1
|
Deng Y, Liu J, Zhou Z, Li L, Shi Y, Tang R, Li W, Huang Y. Recent Advances in Piezoelectric Coupled with Photocatalytic Reaction System: Synergistic Mechanism, Enhancement Factors, and Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50071-50095. [PMID: 39258709 DOI: 10.1021/acsami.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The field of photocatalysis has demonstrated numerous advantages in the domains of environmental protection, energy, and materials science. However, conventional modification methods fail to simultaneously enhance carrier separation efficiency, redox capacity, and visible light absorption solely through light activation due to the intrinsic band structure limitations of photocatalysts. In addition to modification methods, the introduction of an external field, such as a piezoelectric field, can effectively address deficiencies in each step of the photocatalytic process and enhance the overall performance. The assistance of a piezoelectric field overcomes the limitations inherent in traditional photocatalytic systems. Hence, this review provides a comprehensive overview of recent advancements in piezoelectric-assisted photocatalysis and thoroughly investigates the interaction between the alternating piezoelectric field and photocatalytic processes. Various ideas for synergistic enhancement of the piezoelectric and photocatalytic properties are also explored. This multifield catalytic system shows remarkable performance in stability, pollutant degradation, and energy conversion, distinguishing it from single catalytic systems. Finally, an in-depth analysis is conducted to address the challenges and prospects associated with piezoelectric photocatalysis technology.
Collapse
Affiliation(s)
- Yaocheng Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jiawei Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhanpeng Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yu Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenbo Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Liu L, Wang Z, Yap PL, Zhang Q, Ni Y, Losic D. Inhibition of α-glucosidase activity by curcumin loaded on ZnO@rGO nanocarrier for potential treatment of diabetes mellitus. LUMINESCENCE 2024; 39:e4668. [PMID: 38286596 DOI: 10.1002/bio.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2024]
Abstract
Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Linghong Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Qiulan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yongnian Ni
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Shanmuganathan R, Le QH, Gavurová B, Wadaan MA, Baabbad A. Nano-composite rGO-Ag-Cu-Ni mediated photocatalytic degradation of anthracene and benzene. CHEMOSPHERE 2023; 343:140076. [PMID: 37678600 DOI: 10.1016/j.chemosphere.2023.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are omnipresent, persistent, and carcinogenic pollutants continuously released in the atmosphere due to the rapid increase in population and industrialization worldwide. Hence, there is an ultimate rise in concern about eliminating the toxic PAHs and their related aromatic hydrocarbons from the air, water, and soil environment by employing efficient removal technologies using nanoparticles as a catalyst. Here, the degradation of selective PAHs viz., anthracene and benzene using laboratory synthesized rGO-Ag-Cu-Ni nanocomposite (catalyst) was studied. Characterization studies revealed the nanocomposites exhibited surface plasma resonance at 350 - 450 nm, confirming the presence of Ag, Cu, and Ni metal ions embedded on the reduced graphene substrate. It was found that the nanocomposites synthesized were spherical, amorphous in nature, and aggregated together with measurements ranging from 423 to 477 nm. An SEM-EDX analysis of the nanocomposite demonstrated that it contained 25.13% O, 14.24% Ni, 27.79% Cu, and 32.84% Ag, which confirms the synthesis of the nanocomposite. Crystalline, sharp nanocomposites of average size 17-41 nm with an average diameter of 118.5 nm (X-ray diffraction and DLS) were observed. FTIR spectra showed that the nanocomposites had the functional groups alkanes, alkenes, alkynes, carboxylic acids, and halogen derivatives. Batch adsorption studies revealed that the maximum degradation achieved at optimum nano-composite concentration of 10 μg/mL, pH value of 5, PAHs concentration of 2 μg/mL and effective irradiation source being UV radiations in the case of both benzene and anthracene pollutants. The degradation of benzene and anthracene followed Freundlich & Langmuir isotherm with the highest R2 value of 0.9894 & 0.9885, respectively. Adsorption kinetic studies under optimum conditions revealed that the adsorption of both benzene and anthracene followed Pseudo-second order kinetics. Antimicrobial studies revealed that the synthesized nano-composite exhibited potential antimicrobial activity against Gram positive bacterium (Bacillus subtilis, Staphylococcus aureus), Gram negative bacterium (Klebsiella pneumonia, Escherichia coli) and fungal strain (Aspergillus niger) respectively. Thus, the synthesized rGO-Ag-Cu-Ni nano-composite acts as an effective antimicrobial agent as well as a PAHs degrading agent, helping to overcome antibiotics resistance and to mitigate the overgrowing PAHs pollution in the environment.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Beata Gavurová
- Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letná 1/9, 042 00, Košice-Sever, Slovak Republic
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| | - Almohannad Baabbad
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| |
Collapse
|
4
|
Shankar K, Agarwal S, Mishra S, Bhatnagar P, Siddiqui S, Abrar I. A review on antimicrobial mechanism and applications of graphene-based materials. BIOMATERIALS ADVANCES 2023; 150:213440. [PMID: 37119697 DOI: 10.1016/j.bioadv.2023.213440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
In recent years, graphene and its derivatives, owing to their phenomenal surface, and mechanical, electrical, and chemical properties, have emerged as advantageous materials, especially in terms of their potential for antimicrobial applications. Particularly important among graphene's derivatives is graphene oxide (GO) due to the ease with which its surface can be modified, as well as the oxidative and membrane stress that it exerts on microbes. This review encapsulates all aspects regarding the functionalization of graphene-based materials (GBMs) into composites that are highly potent against bacterial, viral, and fungal activities. Governing factors, such as lateral size (LS), number of graphene layers, solvent and GBMs' concentration, microbial shape and size, aggregation ability of GBMs, and especially the mechanisms of interaction between composites and microbes are discussed in detail. The current and potential applications of these antimicrobial materials, especially in dentistry, osseointegration, and food packaging, have been described. This knowledge can further drive research that aims to look for the most suitable components for antimicrobial composites. The need for antimicrobial materials has seldom been more felt than during the COVID-19 pandemic, which has also been highlighted here. Possible future research areas include the exploration of GBMs' ability against algae.
Collapse
Affiliation(s)
- Krishna Shankar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Satakshi Agarwal
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Subham Mishra
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Pranshul Bhatnagar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Sufiyan Siddiqui
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Iyman Abrar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
5
|
Li B, Lin X, Qi Z, Dong M, Gao C, Zhang H, Li Z. Photocatalytic degradation of dissolved organic matter in landfill leachate by heterostructural ZnO-rGO composite catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43455-43471. [PMID: 36653691 DOI: 10.1007/s11356-022-25108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The dissolved organic matter (DOM) in landfill pollutes not only the landfill and surroundings, but also the environment far away from the landfill by infiltrating into the soil and/or flowing on the ground surface. Developing an efficient photocatalyst to degrade DOM is an interesting topic. Herein, the catalysts composed of ZnO and reduced graphene oxide (ZnO-rGO) with different morphologies were fabricated with a two-step hydrothermal method. The phase composite and microstructure were analyzed, and the degradation efficiency of the DOM under ultraviolet light was investigated. Three kinds of ZnO-rGO composite catalysts with different morphologies were successfully synthesized, and rGO was coated on the ZnO surface to form heterostructural composite catalysts. The catalyst powders have similar Raman and FT-IR spectra, but have different specific surface areas and band gaps. The degradation efficiency of DOM by ZnO-rGO composites is higher than that of pure ZnO powder. Compared to pure ZnO, ZnO-rGO composite catalysts contain more oxygen vacancies and a narrower band gap, and the heterostructure is beneficial for accelerating electron separation, inhibiting electron recombination.
Collapse
Affiliation(s)
- Bicai Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, China
| | - Xuan Lin
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, China
| | - Ziying Qi
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, China
| | - Meng Dong
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, China
| | - Caiyun Gao
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Hong Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Zhicheng Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
6
|
Rodwihok C, Suwannakaew M, Han SW, Lim YJ, Park SY, Woo SW, Choe JW, Wongratanaphisan D, Kim HS. Effective removal of hazardous organic contaminant using integrated photocatalytic adsorbents: Ternary zinc oxide/zeolite-coal fly ash/reduced graphene oxide nanocomposites. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Fabrication and spectroscopic investigation of sandwich-like ZnO:rGO:ZnO:rGO:ZnO structure by layer-by-layer approach. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Adsorption and Kinetics Studies of Cr (VI) by Graphene Oxide and Reduced Graphene Oxide-Zinc Oxide Nanocomposite. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217152. [PMID: 36363976 PMCID: PMC9657810 DOI: 10.3390/molecules27217152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/21/2023]
Abstract
In this work, graphene oxide (GO) and its reduced graphene oxide-zinc oxide nanocomposite (rGO-ZnO) was used for the removal of Cr (VI) from aqueous medium. By employing a variety of characterization techniques, morphological and structural properties of the adsorbents were determined. The adsorption study was done by varying concentration, temperature, pH, time, and amount of adsorbent. The results obtained confirmed that rGO-ZnO is a more economical and promising adsorbent for removing Cr (VI) as compared to GO. Kinetic study was also performed, which suggested that sorption of Cr (VI) follows the pseudo-first-order model. For equilibrium study, non-linear Langmuir was found a better fitted model than its linearized form. The maximum adsorption capacity calculated for GO and rGO-ZnO nanocomposite were 19.49 mg/g and 25.45 mg/g, respectively. Endothermic and spontaneous nature of adsorption was detected with positive values of ΔS (change in entropy), which reflects the structural changes happening at the liquid/solid interface.
Collapse
|
9
|
Usman O, Ikram M, Abid N, Saeed M, Bashir A, Nabgan W, Mushahid N, Ikram M. Enhanced Bactericidal Action of rGO-ZnO Hybrids Prepared by the One-Pot Co-precipitation Approach. ACS OMEGA 2022; 7:26715-26722. [PMID: 35936465 PMCID: PMC9352235 DOI: 10.1021/acsomega.2c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
Metal-based antimicrobials have the potential to profile sustainable solutions to infection care and health. In this study, we report the synthesis of rGO-ZnO hybrid nanostructures by a simple co-precipitation approach with various mass ratios of GO, and their antimicrobial potential was assessed. The structural analysis confirms the presence of a hexagonal wurtzite structure with peak shifting in hybrid nanostructures and increases in crystallite size (11-24 nm). Raman spectra revealed GO doping in the D band (1350 cm-1) and G band (1590 cm-1). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were performed to investigate the surface morphologies of the synthesized sediments, which showed a change in the morphology of ZnO from non-uniform spherical nanoparticles to a rod-like morphology of the prepared hybrid nanostructures. RAMAN spectra revealed that the retained functional groups on rGO planes were significant in anchoring ZnO to rGO. At lowest and maximum doses of ZnO, substantial bactericidal zones (p < 0.05) for S. aureus (1.55 and 1.95 mm) and E. coli (1.25 and 1.70 mm) were achieved accordingly. Additionally, the inhibition regions were 2.45-3.85 mm and 3.75-6.85 mm for S. aureus whereas (2.05-3.25 mm) and (2.95-3.90 mm) for E. coli at the lowest and maximum concentrations.
Collapse
Affiliation(s)
- Osama Usman
- Department
of Physics, University of the Lahore, Lahore 54000, Pakistan
| | - Muhammad Ikram
- Solar
Cell Application Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Namra Abid
- Physics
Department, Lahore Garrison University, Lahore 54000, Punjab, Pakistan
| | - Mohsin Saeed
- Department
of Physics, Universiry of the Punjab, Lahore 54000, Pakistan
| | - Aneeqa Bashir
- Department
of Physics, Universiry of the Punjab, Lahore 54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, Tarragona 43007, Spain
| | - Nosheen Mushahid
- Department
of Physics, University of the Lahore, Lahore 54000, Pakistan
| | - Mujtaba Ikram
- Institute
of Chemical Engineering and Technology (ICET), University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
10
|
One-Step Hydrothermal Synthesis of 3D Interconnected rGO/In2O3 Heterojunction Structures for Enhanced Acetone Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Acetone detection is of great significance for environmental monitoring or diagnosis of diabetes. Nevertheless, fast and sensitive detection of acetone at low temperatures remains challenging. Herein, a series of rGO-functionalized three-dimensional (3D) In2O3 flower-like structures were designed and synthesized via a facile hydrothermal method, and their acetone-sensing properties were systematically investigated. Compared to the pure 3D In2O3 flower-like structures, the rGO-functionalized 3D In2O3 flower-like structures demonstrated greatly improved acetone-sensing performance at relatively low temperatures. In particular, the 5-rGO/In2O3 sensor with an optimized decoration exhibited the highest response value (5.6) to 10 ppm acetone at 150 °C, which was about 2.3 times higher than that of the In2O3 sensor (2.4 at 200 °C). Furthermore, the 5-rGO/In2O3 sensor also showed good reproducibility, a sub-ppm-level detection limit (1.3 to 0.5 ppm), fast response and recovery rates (3 s and 18 s, respectively), and good long-term stability. The extraordinary acetone-sensing performance of rGO/In2O3 composites can be attributed to the synergistic effect of the formation of p-n heterojunctions between rGO and In2O3, the large specific surface area, the unique flower-like structures, and the high conductivity of rGO. This work provides a novel sensing material design strategy for effective detection of acetone.
Collapse
|
11
|
Rodwihok C, Tam TV, Choi WM, Suwannakaew M, Woo SW, Wongratanaphisan D, Kim HS. Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:702. [PMID: 35215030 PMCID: PMC8878562 DOI: 10.3390/nano12040702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Graphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe3+) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups. The GQDs exhibited a relatively high quantum yield of approximately 37%. Prominent blue emission under UV excitation and highly selective PL quenching for Fe3+ were observed. Furthermore, Fe3+ could be detected at concentrations as low as 0.28 μM (limit of detection), allowing for high sensitivity toward Fe3+ detection in tap and drinking water samples. In the bio-imaging experiment, the GQDs exhibited a low cytotoxicity for the HeLa cells, and they were clearly illuminated at an excitation wavelength of 405 nm. These results can serve as the basis for developing an environment-friendly, simple, and cost-effective approach of using food waste by converting them into photoluminescent nanomaterials for the detection of metal ions in field water samples and biological cellular studies.
Collapse
Affiliation(s)
- Chatchai Rodwihok
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Tran Van Tam
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Mayulee Suwannakaew
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Sang Woon Woo
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Han S. Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| |
Collapse
|
12
|
Garg R, Gupta R, Singh N, Bansal A. Eliminating pesticide quinalphos from surface waters using synthesized GO-ZnO nanoflowers: Characterization, degradation pathways and kinetic study. CHEMOSPHERE 2022; 286:131837. [PMID: 34399266 DOI: 10.1016/j.chemosphere.2021.131837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The presence of highly toxic and persistent pesticides in water bodies causes serious problems to human beings as well as aquatic life. Quinalphos is one such widely used organophosphorus pesticide in agricultural fields. Herein, for degradation and mineralization of quinalphos, ZnO nanoflowers and their hybrid nanocomposite with graphene oxide have been synthesized. FESEM analysis confirmed the formation of ZnO nanoflowers over nanosheets of graphene oxide having a thickness of 20 ± 10 nm. GO-ZnO composite exhibited remarkable photocatalytic activity in comparison to pure ZnO. 98 % degradation of quinalphos was achieved using GO-ZnO nano-catalyst at 6 pH within 45 min of irradiations, whereas it was 80 % for bare ZnO nanoflowers. Higher degradation with hybrid nanocomposite was attributed to improved surface area (36 m2 g-1), a substantial reduction in bandgap energy from 3.10 to 2.90 eV and enhanced charge separation (e-/h+ pairs) after the addition of GO. Reaction kinetics study followed pseudo-first-order behaviour. Further, mineralization to the extent of 90 % in 90 min was confirmed by TOC analysis. Based on identified intermediates, using LCMS analysis, degradation pathways were proposed. The plausible pathways confirmed the presence of smaller and safer reaction intermediates supported by excitation of e- from nanocomposite followed by oxidation of quinalphos with huge free radicals. Overall, this study is significant in terms of using photocatalysis as a tertiary treatment of quinalphos pesticide wastewater at pH 6 in a short duration.
Collapse
Affiliation(s)
- Renuka Garg
- Department of Chemical Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Renu Gupta
- Department of Chemical Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Nirmal Singh
- Department of Chemistry, R.S.D. College, Ferozepur, Punjab, 152002, India
| | - Ajay Bansal
- Department of Chemical Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
13
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. A Novel Green Preparation of Ag/RGO Nanocomposites with Highly Effective Anticancer Performance. Polymers (Basel) 2021; 13:3350. [PMID: 34641166 PMCID: PMC8512371 DOI: 10.3390/polym13193350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022] Open
Abstract
The efficacy of current cancer therapies is limited due to several factors, including drug resistance and non-specific toxic effects. Due to their tuneable properties, silver nanoparticles (Ag NPs) and graphene derivative-based nanomaterials are now providing new hope to treat cancer with minimum side effects. Here, we report a simple, inexpensive, and eco-friendly protocol for the preparation of silver-reduced graphene oxide nanocomposites (Ag/RGO NCs) using orange peel extract. This work was planned to curtail the use of toxic chemicals, and improve the anticancer performance and cytocompatibility of Ag/RGO NCs. Aqueous extract of orange peels is abundant in phytochemicals that act as reducing and stabilizing agents for the green synthesis of Ag NPs and Ag/RGO NCs from silver nitrate and graphene oxide (GO). Moreover, the flavonoid present in orange peel is a potent anticancer agent. Green-prepared Ag NPs and Ag/RGO NCs were characterized by UV-visible spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). The results of the anticancer study demonstrated that the killing potential of Ag/RGO NCs against human breast cancer (MCF7) and lung cancer (A549) cells was two-fold that of pure Ag NPs. Moreover, the cytocompatibility of Ag/RGO NCs in human normal breast epithelial (MCF10A) cells and normal lung fibroblasts (IMR90) was higher than that of pure Ag NPs. This mechanistic study indicated that Ag/RGO NCs induce toxicity in cancer cells through pro-oxidant reactive oxygen species generation and antioxidant glutathione depletion and provided a novel green synthesis of Ag/RGO NCs with highly effective anticancer performance and better cytocompatibility.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - M. A. Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Hisham A. Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Unravelling the Role of Synthesis Conditions on the Structure of Zinc Oxide-Reduced Graphene Oxide Nanofillers. NANOMATERIALS 2021; 11:nano11082149. [PMID: 34443981 PMCID: PMC8399407 DOI: 10.3390/nano11082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The diversity of zinc oxide (ZnO) particles and derived composites applications is highly dependent on their structure, size, morphology, defect amounts, and/or presence of dopant molecules. In this work, ZnO nanostructures are grown in situ on graphene oxide (GO) sheets by an easily implementable solvothermal method with simultaneous reduction of GO. The effect of two zinc precursors (zinc acetate (ZA) and zinc acetate dihydrate (ZAD)), NaOH concentration (0.5, 1 or 2 M), and concentration (1 and 12.5 mg/mL) and pH (pH = 1, 4, 8, and 12) of GO suspension were evaluated. While the ZnO particle morphology shows to be precursor dependent, the average particle size length decreases with lower NaOH concentration, as well as with the addition of a higher basicity and concentration of GO suspension. A lowered band gap and a higher specific surface area are obtained from the ZnO composites with higher amounts of GO suspension. Otherwise, the low concentration and the higher pH of GO suspension induce more lattice defects on the ZnO crystal structure. The role of the different condition parameters on the ZnO nanostructures and their interaction with graphene sheets was observed to tune the ZnO–rGO nanofiller properties for photocatalytic and antimicrobial activities.
Collapse
|
15
|
Rodwihok C, Suwannakeaw M, Charoensri K, Wongratanaphisan D, Woon Woo S, Kim HS. Alkali/zinc-activated fly ash nanocomposites for dye removal and antibacterial applications. BIORESOURCE TECHNOLOGY 2021; 331:125060. [PMID: 33798863 DOI: 10.1016/j.biortech.2021.125060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Fly ash (FA), obtained as waste materials from industrial power plants, is generated in large quantities and low recycling. In this study, re-generation of waste FA as cost-effective materials with adsorbent and antibacterial applications was assessed. Alkaline/zinc-activated fly ash nanocomposite (A-FA/Zn) was prepared using one-pot hydrothermal technique. Those nanocomposites are characterized by high surface area and negatively surface charge, which are important influences contributing to an enhancement in adsorption capacity via increase in the number of adsorptive sites and electrostatic interaction between dye molecules-nanocomposites. Additionally, the presence of Zn ions in the prepared nanocomposites represents a key advantage with respect to enhancing antibacterial activity. The feasibility of further enhancing adsorption and antibacterial mechanisms was also examined. It is anticipated that the findings of this study will provide useful information with respect to the development of simple, eco-friendly and low-cost A-FA/Zn with multifunctional applications as organic dye removal and antibacterial purposes.
Collapse
Affiliation(s)
- Chatchai Rodwihok
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Mayulee Suwannakeaw
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Korakot Charoensri
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Duangmanee Wongratanaphisan
- Research Center in Physics and Astronomy, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sang Woon Woo
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Han S Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
16
|
Ahamed M, Javed Akhtar M, Majeed Khan MA, Alhadlaq HA. Facile green synthesis of ZnO-RGO nanocomposites with enhanced anticancer efficacy. Methods 2021; 199:28-36. [PMID: 33930572 DOI: 10.1016/j.ymeth.2021.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/16/2023] Open
Abstract
Drug resistance and inability to distinguish between cancerous and non-cancerous cells are important obstacles in the treatment of cancer. Zinc oxide nanoparticles (ZnO NPs) is now emerging as a crucial material to challenge this global issue due to its tunable properties. Developing an effective, inexpensive, and eco-friendly method in order to tailor the properties of ZnO NPs with enhanced anticancer efficacy is still challenging. For the first time, we reported a facile, inexpensive, and eco-friendly approach for green synthesis of ZnO-reduced graphene oxide nanocomposites (ZnO-RGO NCs) using garlic clove extract. Garlic has been playing one of the most important dietary and medicinal roles for humans since centuries. We aimed to minimize the use of toxic chemicals and enhance the anticancer potential of ZnO-RGO NCs with minimum side effects to normal cells. Aqueous extract of garlic clove was used as reducing and stabilizing agent for green synthesis of ZnO-RGO NCs from the zinc nitrate and graphene oxide (GO) precursors. A potential mechanism of ZnO-RGO NCs synthesis with garlic clove extract was also proposed. Preparation of pure ZnO NPs and ZnO-RGO NCs was confirmed by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS). The in vitro study showed that ZnO-RGO NCs induce two-fold higher cytotoxicity in human breast cancer (MCF7) and human colorectal cancer (HCT116) cells as compared to pure ZnO NPs. Besides, biocompatibility of ZnO-RGO NCs in non-cancerous human normal breast (MCF10A) and normal colon epithelial (NCM460) cells was higher than those of pure ZnO NPs. This work highlighted a facile and inexpensive green approach for the preparation of ZnO-RGO NCs with enhanced anticancer activity and improved biocompatibility.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
J P, Kottam N, A R. Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Charoensri K, Rodwihok C, Wongratanaphisan D, Ko JA, Chung JS, Park HJ. Investigation of Functionalized Surface Charges of Thermoplastic Starch/Zinc Oxide Nanocomposite Films Using Polyaniline: The Potential of Improved Antibacterial Properties. Polymers (Basel) 2021; 13:425. [PMID: 33525720 PMCID: PMC7865346 DOI: 10.3390/polym13030425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Improving the antibacterial activity of biodegradable materials is crucial for combatting widespread drug-resistant bacteria and plastic pollutants. In this work, we studied polyaniline (PANI)-functionalized zinc oxide nanoparticles (ZnO NPs) to improve surface charges. A PANI-functionalized ZnO NP surface was prepared using a simple impregnation technique. The PANI functionalization of ZnO successfully increased the positive surface charge of the ZnO NPs. In addition, PANI-functionalized ZnO improved mechanical properties and thermal stability. Besides those properties, the water permeability of the bionanocomposite films was decreased due to their increased hydrophobicity. PANI-functionalized ZnO NPs were applied to thermoplastic starch (TPS) films for physical properties and antibacterial studies using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The PANI-functionalized ZnO bionanocomposite films exhibited excellent antibacterial activity for both E. coli (76%) and S. aureus (72%). This result suggests that PANI-functionalized ZnO NPs can improve the antibacterial activity of TPS-based bionanocomposite films.
Collapse
Affiliation(s)
- Korakot Charoensri
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (K.C.); (J.A.K.)
| | - Chatchai Rodwihok
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Korea;
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jung A. Ko
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (K.C.); (J.A.K.)
| | - Jin Suk Chung
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Korea;
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (K.C.); (J.A.K.)
| |
Collapse
|
19
|
Visible light induced selective photocatalytic reduction of CO2 to CH4 on In2O3-rGO nanocomposites. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Li Y, Liao C, Tjong SC. Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. Int J Mol Sci 2020; 21:E8836. [PMID: 33266476 PMCID: PMC7700383 DOI: 10.3390/ijms21228836] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
This article reviews the recent developments in the synthesis, antibacterial activity, and visible-light photocatalytic bacterial inactivation of nano-zinc oxide. Polycrystalline wurtzite ZnO nanostructures with a hexagonal lattice having different shapes can be synthesized by means of vapor-, liquid-, and solid-phase processing techniques. Among these, ZnO hierarchical nanostructures prepared from the liquid phase route are commonly used for antimicrobial activity. In particular, plant extract-mediated biosynthesis is a single step process for preparing nano-ZnO without using surfactants and toxic chemicals. The phytochemical molecules of natural plant extracts are attractive agents for reducing and stabilizing zinc ions of zinc salt precursors to form green ZnO nanostructures. The peel extracts of certain citrus fruits like grapefruits, lemons and oranges, acting as excellent chelating agents for zinc ions. Furthermore, phytochemicals of the plant extracts capped on ZnO nanomaterials are very effective for killing various bacterial strains, leading to low minimum inhibitory concentration (MIC) values. Bioactive phytocompounds from green ZnO also inhibit hemolysis of Staphylococcus aureus infected red blood cells and inflammatory activity of mammalian immune system. In general, three mechanisms have been adopted to explain bactericidal activity of ZnO nanomaterials, including direct contact killing, reactive oxygen species (ROS) production, and released zinc ion inactivation. These toxic effects lead to the destruction of bacterial membrane, denaturation of enzyme, inhibition of cellular respiration and deoxyribonucleic acid replication, causing leakage of the cytoplasmic content and eventual cell death. Meanwhile, antimicrobial activity of doped and modified ZnO nanomaterials under visible light can be attributed to photogeneration of ROS on their surfaces. Thus particular attention is paid to the design and synthesis of visible light-activated ZnO photocatalysts with antibacterial properties.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Murali A, Sarswat PK, Perez JPL, Free ML. Synergetic effect of surface plasmon resonance and schottky junction in Ag-AgX-ZnO-rGO (X= Cl & Br) nanocomposite for enhanced visible-light driven photocatalysis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124684] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Yaqoob AA, Mohd Noor NHB, Serrà A, Mohamad Ibrahim MN. Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E932. [PMID: 32408530 PMCID: PMC7279554 DOI: 10.3390/nano10050932] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
The efficient remediation of organic dyes from wastewater is increasingly valuable in water treatment technology, largely owing to the tons of hazardous chemicals currently and constantly released into rivers and seas from various industries, including the paper, pharmaceutical, textile, and dye production industries. Using solar energy as an inexhaustible source, photocatalysis ranks among the most promising wastewater treatment techniques for eliminating persistent organic pollutants and new emerging contaminants. In that context, developing efficient photocatalysts using sunlight irradiation and effectively integrating them into reactors, however, pose major challenges in the technologically relevant application of photocatalysts. As a potential solution, graphene oxide (GO)-based zinc oxide (ZnO) nanocomposites may be used together with different components (i.e., ZnO and GO-based materials) to overcome the drawbacks of ZnO photocatalysts. Indeed, mounting evidence suggests that using GO-based ZnO nanocomposites can promote light absorption, charge separation, charge transportation, and photo-oxidation of dyes. Despite such advances, viable, low-cost GO-based ZnO nanocomposite photocatalysts with sufficient efficiency, stability, and photostability remain to be developed, especially ones that can be integrated into photocatalytic reactors. This article offers a concise overview of state-of-the-art GO-based ZnO nanocomposites and the principal challenges in developing them.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; (A.A.Y.); (N.H.b.M.N.)
| | | | - Albert Serrà
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | | |
Collapse
|
23
|
Cerium-Oxide-Nanoparticle-Decorated Zinc Oxide with Enhanced Photocatalytic Degradation of Methyl Orange. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerium-oxide-nanoparticle-decorated zinc oxide was successfully prepared using a simple one-pot hydrothermal technique with different weight% Ce doping. It was found that an increase in Ce doping has an effect on the optical energy band-gap tunability. Ce dopant provides electron trapping on Ce/ZnO nanocomposites and also acts as a surface defect generator during hydrothermal processing. Additionally, a bi-metal oxide heterojunction forms, which acts as a charge separator to obstruct charge recombination and to increase the photodegradation performance. It was found that the methyl orange (MO) degradation performance improved with an increase in Ce doping. The decomposition of MO went from 69.42% (pristine ZnO) to 94.06% (7% Ce/ZnO) after 60 min under fluorescent lamp illumination.
Collapse
|
24
|
The Influence of Deposition Time on the Structural, Morphological, Optical and Electrical Properties of ZnO-rGO Nanocomposite Thin Films Grown in a Single Step by USP. CRYSTALS 2020. [DOI: 10.3390/cryst10020073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thin films of nanocomposite of zinc oxide–reduced graphene oxide (ZnO-rGO) deposited on soda-lime glass substrates were prepared using ultrasonic spray pyrolysis (USP) at 460 °C. The preparation process does not use harsh acids and is environmentally friendly. The deposition period of 2, 3.5 and 5 min resulted in compact, uniform samples with thicknesses of 148, 250 and 365 nm, respectively. After performing structural, morphological, optical and electrical characterization of the prepared nanocomposite, an influence of the deposition time on the physical properties of the obtained films was determined. TEM analyses indicate that the ZnO-rGO nanocomposite presents ZnO nanoparticles anchored on graphene sheets, while XRD, X-ray Photoelectron Spectroscopy (XPS) and Raman results show the presence of a ZnO phase in the ZnO-rGO films. HR-SEM studies showed changes of the ZnO-rGO thin films morphology due to the incorporation of graphene into the ZnO films. Here, the particles of ZnO are similar to small grains of rice and graphene films have the appearance of a little “rose”. As the thickness of the film increases with deposition time, it reduces the structure of resistance of the nanocomposite thin films to 135 Ω. In addition, the optical transmission of the thin films in the visible region resulted affected. Here, we report a simple methodology for the preparation of ZnO-rGO nanocomposite thin films.
Collapse
|