1
|
Yadav M, Arora R, Dhanda M, Ahlawat S, Shoran S, Ahlawat S, Nehra SP, Singh G, Lata S. Ppy/TiO 2-SiO 2 nanohybrid series: synthesis, characterization, photocatalytic activity, and antimicrobial potentiality. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:239-254. [PMID: 37159740 PMCID: PMC10163194 DOI: 10.1007/s40201-023-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
A series of polypyrrole doped TiO2-SiO2 nanohybrids (Ppy/TS NHs) were synthesized thru in-situ oxidation polymerization by varying weight ratio of pyrrole. The structural analysis of NHs were characterized by X-ray Diffraction (XRD) spectra, UV-visible (UV-Vis) spectra and X-ray Photoelectron spectra (XPS) confirmed synthesis of nanomaterials. Surface and morphological study done by adopting, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Transmittance Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed the homogenous distribution, nano range size formation and mesoporous nature of nanohybrids. Further, electrochemical behavior of synthesized NHs investigated by adopting Electrochemical Impedance Spectroscopy (EIS) showed good kinetic behaviour and electron transport tendency. The nanohybrids and precursors were examined for photocatalytic degradation of methylene blue (MB) dye and revealed enhanced degradation tendency for the NHs series photocatalysts. It was found that variation of pyrrole (0.1 to 0.3 g) to TS nanocomposites (TS Nc) increased the photocatalytic potential of TS Nc. The maximum photodegradation efficacy was found to be 90.48% in 120 min for Ppy/TS0.2 NHs under direct solar light. Additionally, Ppy/TS0.2 NHs performed appreciably towards antibacterial studies against some Gram-positive and Gram-negative deleterious bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Shigella flexneri microbes.
Collapse
Affiliation(s)
- Meena Yadav
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajat Arora
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Monika Dhanda
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Simran Ahlawat
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Sachin Shoran
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039 India
| | - Suman Ahlawat
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001 India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039 India
| | - Geeta Singh
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman Lata
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| |
Collapse
|
2
|
Varma A, Warghane A, Dhiman NK, Paserkar N, Upadhye V, Modi A, Saini R. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol 2023; 13:1104615. [PMID: 36926513 PMCID: PMC10011468 DOI: 10.3389/fcimb.2023.1104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The use of nanomaterials in several fields of science has undergone a revolution in the last few decades. It has been reported by the National Institutes of Health (NIH) that 65% and 80% of infections are accountable for at least 65% of human bacterial infections. One of their important applications in healthcare is the use of nanoparticles (NPs) to eradicate free-floating bacteria and those that form biofilms. A nanocomposite (NC) is a multiphase stable fabric with one or three dimensions that are much smaller than 100 nm, or systems with nanoscale repeat distances between the unique phases that make up the material. Using NC materials to get rid of germs is a more sophisticated and effective technique to destroy bacterial biofilms. These biofilms are refractory to standard antibiotics, mainly to chronic infections and non-healing wounds. Materials like graphene and chitosan can be utilized to make several forms of NCs, in addition to different metal oxides. The ability of NCs to address the issue of bacterial resistance is its main advantage over antibiotics. This review highlights the synthesis, characterization, and mechanism through which NCs disrupt Gram-positive and Gram-negative bacterial biofilms, and their relative benefits and drawbacks. There is an urgent need to develop materials like NCs with a larger spectrum of action due to the rising prevalence of human bacterial diseases that are multidrug-resistant and form biofilms.
Collapse
Affiliation(s)
- Anand Varma
- Arundeep Akshay Urja Pvt. Ltd. Gorakhpur, Uttar Pradesh, India
| | - Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Neena K. Dhiman
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Neha Paserkar
- Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D), Parul University, Vadodara, Gujarat, India
| | - Anupama Modi
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Investigations on effects of titanium dioxide (TiO 2) nanoparticle in combination with UV radiation on breast and skin cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:60. [PMID: 36565382 DOI: 10.1007/s12032-022-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022]
Abstract
In this study, we have investigated the chemotherapeutic potential of titanium dioxide (TiO2) nanoparticles on skin and breast cancer cells. The cells have treated with a 75 µg/ml concentration of titanium dioxide because it is a recommended dose with proven effectiveness in vitro studies and then the cells were exposed to UV-A radiation. The combined effects of titanium dioxide and UV-A radiation on cell viability, cell cycle, plasma membrane, mitochondrial membrane potentials and apoptotic activity of the cells were investigated. The viability of SK-MEL 30 cells was measured by MTT assay and apoptotic activity of cells was determined by Annexin-V FITC/PI staining. As a result of the research, an increase was observed in the viability of cells treated with 75 µg/ml titanium dioxide concentration, while a significant decrease in cell viability was observed for both cell types when UV-A radiation and TiO2 were applied together. The results also showed that the percentage of apoptotic cells increased as a result of UV + TiO2 exposure. Accordingly, it can be said that TiO2 nanoparticles may research as potential chemotherapeutic agents for skin and breast cancers, especially in the presence of UV radiation.
Collapse
|
4
|
Bragato C, Mostoni S, D’Abramo C, Gualtieri M, Pomilla FR, Scotti R, Mantecca P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. TOXICS 2022; 10:781. [PMID: 36548614 PMCID: PMC9787408 DOI: 10.3390/toxics10120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) is the most efficient curing activator employed in the industrial rubber production. However, ZnO and Zn(II) ions are largely recognized as an environmental hazard being toxic to aquatic organisms, especially considering Zn(II) release during tire lifecycle. In this context, aiming at reducing the amount of microcrystalline ZnO, a novel activator was recently synthetized, constituted by ZnO nanoparticles (NPs) anchored to silica NPs (ZnO-NP@SiO2-NP). The objective of this work is to define the possible hazards deriving from the use of ZnO-NP@SiO2-NP compared to ZnO and SiO2 NPs traditionally used in the tire industry. The safety of the novel activators was assessed by in vitro testing, using human lung epithelial (A549) and immune (THP-1) cells, and by the in vivo model zebrafish (Danio rerio). The novel manufactured nanomaterial was characterized morphologically and structurally, and its effects evaluated in vitro by the measurement of the cell viability and the release of inflammatory mediators, while in vivo by the Fish Embryo Acute Toxicity (FET) test. Resulting data demonstrated that ZnO-NP@SiO2-NP, despite presenting some subtoxic events, exhibits the lack of acute effects both in vitro and in vivo, supporting the safe-by-design development of this novel material for the rubber industry.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Silvia Mostoni
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Christian D’Abramo
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Maurizio Gualtieri
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesca Rita Pomilla
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Roberto Scotti
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
5
|
Bengalli R, Zerboni A, Bonfanti P, Saibene M, Mehn D, Cella C, Ponti J, La Spina R, Mantecca P. Characterization of microparticles derived from waste plastics and their bio-interaction with human lung A549 cells. J Appl Toxicol 2022; 42:2030-2044. [PMID: 35929361 PMCID: PMC9805234 DOI: 10.1002/jat.4372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Microplastics (MPs) represent a worldwide emerging relevant concern toward human and environmental health due to their intentional or unintentional release. Human exposure to MPs by inhalation is predicted to be among the most hazardous. MPs include both engineered, or primary MPs, and secondary MPs, materials obtained by fragmentation from any plastic good. The major part of the environmental MPs is constituted by the second ones that are irregular in size, shape and composition. These features make the study of the biological impact of heterogenous MPs of extremely high relevance to better estimate the real toxicological hazards of these materials on human and environmental organisms. The smallest fractions of plastic granules, relying on the micron-sized scale, can be considered as the most abundant component of the environmental MPs, and for this reason, they are typically used to perform toxicity tests using in vitro systems representative of an inhalation exposure scenario. In the present work, MPs obtained from industrial treatment of waste plastics (wMPs < 50 μm) were investigated, and after the physico-chemical characterization, the cytotoxic, inflammatory and genotoxic responses, as well as the modality of wMPs interactions with alveolar lung cells, were determined. Obtained results indicated that, at high concentrations (100 μg/ml) and prolonged exposure time (48 h), wMPs affect biological responses by inducing inflammation and genotoxicity, as a result of the cell-wMP interactions, also including the uptake of the smaller particles.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Alessandra Zerboni
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Patrizia Bonfanti
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Melissa Saibene
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Dora Mehn
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Claudia Cella
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Jessica Ponti
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Rita La Spina
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Paride Mantecca
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| |
Collapse
|
6
|
Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1860. [PMID: 36205103 DOI: 10.1002/wnan.1860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Almotasem Bellah Younis
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| |
Collapse
|
7
|
Sharma P, Kumari R, Yadav M, Lal R. Evaluation of TiO 2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J Microbiol 2022; 62:338-350. [PMID: 35974921 PMCID: PMC9375816 DOI: 10.1007/s12088-022-01018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) usage is increasing in everyday consumer products, hence, assessing their toxic impacts on living organisms and environment is essential. Various studies have revealed the significant role of TiO2NPs physicochemical properties on their toxicity. However, TiO2NPs are still poorly characterized with respect to their physicochemical properties, and environmental factors influencing their toxicity are either ignored or are too complex to be assessed under laboratory conditions. The outcomes of these studies are diverse and inconsistent due to lack of standard protocols. TiO2NPs toxicity also differs for in vivo and in vitro systems, which must also be considered during standardization of protocols to maintain uniformity and reproducibility of results. This review critically evaluates impact of different physicochemical parameters of TiO2NPs and other experimental conditions, employed in different laboratories in determining their toxicity towards bacteria. These important observations may be helpful in evaluation of environmental risks posed by these nanoparticles and this can further assist regulatory bodies in policymaking.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Rekha Kumari
- Molecular Microbiology and Bioinformatics Laboratory, Department of Zoology, University of Delhi, Miranda House, Delhi, 110007 India
| | - Meena Yadav
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
8
|
Mugilan T, Aezhisai Vallavi MS, Sugumar D. Materialistic characterization, thermal properties, and cytocompatibility investigations on acrylic acid-functionalized nSiO2-reinforced PEEK polymeric nanocomposite. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Effects of Titanium Dioxide Nanoparticles on Cell Growth and Migration of A549 Cells under Simulated Microgravity. NANOMATERIALS 2022; 12:nano12111879. [PMID: 35683734 PMCID: PMC9182076 DOI: 10.3390/nano12111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
With the increasing application of nanomaterials in aerospace technology, the long-term space exposure to nanomaterials especially in the space full of radiation coupled with microgravity condition has aroused great health concerns of the astronauts. However, few studies have been conducted to assess these effects, which are crucial for seeking the possible intervention strategy. Herein, using a random positioning machine (RPM) to simulate microgravity, we investigated the behaviors of cells under simulated microgravity and also evaluated the possible toxicity of titanium dioxide nanoparticles (TiO2 NPs), a multifunctional nanomaterial with potential application in aerospace. Pulmonary epithelial cells A549 were exposed to normal gravity (1 g) and simulated gravity (~10−3 g), respectively. The results showed that simulated microgravity had no significant effect on the viability of A549 cells as compared with normal gravity within 48 h. The effects of TiO2 NPs exposure on cell viability and apoptosis were marginal with only a slightly decrease in cell viability and a subtle increase in apoptosis rate observed at a high concentration of TiO2 NPs (100 μg/mL). However, it was observed that the exposure to simulated microgravity could obviously reduce A549 cell migration compared with normal gravity. The disruption of F-actin network and the deactivation of FAK (Tyr397) might be responsible for the impaired mobility of simulated microgravity-exposed A549 cells. TiO2 NPs exposure inhibited cell migration under two different gravity conditions, but to different degrees, with a milder inhibition under simulated microgravity. Meanwhile, it was found that A549 cells internalized more TiO2 NPs under normal gravity than simulated microgravity, which may account for the lower cytotoxicity and the lighter inhibition of cell migration induced by the same exposure concentration of TiO2 NPs under simulated microgravity at least partially. Our study has provided some tentative information on the effects of TiO2 NPs exposure on cell behaviors under simulated microgravity.
Collapse
|
10
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
11
|
Thanigachalam M, Muthusamy Subramanian AV. In-vitro cytotoxicity assessment and cell adhesion study of functionalized nTiO 2 reinforced PEEK biocompatible polymer composite. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2005093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mugilan Thanigachalam
- Department of Mechanical Engineering, Government College of Technology, Coimbatore, India
| | | |
Collapse
|
12
|
Yadav M, Dhanda M, Arora R, Jagdish R, Singh G, Lata S. Titania (TiO 2)/silica (SiO 2) nanospheres or NSs amalgamated on a pencil graphite electrode to sense l-ascorbic acid electrochemically and augmented NSs for antimicrobial behaviour. NEW J CHEM 2022. [DOI: 10.1039/d2nj01892f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthesis of TiO2@SiO2 nanospheres, modification on a pencil graphite electrode, electrochemical sensing study of the modified electrode for ascorbic acid detection and antimicrobial study of nanospheres have been investigated.
Collapse
Affiliation(s)
- Meena Yadav
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039, Haryana, India
| | - Monika Dhanda
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039, Haryana, India
| | - Rajat Arora
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039, Haryana, India
| | - Renu Jagdish
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039, Haryana, India
| | - Geeta Singh
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039, Haryana, India
| | - Suman Lata
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039, Haryana, India
| |
Collapse
|
13
|
Kalampaliki T, Makri SP, Papadaki E, Grigoropoulos A, Zoikis Karathanasis A, Deligkiozi I. Visible-Light Active Sulfur-Doped Titania Nanoparticles Immobilized on a Silica Matrix: Synthesis, Characterization and Photocatalytic Degradation of Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2543. [PMID: 34684984 PMCID: PMC8537489 DOI: 10.3390/nano11102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023]
Abstract
The photocatalytic oxidation (PCO) of pollutants using TiO2-based materials can significantly improve indoor air quality (IAQ), which in turn, has a significant impact on human health and life expectancy. TiO2-based nanoparticles (NPs) are widely used as part of building materials to function as photocatalysts in PCO. In this work, a series of sulfur-doped TiO2 NPs immobilized on a silica matrix were synthesized by combining a sol-gel process with ball milling. The samples were structurally characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FT-IR) and N2 adsorption-desorption isotherms. Furthermore, the morphological characteristics were determined by dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic activity of the as prepared S-doped TiO2/SiO2 NPs in the degradation of liquid and air pollutants under visible-light irradiation was investigated. Our results show that sulfur is an effective dopant for activating TiO2/SiO2 photocatalysts under visible-light irradiation. Silica constitutes a "safe-by-design" approach and inhibits the aggregation of NPs during synthesis. The most efficient photocatalyst afforded 79% removal of methyl orange (5 h), 26% removal of acetaldehyde (1 h) and 12% oxidation of NO (1 h).
Collapse
Affiliation(s)
| | | | | | | | | | - Ioanna Deligkiozi
- Creative Nano PC, 4 Leventi Street, Peristeri, 12132 Athens, Greece; (T.K.); (S.P.M.); (E.P.); (A.G.); (A.Z.K.)
| |
Collapse
|
14
|
The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G, Caposano F, Sabbioni E, Groppi F, Manenti S, Niu Q, Poma AMG, Di Gioacchino M, Petrarca C. Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO 2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). NANOMATERIALS 2021; 11:nano11020270. [PMID: 33494245 PMCID: PMC7909844 DOI: 10.3390/nano11020270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Background: TiO2 nanoparticles (TiO2 NPs) are the nanomaterial most produced as an ultraviolet (UV) filter. However, TiO2 is a semiconductor and, in nanoparticle size, is a strong photocatalyst, raising concerns about photomutagenesis. Mesoporous silica nanoparticles (MSN) were synthetized incorporating TiO2 NPs (TiO2@MSN) to develop a cosmetic UV filter. The aim of this study was to assess the toxicity of TiO2@MSN, compared with bare MSN and commercial TiO2 NPs, based on several biomarkers. Materials and Methods: Human peripheral blood mononuclear cells (PBMC) were exposed to TiO2@MSN, bare MSN (network) or commercial TiO2 NPs for comparison. Exposed PBMC were characterized for cell viability/apoptosis, reactive oxygen species (ROS), nuclear morphology, and cytokines secretion. Results: All the nanoparticles induced apoptosis, but only TiO2 NPs (alone or assembled into MSN) led to ROS and micronuclei. However, TiO2@MSN showed lower ROS and cytotoxicity with respect to the P25. Exposure to TiO2@MSN induced Th2-skewed and pro-fibrotic responses. Conclusions: Geno-cytotoxicity data indicate that TiO2@MSN are safer than P25 and MSN. Cytokine responses induced by TiO2@MSN are imputable to both the TiO2 NPs and MSN, and, therefore, considered of low immunotoxicological relevance. This analytical assessment might provide hints for NPs modification and deep purification to reduce the risk of health effects in the settings of their large-scale manufacturing and everyday usage by consumers.
Collapse
Affiliation(s)
- Luca Di Giampaolo
- Specialization School of Occupational Medicine, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Gloria Zaccariello
- Department of Molecular Sciences and Nanosystems and Centro di Microscopia Elettronica “Giovanni Stevanato”, Ca’ Foscari University of Venice, Via Torino 155/b, I-30170 Venezia-Mestre, Italy; (G.Z.); (A.B.)
| | - Alvise Benedetti
- Department of Molecular Sciences and Nanosystems and Centro di Microscopia Elettronica “Giovanni Stevanato”, Ca’ Foscari University of Venice, Via Torino 155/b, I-30170 Venezia-Mestre, Italy; (G.Z.); (A.B.)
| | - Giulia Vecchiotti
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
| | - Francesca Caposano
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
| | - Enrico Sabbioni
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
| | - Flavia Groppi
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
- Laboratorio Acceleratori e Superconduttività Applicata (LASA), Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, I-20090 Segrate, Italy
| | - Simone Manenti
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
- Laboratorio Acceleratori e Superconduttività Applicata (LASA), Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, I-20090 Segrate, Italy
| | - Qiao Niu
- Occupational Health Department, Public Health School, Shanxi Medical University, Taiyuan 030000, China;
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (A.M.G.P.); (M.D.G.)
| | - Mario Di Gioacchino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (A.M.G.P.); (M.D.G.)
- Department of Medicine and Science of Ageing (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, 65121 Pescara, Italy
- Rectorate of Leonardo da Vinci Telematic University, Largo San Rocco 11, 66010 Torrevecchia Teatina CH, Italy
| | - Claudia Petrarca
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
- Department of Medicine and Science of Ageing (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, 65121 Pescara, Italy
- Correspondence: ; Tel.: +39-087-154-1290
| |
Collapse
|
16
|
Bengalli R, Colantuoni A, Perelshtein I, Gedanken A, Collini M, Mantecca P, Fiandra L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NANOIMPACT 2021; 21:100282. [PMID: 35559774 DOI: 10.1016/j.impact.2020.100282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/15/2023]
Abstract
In the context of nosocomial infections, there is an urgent need to develop efficient nanomaterials (NMs) with antibacterial properties for the prevention of infection diseases. Metal oxide nanoparticles (MeO-NPs) are promising candidates for the development of new antibacterial textiles. However, the direct exposure to MeO-NPs and MeO-coated NMs through skin contact could constitute a severe hazard for human health. In this work, the toxicity of copper and zinc oxide (CuO, ZnO) NPs antimicrobial-coated textiles was assessed on an in vitro reconstructed 3D model of epidermis. Thus, MeO-NPs and extracts from MeO-coated NMs were tested on EpiDerm™ skin model according to OECD TG 431 (Corrosion Test) and 439 (Irritation Test), respectively. Skin surface fluids composition is a crucial aspect to be considered in the development of NMs that have to encounter this tissue. So, for the irritation test, coated textiles were extracted in artificial sweat solutions at pH 4.7 and 6.5. Skin tissue viability, pro-inflammatory interleukin-8 secretion and morphological alteration of intermediate and actin filaments of keratinocytes were evaluated after 18 h exposure to extracts from CuO- and ZnO-coated textiles. Analysis of extracts at the two pH conditions indicated that released ions and not NPs are involved in promoting adverse effects on epidermis. Since Cu2+ and Zn2+ ions are known to penetrate epidermis, Balb/3 T3 cells were used as model of dermis. Fibroblasts viability was investigated after the exposure to trans-epidermis permeated ions, collected from EpiDerm™ basal supernatants, and to extracts, as representative of a direct interaction of ions with dermis cells by wounded skin. From our data we can conclude that: 1) skin surface fluids composition is a key parameter for the stability of NPs-coated textiles; 2) MeO ions released from coated textiles can deeply affect the epidermal tissue and the underlying dermal cells upon trans-epidermal permeation; 3) skin barrier integrity is a fundamental prerequisite that should be taken into account during the assessment of NMs safety by direct contact exposure.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Alessandra Colantuoni
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Ilana Perelshtein
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel
| | - Aharon Gedanken
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel
| | - Maddalena Collini
- Department of Physic "Giuseppe Occhialini", University of Milano - Bicocca, Milano, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy; Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy.
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy; Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| |
Collapse
|
17
|
Park SB, Jung WH, Kim KY, Koh B. Toxicity Assessment of SiO 2 and TiO 2 in Normal Colon Cells, In Vivo and in Human Colon Organoids. Molecules 2020; 25:molecules25163594. [PMID: 32784677 PMCID: PMC7464288 DOI: 10.3390/molecules25163594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
We conducted systemic assessments on the toxicity of silicon dioxide (SiO2) and titanium dioxide (TiO2) nanoparticles using different forms of normal colon cells (CCD-18Co), in vivo and in human colon organoids. The in vivo acute oral toxicity data showed that the LD50 values are greater than 2000 mg/kg for both the SiO2 and TiO2 nanoparticles; however, the SiO2 and TiO2 nanoparticles induced cytotoxicity in two-dimensional CCD-18Co cells and three-dimensional CCD-18Co spheroids and human colon organoids, with IC50 values of 0.6, 0.8 and 0.3 mM for SiO2 and 2.5, 1.1 and 12.5 mM for TiO2 nanoparticles, respectively. The data suggest that, when SiO2 and TiO2 are in nanoparticle form, cytotoxicity is induced; thus, care should be taken with these materials.
Collapse
Affiliation(s)
| | | | - Ki Young Kim
- Correspondence: (K.Y.K.); (B.K.); Tel.: +82-42-860-7471 (K.Y.K.); +82-42-860-7465 (B.K.); Fax: +82-42-861-0770 (K.Y.K.); +82-42-860-7459 (B.K.)
| | - Byumseok Koh
- Correspondence: (K.Y.K.); (B.K.); Tel.: +82-42-860-7471 (K.Y.K.); +82-42-860-7465 (B.K.); Fax: +82-42-861-0770 (K.Y.K.); +82-42-860-7459 (B.K.)
| |
Collapse
|