1
|
Baishya K, Bacova J, Al Chimali B, Capek J, Michalicka J, Gautier G, Le Borgne B, Rousar T, Macak JM. Ultrathin ALD Coatings of Zr and V Oxides on Anodic TiO 2 Nanotube Layers: Comparison of the Osteoblast Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2025; 17:739-749. [PMID: 39731561 PMCID: PMC11783542 DOI: 10.1021/acsami.4c19142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO2) and vanadium pentoxide (V2O5) on osteoblastic MG-63 cells grown on TiO2 nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study. The MG-63 cell growth and proliferation after 48 h of incubation on hybrid TNTs/ZrO2 and TNTs/V2O5 surfaces was evaluated in comparison to the uncoated TNTs of each diameter. The density of viable MG-63 cells was assessed for all the TNT surfaces, along with the cell morphology and the spreading behavior (i.e., the cell length). The ultrathin coatings retained the original morphology of the TNTs but changed the surface chemical composition, wettability, and cell behavior, whose interplay is the subject of the present investigation. These findings offer interesting views on the influence of the composition of biomedical implant surfaces, triggered by ALD ultrathin coatings on them. The outcomes of this work shed light on the assessment of the biocompatibility of the two different ALD coatings.
Collapse
Affiliation(s)
- Kaushik Baishya
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jana Bacova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Bachar Al Chimali
- GREMAN
UMR-CNRS 7347, INSA Centre Val de Loire, Université de Tours, 37071 Tours Cedex 2, France
| | - Jan Capek
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jan Michalicka
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Gael Gautier
- GREMAN
UMR-CNRS 7347, INSA Centre Val de Loire, Université de Tours, 37071 Tours Cedex 2, France
| | - Brice Le Borgne
- GREMAN
UMR-CNRS 7347, INSA Centre Val de Loire, Université de Tours, 37071 Tours Cedex 2, France
| | - Tomas Rousar
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jan M. Macak
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 123, 612 00 Brno, Czech Republic
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii, 532
10 Pardubice, Czech
Republic
| |
Collapse
|
2
|
Abushahba F, Riivari S, Areid N, Närvä E, Kylmäoja E, Ritala M, Tuukkanen J, Vallittu PK, Närhi TO. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. J Biomater Appl 2025:8853282251313503. [PMID: 39773092 DOI: 10.1177/08853282251313503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used (n = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC). The ALD-HA surface was characterized with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and HD formation of HGKs were evaluated after a 24-h cultivation period. The cell proliferation was assessed by cultivating cells for 1, 3, and 7 d. The expression levels of the integrin mediating cell adhesion were detected with the Western Blot method. In addition, cell spreading and expression of the proteins mediating cell adhesion were imaged using a confocal microscope. SEM-EDS analysis demonstrated the formation of HA on the ALD-HA surfaces. The relative cell attachment was significantly higher (p < .05) on the ALD-HA compared to the NC surface after 1 and 3 d of cell culture. No significant difference was found in integrin α6 or β4 expression. The microscope evaluation showed significantly increased cell spreading with peripheral HD expression on ALD-HA compared to the NC surfaces (p = .0001). Moreover, laminin γ2 expression was significantly higher on the ALD-HA than on the NC surfaces (p < .001). Compared to the NC Ti surface, the ALD-HA coating has favorable effects on HGK proliferation, growth, and cell spreading. This indicates that the ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Elisa Närvä
- Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, Turku, Finland
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- The Wellbeing Service County Southwest Finland, Turku, Finland
| | - Timo O Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
- The Wellbeing Service County Southwest Finland, Turku, Finland
| |
Collapse
|
3
|
Otadi M, Borhani E, Faghihi S. Combined bulk nanostructuring and surface modifications of titanium substrate for improved corrosion behavior. SURFACE AND COATINGS TECHNOLOGY 2024; 493:131229. [DOI: 10.1016/j.surfcoat.2024.131229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
5
|
Jażdżewska M, Majkowska-Marzec B, Zieliński A, Ostrowski R, Frączek A, Karwowska G, Olive JM. Mechanical Properties and Wear Susceptibility Determined by Nanoindentation Technique of Ti13Nb13Zr Titanium Alloy after "Direct Laser Writing". MATERIALS (BASEL, SWITZERLAND) 2023; 16:4834. [PMID: 37445148 DOI: 10.3390/ma16134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Laser treatment has often been applied to rebuild the surface layer of titanium and its alloys destined for long-term implants. Such treatment has always been associated with forming melted and re-solidified thin surface layers. The process parameters of such laser treatment can be different, including the patterning of a surface by so-called direct writing. In this research, pulse laser treatment was performed on the Ti13Nb13Zr alloy surface, with the distance between adjacent laser paths ranging between 20 and 50 µm. The obtained periodic structures were tested to examine the effects of the scan distance on the microstructure using SEM, the roughness and chemical and phase composition using EDS and XRD, and the mechanical properties using the nanoindentation technique. After direct laser writing, the thickness of the melted layers was between 547 and 123 µm, and the surface roughness varied between 1.74 and 0.69 µm. An increase in hardness was observed after laser treatment. The highest hardness, 5.44 GPa, was obtained for the sample modified with a laser beam spacing of 50 µm. The value of the distance has been shown to be important for several properties and related to a complex microstructure of the thin surface layer close to and far from the laser path.
Collapse
Affiliation(s)
- Magdalena Jażdżewska
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Manufacturing and Materials Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Beata Majkowska-Marzec
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Manufacturing and Materials Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Andrzej Zieliński
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Manufacturing and Materials Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Roman Ostrowski
- Institute of Optoelectronics, Military University of Technology, 00-908 Warszawa, Poland
| | - Aleksandra Frączek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Manufacturing and Materials Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Gabriela Karwowska
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Manufacturing and Materials Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jean-Marc Olive
- CNRS, Institute of Mechanics and Engineering, University of Bordeaux, 33400 Talence, France
| |
Collapse
|
6
|
TiO 2/HA and Titanate/HA Double-Layer Coatings on Ti6Al4V Surface and Their Influence on In Vitro Cell Growth and Osteogenic Potential. J Funct Biomater 2022; 13:jfb13040271. [PMID: 36547531 PMCID: PMC9787412 DOI: 10.3390/jfb13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.
Collapse
|
7
|
Ehlert M, Radtke A, Bartmański M, Piszczek P. Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6925. [PMID: 36234265 PMCID: PMC9572782 DOI: 10.3390/ma15196925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are discussed. Despite excellent biocompatibility with natural bone tissue of materials based on hydroxyapatite (HA), their poor adhesion to the substrate caused the limited use in the implants' construction. In our works, we have focused on the comparison of the structure, physicochemical, and mechanical properties of coating systems produced at different conditions. For this purpose, scanning electron microscopy images, chemical composition, X-ray diffraction patterns, infrared spectroscopy, wettability, and mechanical properties are analyzed. Our investigations proved that the intermediate titanium oxide coatings presence significantly increases the adhesion between the hydroxyapatite layer and the Ti6Al4V substrate, thus solving the temporary delamination problems of the HA layer.
Collapse
Affiliation(s)
- Michalina Ehlert
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| | - Michał Bartmański
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Kylmäoja E, Holopainen J, Abushahba F, Ritala M, Tuukkanen J. Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Deposition. Biomolecules 2022; 12:biom12050654. [PMID: 35625580 PMCID: PMC9138598 DOI: 10.3390/biom12050654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The increasing demand for bone implants with improved osseointegration properties has prompted researchers to develop various coating types for metal implants. Atomic layer deposition (ALD) is a method for producing nanoscale coatings conformally on complex three-dimensional surfaces. We have prepared hydroxyapatite (HA) coating on titanium (Ti) substrate with the ALD method and analyzed the biocompatibility of this coating in terms of cell adhesion and viability. Methods: HA coatings were prepared on Ti substrates by depositing CaCO3 films by ALD and converting them to HA by wet treatment in dilute phosphate solution. MC3T3-E1 preosteoblasts were cultured on ALD-HA, glass slides and bovine bone slices. ALD-HA and glass slides were either coated or non-coated with fibronectin. After 48h culture, cells were imaged with scanning electron microscopy (SEM) and analyzed by vinculin antibody staining for focal adhesion localization. An 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) test was performed to study cell viability. Results: Vinculin staining revealed similar focal adhesion-like structures on ALD-HA as on glass slides and bone, albeit on ALD-HA and bone the structures were thinner compared to glass slides. This might be due to thin and broad focal adhesions on complex three-dimensional surfaces of ALD-HA and bone. The MTT test showed comparable cell viability on ALD-HA, glass slides and bone. Conclusion: ALD-HA coating was shown to be biocompatible in regard to cell adhesion and viability. This leads to new opportunities in developing improved implant coatings for better osseointegration and implant survival.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
- Correspondence:
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
| |
Collapse
|
9
|
Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:201-218. [PMID: 35223351 PMCID: PMC8848344 DOI: 10.3762/bjnano.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 06/06/2023]
Abstract
Significant advancement in the field of nanotechnology has raised the possibility of applying potent engineered biocompatible nanomaterials within biological systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility, corrosion resistance, and low toxicity, titania nanomaterials have revolutionized therapeutic approaches. Additionally, titania provides an exceptional choice for developing innovative medical devices and the integration of functional moieties that can modulate the biological responses. Thus, the current review aims to present a comprehensive and up-to-date overview of TiO2-based nanotherapeutics and the corresponding future challenges.
Collapse
Affiliation(s)
- Padmavati Sahare
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Paulina Govea Alvarez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Juan Manual Sanchez Yanez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
| | | | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Querétaro, Mexico
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| |
Collapse
|
10
|
OUP accepted manuscript. Metallomics 2022; 14:6515965. [DOI: 10.1093/mtomcs/mfac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022]
|
11
|
Xie G, Bai H, Miao G, Feng G, Yang J, He Y, Li X, Li Y. The Applications of Ultra-Thin Nanofilm for Aerospace Advanced Manufacturing Technology. NANOMATERIALS 2021; 11:nano11123282. [PMID: 34947631 PMCID: PMC8708582 DOI: 10.3390/nano11123282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
With the development of industrial civilization, advanced manufacturing technology has attracted widespread concern, including in the aerospace industry. In this paper, we report the applications of ultra-thin atomic layer deposition nanofilm in the advanced aerospace manufacturing industry, including aluminum anti-oxidation and secondary electron suppression, which are critical in high-power and miniaturization development. The compact and uniform aluminum oxide film, which is formed by thermal atomic layer deposition (ALD), can prevent the deep surface oxidation of aluminum during storage, avoiding the waste of material and energy in repetitive production. The total secondary electron yield of the C/TiN component nanofilm, deposited through plasma-enhanced atomic layer deposition, decreases 25% compared with an uncoated surface. The suppression of secondary electron emission is of great importance in solving the multipactor for high-power microwave components in space. Moreover, the controllable, ultra-thin uniform composite nanofilm can be deposited directly on the complex surface of devices without any transfer process, which is critical for many different applications. The ALD nanofilm shows potential for promoting system performance and resource consumption in the advanced aerospace manufacturing industry.
Collapse
Affiliation(s)
- Guibai Xie
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
- Hangzhou HTYS Information Technology Co., Ltd., Hangzhou 310024, China
- Correspondence: (G.X.); (X.L.); (Y.L.); Tel.: +86-185-1062-8564 (G.X.)
| | - Hongwu Bai
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
- Hangzhou HTYS Information Technology Co., Ltd., Hangzhou 310024, China
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Guanghui Miao
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
| | - Guobao Feng
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
| | - Jing Yang
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
| | - Yun He
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
| | - Xiaojun Li
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
- Correspondence: (G.X.); (X.L.); (Y.L.); Tel.: +86-185-1062-8564 (G.X.)
| | - Yun Li
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China; (H.B.); (G.M.); (G.F.); (J.Y.); (Y.H.)
- Correspondence: (G.X.); (X.L.); (Y.L.); Tel.: +86-185-1062-8564 (G.X.)
| |
Collapse
|
12
|
Sun S, Deng P, Mu L, Hu X, Guo S. Bionanoscale Recognition Underlies Cell Fate and Therapy. Adv Healthc Mater 2021; 10:e2101260. [PMID: 34523248 DOI: 10.1002/adhm.202101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Indexed: 11/09/2022]
Abstract
Understanding the bionanoscale recognition of nanostructured architectures is critical to the design and application of nanomaterials, but the related information is not well understood. In this study, it is found that bionanoscale recognition underlies cell fate and therapy. For example, 1T phase (octahedral coordination) monolayer MoS2 exhibits a markedly stronger affinity for fibronectin than the 2H structure (triangular prism coordination) and promotes cell spreading and differentiation. The van der Waals energy and increased turn components contribute to the high adhesion of fibronectin onto the 1T-MoS2 structure. 1T-MoS2 exhibits a significantly stronger affinity (KD , 6.59 × 10-7 m) for liposomes than 2H-MoS2 (1.21 × 10-6 m) due to strong hydrophobic interactions. The existence of octahedrally coordinated atomic structures that improve cell viability by enhancing the neurite length is first proven by random forest and structural equation models. Consequently, octahedral coordination disaggregates α-synuclein (e.g., by decreasing β-sheets and increasing coil structures) and protects cells and hosts against Parkinson's disease. As a proof-of-principle demonstration, these findings indicate that bionanoscale recognition underlies the design of biomaterials and cell therapeutics.
Collapse
Affiliation(s)
- Shan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Li Mu
- Tianjin Key Laboratory of Agro‐environment and Safe‐product Key Laboratory for Environmental Factors Control of Agro‐product Quality Safety (Ministry of Agriculture and Rural Affairs) Institute of Agro‐environmental Protection Ministry of Agriculture and Rural Affairs Tianjin 300191 China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| |
Collapse
|
13
|
Hashemi Astaneh S, Faverani LP, Sukotjo C, Takoudis CG. Atomic layer deposition on dental materials: Processing conditions and surface functionalization to improve physical, chemical, and clinical properties - A review. Acta Biomater 2021; 121:103-118. [PMID: 33227485 DOI: 10.1016/j.actbio.2020.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Surface functionalization is an effective approach to improve and enhance the properties of dental materials. A review of atomic layer deposition (ALD) in the field of dental materials is presented. ALD is a well-established thin film deposition technique. It is being used for surface functionalization in different technologies and biological related applications. With film thickness control down to Ångström length scale and uniform conformal thin films even on complex 3D substrates, high quality thin films and their reproducibility are noteworthy advantages of ALD over other thin film deposition methods. Low temperature ALD allows temperature sensitive substrates to be functionalized with high quality ultra-thin films too. In the current work, ALD is elaborated as a promising method for surface modification of dental materials. Different aspects of conventional dental materials that can be enhanced using ALD are discussed. Also, the influence of different ALD thin films and their microstructure on the surface properties, corrosion-resistance, antibacterial activity, biofilm formation, and osteoblast compatibility are addressed. Depending on the stage of advancement for the studied materials reported in the literature, these studies are then categorized into four stages: fabrication & characterization, in vitro studies, in vivo studies, and human tests. Materials coated with ALD thin films with potential dental applications are also presented here and they are categorized as stage 1. The purpose of this review is to organize and present the up to date ALD research on dental materials. The current study can serve as a guide for future work on using ALD for surface functionalization and resulting property tuning of materials in real world dental applications.
Collapse
|
14
|
Structure and Corrosion Behavior of TiO2 Thin Films Deposited by ALD on a Biomedical Magnesium Alloy. COATINGS 2021. [DOI: 10.3390/coatings11010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium alloys have been investigated as temporary biomaterials for orthopedic applications. Despite their high osseointegration and mechanical (bone-like) properties, Mg alloys quickly degrade in simulated physiological media. Surface coatings can be deposited onto Mg alloys to slow the corrosion rate of these biomaterials in chloride-rich environments. TiO2 films show high potential for improving the corrosion resistance of magnesium alloys. This article presents the structural observations and corrosion behavior of TiO2 thin films deposited onto a MgCa2Zn1Gd3 alloy using atomic layer deposition (ALD). Surface morphologies were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and Raman analysis of the deposited TiO2 films was also carried out. The corrosion behavior of the uncoated alloy and the alloy coated with TiO2 was measured in Ringer’s solution at 37 °C using electrochemical and immersion tests. The microscopic observations of the TiO2 thin films with a thickness of about 52.5 and 70 nm showed that the surface morphology was homogeneous without visible defects on the TiO2 surface. The electrochemical and immersion test results showed that the thin films decreased the corrosion rate of the studied Mg-based alloy, and the corrosion resistance was higher in the thicker TiO2 film.
Collapse
|
15
|
Motola M, Capek J, Zazpe R, Bacova J, Hromadko L, Bruckova L, Ng S, Handl J, Spotz Z, Knotek P, Baishya K, Majtnerova P, Prikryl J, Sopha H, Rousar T, Macak JM. Thin TiO2 Coatings by ALD Enhance the Cell Growth on TiO2 Nanotubular and Flat Substrates. ACS APPLIED BIO MATERIALS 2020; 3:6447-6456. [DOI: 10.1021/acsabm.0c00871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Martin Motola
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Raul Zazpe
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jana Bacova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Lenka Bruckova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Siowwoon Ng
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Zdenek Spotz
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Petr Knotek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Kaushik Baishya
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Pavlina Majtnerova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan Prikryl
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan M. Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
16
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
17
|
Ehlert M, Radtke A, Jędrzejewski T, Roszek K, Bartmański M, Piszczek P. In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells. MATERIALS 2020; 13:ma13071574. [PMID: 32235354 PMCID: PMC7177883 DOI: 10.3390/ma13071574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
In vitro biological research on a group of amorphous titania coatings of different nanoarchitectures (nanoporous, nanotubular, and nanosponge-like) produced on the surface of Ti6Al4V alloy samples have been carried out, aimed at assessing their ability to interact with adipose-derived mesenchymal stem cells (ADSCs) and affect their activity. The attention has been drawn to the influence of surface coating architecture and its physicochemical properties on the ADSCs proliferation. Moreover, in vitro co-cultures: (1) fibroblasts cell line L929/ADSCs and (2) osteoblasts cell line MG-63/ADSCs on nanoporous, nanotubular and nanosponge-like TiO2 coatings have been studied. This allowed for evaluating the impact of the surface properties, especially roughness and wettability, on the creation of the beneficial microenvironment for co-cultures and/or enhancing differentiation potential of stem cells. Obtained results showed that the nanoporous surface is favorable for ADSCs, has great biointegrative properties, and supports the growth of co-cultures with MG-63 osteoblasts and L929 fibroblasts. Additionally, the number of osteoblasts seeded and cultured with ADSCs on TNT5 surface raised after 72-h culture almost twice when compared with the unmodified scaffold and by 30% when compared with MG-63 cells growing alone. The alkaline phosphatase activity of MG-63 osteoblasts co-cultured with ADSCs increased, that indirectly confirmed our assumptions that TNT-modified scaffolds create the osteogenic niche and enhance osteogenic potential of ADSCs.
Collapse
Affiliation(s)
- Michalina Ehlert
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
- Correspondence: (A.R.); (P.P.); Tel.: +48-600321294 (A.R.); Tel.: +48-607883357 (P.P.)
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Michał Bartmański
- Faculty of Mechanical Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
- Correspondence: (A.R.); (P.P.); Tel.: +48-600321294 (A.R.); Tel.: +48-607883357 (P.P.)
| |
Collapse
|
18
|
Ameur N, Bachir R. Study of 1D Titanate‐Based Materials –New Modification of the Synthesis Procedure and Surface Properties‐Recent Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201904539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nawal Ameur
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO)University of Tlemcen BP 119 Tlemcen Algeria
- High School of Electrical and Energetic Engineering of Oran (ESGEE), Bir El Djir Algeria
| | - Redouane Bachir
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO)University of Tlemcen BP 119 Tlemcen Algeria
| |
Collapse
|
19
|
Ciobanu G, Harja M. Bismuth-Doped Nanohydroxyapatite Coatings on Titanium Implants for Improved Radiopacity and Antimicrobial Activity. NANOMATERIALS 2019; 9:nano9121696. [PMID: 31783686 PMCID: PMC6955781 DOI: 10.3390/nano9121696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
This study aims to present the possibility to obtain bismuth-doped nanohydroxyapatite coatings on the surface of the titanium implants by using a solution-derived process according to an established biomimetic methodology. The bioactivity of the titanium surface was increased by an alkali-thermal treatment. Then, under biomimetic conditions, the titanium surface was coated with a Bi-doped nanohydroxyapatite layer by using a modified supersaturated calcification solution (SCS) containing a bismuth salt. The apatite deposits were analyzed by scanning electron microscopy coupled with X-ray analysis (SEM-EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and digital X-rays radiography method. The results indicate that the Bi-doped nanohydroxyapatite coatings on titanium surface were produced. These coatings exhibit a good radiopacity, thus enhancing their applications in dental and orthopedic fields. Additionally, the Bi-doped nanohydroxyapatite coatings show significant antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria.
Collapse
Affiliation(s)
- Gabriela Ciobanu
- Correspondence: (G.C.); (M.H.); Tel.: +40-0741025163 (G.C.); +40-0747909645 (M.H.)
| | - Maria Harja
- Correspondence: (G.C.); (M.H.); Tel.: +40-0741025163 (G.C.); +40-0747909645 (M.H.)
| |
Collapse
|
20
|
Ehlert M, Roszek K, Jędrzejewski T, Bartmański M, Radtke A. Titania Nanofiber Scaffolds with Enhanced Biointegration Activity-Preliminary In Vitro Studies. Int J Mol Sci 2019; 20:E5642. [PMID: 31718064 PMCID: PMC6888681 DOI: 10.3390/ijms20225642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The increasing need for novel bone replacement materials has been driving numerous studies on modifying their surface to stimulate osteogenic cells expansion and to accelerate bone tissue regeneration. The goal of the presented study was to optimize the production of titania-based bioactive materials with high porosity and defined nanostructure, which supports the cell viability and growth. We have chosen to our experiments TiO2 nanofibers, produced by chemical oxidation of Ti6Al4V alloy. Fibrous nanocoatings were characterized structurally (X-ray diffraction (XRD)) and morphologically (scanning electron microscopy (SEM)). The wettability of the coatings and their mechanical properties were also evaluated. We have investigated the direct influence of the modified titanium alloy surfaces on the survival and proliferation of mesenchymal stem cells derived from adipose tissue (ADSCs). In parallel, proliferation of bone tissue cells-human osteoblasts MG-63 and connective tissue cells - mouse fibroblasts L929, as well as cell viability in co-cultures (osteoblasts/ADSCs and fibroblasts/ADSCs has been studied. The results of our experiments proved that among all tested nanofibrous coatings, the amorphous titania-based ones were the most optimal scaffolds for the integration and proliferation of ADSCs, fibroblasts, and osteoblasts. Thus, we postulated these scaffolds to have the osteopromotional potential. However, from the co-culture experiments it can be concluded that ADSCs have the ability to functionalize the initially unfavorable surface, and make it suitable for more specialized and demanding cells.
Collapse
Affiliation(s)
- Michalina Ehlert
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-Implant Ltd., Gagarina 5/102, 87-100 Toruń, Poland
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Michał Bartmański
- Faculty of Mechanical Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-Implant Ltd., Gagarina 5/102, 87-100 Toruń, Poland
| |
Collapse
|
21
|
Photocatalytic Activity of Nanostructured Titania Films Obtained by Electrochemical, Chemical, and Thermal Oxidation of Ti6Al4V Alloy—Comparative Analysis. Catalysts 2019. [DOI: 10.3390/catal9030279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Three different Ti6Al4V surface oxidation methods have been applied to obtain three types of titania materials of different nanoarchitecture. Electrochemical oxidation of titanium alloy allowed for obtaining titania nanotubes (TNT), chemical oxidation led to obtain titania nanofibers (TNF), and thermal oxidation gave titania nanowires (TNW). My earlier investigations of these nanomaterials were focused mainly on the estimation of their bioactivity and potential application in modern implantology. In this article, the comparative analysis of the photocatalytic activity of produced systems, as well as the impact of their structure and morphology on this activity, are discussed. The activity of studied nanomaterials was estimated basis of UV-induced degradation of methylene blue and also acetone, and it was determined quantitatively according to the Langmuir–Hinshelwood reaction mechanism. The obtained results were compared to the activity of Pilkington Glass ActivTM (reference sample). Among analyzed systems, titania nanofibers obtained at 140 and 120 °C, possessing anatase and anatase/amorphous structure, as well as titania nanowires obtained at 475 and 500 °C, possessing anatase and anatase/rutile structure, were better photocatalyst than the reference sample. Completely amorphous titania nanotubes, turned out to be an interesting alternative for photocatalytic materials in the form of thin films, however, their photocatalytic activity is lower than for Pilkington Glass ActivTM.
Collapse
|