidation and protein carbonyls. In addition to generating a pro-oxidant environment, MB also led to a deficient antioxidant defence system, as indicated by the reduced glutathione (GSH) depletion. Bioenergetically, MB caused uncoupling of oxidative phosphorylation and led to photodynamic inactivation of complex I, complex II, and F1FO-ATP synthase complex, thus decreasing mitochondrial ATP generation. Contrary to what is expected for an ideal PS, MB displayed appreciable dark toxicity on mitochondrial energy metabolism. The results indicated that MB acted via at least three mechanisms: direct damage to the inner mitochondrial membrane; uncoupling of oxidative phosphorylation; and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, MB also strongly inhibited mitochondrial ATP production. In the perfused rat liver, MB stimulated oxygen consumption, decreased the ATP/ADP ratio, inhibited gluconeogenesis and ureogenesis, and stimulated glycogenolysis, glycolysis, and ammoniagenesis, fully corroborating its uncoupling action in intact cells, as well. It can be concluded that even under hypoxic conditions, MB is a PS with potential for photodynamic effect-induced mitochondrial dysfunction. However, MB disrupts the mitochondrial energy metabolism even in the dark, causing energy-linked liver metabolic changes that could be harmful in specific circumstances.
Collapse
Affiliation(s)
- Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Marcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Gislaine Cristiane Mantovanelli
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Juliana Morais Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Vinicius Moreira da Costa Menezes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Karina Sayuri Utsunomiya
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | | | | | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
45
|
Mazzilli MRF, Ambrósio JAR, da Silva Godoy D, da Silva Abreu A, Carvalho JA, Junior MB, Simioni AR. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1457-1474. [PMID: 32326844 DOI: 10.1080/09205063.2020.1760702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently several scientific-technological advances in the health area have developed. Among them, we can highlight research addressing nanoscience and nanotechnology focusing on the development of formulations for the cancer treatment. This work describes the synthesis and characterization of bovine serum albumin (BSA) polyelectrolytic nanoparticles for controlled release using silicon dihydroxide phthalocyanine [SiPc (OH)2] as a photosensitizer model for application in Photodynamic Therapy (PDT). BSA nanoparticles were prepared by the one-step desolvation process and the nanoparticulate system was coated with polyelectrolytes using poly-(4-styrene sulfonate - PSS) as a strong polyanion and polyallylamine hydrochloride (PAH) as a weak polycation by the technique self-assembling layer-by-layer (LbL). The formulation was characterized and available in cellular culture. The profile of drug release was investigated and compared to that of free [SiPc (OH)2]. The nanoparticles have a mean diameter of 226.9 nm, a narrow size distribution with polydispersive index of 0.153, smooth surface and spherical shape. [SiPc(OH)2] loaded nanoparticles maintain its photophysical behaviour after encapsulation. The polyelectrolytic nanoparticles improved efficiency in release and photocytotoxicity assay when compared to pure drug. The results demonstrate that photosensitizer adsorption on BSA nanoparticles together with biopolymer layer-by-layer assembly provides a way to manufacture biocompatible nanostructured materials that are intended for use as biomaterials for Photodynamic Therapy applications.
Collapse
Affiliation(s)
- Mariana Ribeiro Farah Mazzilli
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | | | - Daniele da Silva Godoy
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | - Alexandro da Silva Abreu
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Janicy Arantes Carvalho
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Milton Beltrame Junior
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| |
Collapse
|
46
|
Monroe JD, Belekov E, Er AO, Smith ME. Anticancer Photodynamic Therapy Properties of Sulfur-Doped Graphene Quantum Dot and Methylene Blue Preparations in MCF-7 Breast Cancer Cell Culture. Photochem Photobiol 2019; 95:1473-1481. [PMID: 31230353 DOI: 10.1111/php.13136] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) is a field with many applications including chemotherapy. Graphene quantum dots (GQDs) exhibit a variety of unique properties and can be used in PDT to generate singlet oxygen that destroys pathogenic bacteria and cancer cells. The PDT agent, methylene blue (MB), like GQDs, has been successfully exploited to destroy bacteria and cancer cells by increasing reactive oxygen species generation. Recently, combinations of GQDs and MB have been shown to destroy pathogenic bacteria via increased singlet oxygen generation. Here, we performed a spectrophotometric assay to detect and measure the uptake of GQDs, MB and several GQD-MB combinations in MCF-7 breast cancer cells. Then, we used a cell counting method to evaluate the cytotoxicity of GQDs, MB and a 1:1 GQD:MB preparation. Singlet oxygen generation in cells was then detected and measured using singlet oxygen sensor green. The dye, H2 DCFDA, was used to measure reactive oxygen species production. We found that GQD and MB uptake into MCF-7 cells occurred, but that MB, followed by 1:1 GQD:MB, caused superior cytotoxicity and singlet oxygen and reactive oxygen species generation. Our results suggest that methylene blue's effect against MCF-7 cells is not potentiated by GQDs, either in light or dark conditions.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Ermek Belekov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY
| | - Ali Oguz Er
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY
| | - Michael E Smith
- Department of Biology, Western Kentucky University, Bowling Green, KY
| |
Collapse
|
47
|
Ma Z, Hu P, Guo C, Wang D, Zhang X, Chen M, Wang Q, Sun M, Zeng P, Lu F, Sun L, She L, Zhang H, Yao J, Yang F. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy. Int J Nanomedicine 2019; 14:5527-5540. [PMID: 31413561 PMCID: PMC6661377 DOI: 10.2147/ijn.s208649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Nonspecific tumor targeting, potential relapse and metastasis of tumor after treatment are the main barriers in clinical photodynamic therapy (PDT) for cancer, hence, inhibiting relapse and metastasis of tumor is significant issues in clinic. Purpose: In this work, chidamide as a histone deacetylases inhibitor (HADCi) was bound onto a pH-responsive block polymer folate polyethylene glycol-b-poly(aspartic acid) (PEG-b-PAsp) grafted folate (FA-PEG-b-PAsp) to obtain the block polymer folate polyethylene glycol-b-poly(asparaginyl-chidamide) (FA-PEG-b-PAsp-chidamide, FPPC) as multimodal tumor-targeting drug-delivery carrier to inhibiting tumor cell proliferation and tumor metastasis in mice. Methods: Model photosensitizer pyropheophorbide-a (Pha) was encapsulated by FPPC in PBS to form the polymer micelles Pha@FPPC [folate polyethylene glycol-b-poly(asparaginyl-chidamide) micelles encapsulating Pha]. Pha@FPPC was characterized by transmission electron microscope and dynamic light scattering; also, antitumor activity in vivo and in vitro were investigated by determination of cellular ROS level, detection of cell apoptosis and cell cycle arrest, PDT antitumor activity in vivo and histological analysis. Results: With favorable and stable sphere morphology under transmission electron microscope (TEM) (~93.0 nm), Pha@FPPC greatly enhanced the cellular uptake due to its folate-mediated effective endocytosis by mouse melanoma B16-F10 cells and the yield of ROS in tumor cells induced by PDT, and mainly caused necrocytosis and blocked cell growth cycle not only in G2 phase but also in G1/G0 phase after PDT. Pha@FPPC exhibited lower dark cytotoxicity in vitro and a better therapeutic index because of its higher dark cytotoxicity/photocytotoxicity ratio. Moreover, Pha@FPPC not only significantly inhibited the growth of implanted tumor and prolonged the survival time of melanoma-bearing mice due to both its folate-mediated tumor-targeting and selectively accumulation at tumor site by EPR (enhanced permeability and retention)effect as micelle nanoparticles but also remarkably prevented pulmonary metastasis of mice melanoma after PDT compared to free Pha, demonstrating its dual antitumor characteristics of PDT and HDACi. Conclusion: As a folate-mediated and acid-activated chidamide-grafted drug-delivery carrier, FPPC may have great potential to inhibit tumor metastasis in clinical photodynamic treatment for cancer because of its effective and multimodal tumor-targeting performance as photosensitizer vehicle.
Collapse
Affiliation(s)
- Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Pengwei Hu
- Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Changyong Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Min Chen
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Qirong Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Peiyu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Fengkun Lu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lan She
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| |
Collapse
|