1
|
Akan G, Nyawawa E, Nyangasa B, Turkcan MK, Mbugi E, Janabi M, Atalar F. Severity of coronary artery disease is associated with diminished circANRIL expression: A possible blood based transcriptional biomarker in East Africa. J Cell Mol Med 2024; 28:e18093. [PMID: 38149798 PMCID: PMC10844708 DOI: 10.1111/jcmm.18093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with coronary artery disease (CAD). ANRIL and its transcript variants were investigated for the susceptibility to CAD in adipose tissues (AT) and peripheral blood mononuclear cells (PBMCs) of the study group and the impact of 9p21.3 locus mutations was further analysed. Expressions of ANRIL, circANRIL (hsa_circ_0008574), NR003529, EU741058 and DQ485454 were detected in epicardial AT (EAT) mediastinal AT (MAT), subcutaneous AT (SAT) and PBMCs of CAD patients undergoing coronary artery bypass grafting and non-CAD patients undergoing heart valve surgery. ANRIL expression was significantly upregulated, while the expression of circANRIL was significantly downregulated in CAD patients. Decreased circANRIL levels were significantly associated with the severity of CAD and correlated with aggressive clinical characteristics. rs10757278 and rs10811656 were significantly associated with ANRIL and circANRIL expressions in AT and PBMCs. The ROC-curve analysis suggested that circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). We report the first data demonstrating the presence of ANRIL and its transcript variants expressions in the AT and PBMCs of CAD patients. circANRIL having a synergetic effect with ANRIL plays a protective role in CAD pathogenesis. Therefore, altered circANRIL expression may become a potential diagnostic transcriptional biomarker for early CAD diagnosis.
Collapse
Affiliation(s)
- Gokce Akan
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
- Near East UniversityDESAM Research InstituteMersinNorth CyprusTurkey
| | | | | | | | - Erasto Mbugi
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
| | | | - Fatmahan Atalar
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
- Department of Rare DiseasesIstanbul University, Child Health InstituteIstanbulTurkey
| |
Collapse
|
2
|
Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023; 12:1629. [PMID: 37371099 DOI: 10.3390/cells12121629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul 08826, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Biodisplay, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon 21924, Republic of Korea
| |
Collapse
|
3
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
4
|
Zheng X, Zhong T, Yu F, Duan J, Tang Y, Liu Y, Li M, Sun D, Yin D. Deficiency of a novel lncRNA-HRAT protects against myocardial ischemia reperfusion injury by targeting miR-370-3p/RNF41 pathway. Front Cardiovasc Med 2022; 9:951463. [PMID: 36172578 PMCID: PMC9510651 DOI: 10.3389/fcvm.2022.951463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) contribute to myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanisms by which lncRNAs modulate myocardial I/R injury have not been thoroughly examined and require further investigation. A novel lncRNA named lncRNA-hypoxia/reoxygenation (H/R)-associated transcript (lncRNA-HRAT) was identified by RNA sequencing analysis. The expression of lncRNA-HRAT exhibited a significant increase in the I/R mice hearts and cardiomyocytes treated with H/R. LncRNA-HRAT overexpression facilitates H/R-induced cardiomyocyte apoptosis. Furthermore, cardiomyocyte-specific deficiency of lncRNA-HRAT in vivo after I/R decreased creatine kinase (CK) release in the serum, reduced myocardial infarct area, and improved cardiac dysfunction. Molecular mechanistic investigations revealed that lncRNA-HRAT serves as a competing endogenous RNA (ceRNA) of miR-370-3p, thus upregulating the expression of ring finger protein 41 (RNF41), thereby aggravating apoptosis in cardiomyocytes induced by H/R. This study revealed that the lncRNA-HRAT/miR-370-3p/RNF41 pathway regulates cardiomyocyte apoptosis and myocardial injury. These findings suggest that targeted inhibition of lncRNA-HRAT may offer a novel therapeutic method to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Xinbin Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Ting Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Fan Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jingsi Duan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yao Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yaxiu Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mingrui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Deqiang Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Deling Yin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Deling Yin,
| |
Collapse
|
5
|
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022; 11:983. [PMID: 35326433 PMCID: PMC8946783 DOI: 10.3390/cells11060983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNA, miRs) play crucial roles in cardiovascular disease regulating numerous processes, including inflammation, cell proliferation, angiogenesis, and cell death. Herein, we present an updated and comprehensive overview of the functional involvement of miRs in the regulation of cardiomyocyte death, a central event in acute myocardial infarction, ischemia/reperfusion, and heart failure. Specifically, in this systematic review we are focusing on necrosis, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Fahimeh Varzideh
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Pasquale Mone
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Stanislovas S. Jankauskas
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
6
|
Gandhi S, Witten A, De Majo F, Gilbers M, Maessen J, Schotten U, de Windt LJ, Stoll M. Evolutionarily conserved transcriptional landscape of the heart defining the chamber specific physiology. Genomics 2021; 113:3782-3792. [PMID: 34506887 DOI: 10.1016/j.ygeno.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. A deeper characterization of regional transcription patterns within different heart chambers may aid to improve our understanding of the molecular mechanisms involved in myocardial function and further, our ability to develop novel therapeutic strategies. Here, we used RNA sequencing to determine differentially expressed protein coding (PC) and long non-coding (lncRNA) transcripts within the heart chambers across seven vertebrate species and identified evolutionarily conserved chamber specific genes, lncRNAs and pathways. We investigated lncRNA homologs based on sequence, secondary structure, synteny and expressional conservation and found most lncRNAs to be conserved by synteny. Regional co-expression patterns of transcripts are modulated by multiple factors, including genomic overlap, strandedness and transcript biotype. Finally, we provide a community resource designated EvoACTG, which informs researchers on the conserved yet intertwined nature of the coding and non-coding cardiac transcriptome across popular model organisms in CVD research.
Collapse
Affiliation(s)
- Shrey Gandhi
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Anika Witten
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Federica De Majo
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Martijn Gilbers
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jos Maessen
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Leon J de Windt
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Chouvarine P, Photiadis J, Cesnjevar R, Scheewe J, Bauer UMM, Pickardt T, Kramer HH, Dittrich S, Berger F, Hansmann G. RNA expression profiles and regulatory networks in human right ventricular hypertrophy due to high pressure load. iScience 2021; 24:102232. [PMID: 33786422 PMCID: PMC7994198 DOI: 10.1016/j.isci.2021.102232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Right ventricular hypertrophy (RVH) occurs in high pressure afterload, e.g., tetralogy of Fallot/pulmonary stenosis (TOF/PS). Such RVH is associated with alterations in energy metabolism, neurohormonal and epigenetic dysregulation (e.g., microRNA), and fetal gene reprogramming in animal models. However, comprehensive expression profiling of competing endogenous RNA in human RVH has not been performed. Here, we unravel several previously unknown circular, long non-coding, and microRNAs, predicted to regulate expression of genes specific to human RVH in the non-failing heart (TOF/PS). These genes are significantly overrepresented in pathways related to regulation of glucose and lipid metabolism (SIK1, FABP4), cell surface interactions (THBS2, FN1), apoptosis (PIK3IP1, SIK1), extracellular matrix composition (CTGF, IGF1), and other biological events. This is the first unbiased RNA sequencing study of human compensated RVH encompassing coding and non-coding RNA expression and predicted sponging of miRNAs by non-coding RNAs. These findings advance our understanding of adaptive RVH and highlight future therapeutic targets. First comprehensive transcriptomic study of human RVH via RNA expression and network analysis First human RVH study using exclusively freshly isolated myocardium Known hypertrophy genes are regulated the strongest by competing endogenous RNA networks in RVH Epigenetic mRNA regulation in RVH by ncRNAs is dependent on sex and age
Collapse
Affiliation(s)
- Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Joachim Photiadis
- Departments of Pediatric Cardiology and Pediatric Cardiac Surgery, German Heart Institute, German Center for Cardiovascular Research (DZHK) partner site Berlin, Berlin, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| | - Robert Cesnjevar
- Departments of Pediatric Cardiology and Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| | - Jens Scheewe
- Divisions of Pediatric Cardiology and Pediatric Cardiac Surgery, Heart Center, University of Kiel, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Kiel, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| | - Ulrike M M Bauer
- Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany.,National Register for Congenital Heart Defects, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Thomas Pickardt
- Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany.,National Register for Congenital Heart Defects, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Hans-Heiner Kramer
- Divisions of Pediatric Cardiology and Pediatric Cardiac Surgery, Heart Center, University of Kiel, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Kiel, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| | - Sven Dittrich
- Departments of Pediatric Cardiology and Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| | - Felix Berger
- Departments of Pediatric Cardiology and Pediatric Cardiac Surgery, German Heart Institute, German Center for Cardiovascular Research (DZHK) partner site Berlin, Berlin, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany.,Competence Network for Congenital Heart Defects (CNCHD), Berlin, Germany
| |
Collapse
|
8
|
Maguire EM, Xiao Q. Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J 2020; 287:5260-5283. [DOI: 10.1111/febs.15357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Eithne Margaret Maguire
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University China
| |
Collapse
|
9
|
Costa MC, Gabriel AF, Enguita FJ. Bioinformatics Research Methodology of Non-coding RNAs in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:49-64. [PMID: 32285404 DOI: 10.1007/978-981-15-1671-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transcriptional complexity generated by the human genomic output is within the core of cell and organ physiology, but also could be in the origin of pathologies. In cardiovascular diseases, the role of specific families of RNA transcripts belonging to the group of the non-coding RNAs started to be unveiled in the last two decades. The knowledge of the functional rules and roles of non-coding RNAs in the context of cardiovascular diseases is an important factor to derive new diagnostic methods, but also to design targeted therapeutic strategies. The characterization and analysis of ncRNA function requires a deep knowledge of the regulatory mechanism of these RNA species that often relies on intricated interaction networks. The use of specific bioinformatic tools to interrogate biological data and to derive functional implications is particularly relevant and needs to be extended to the general practice of translational researchers. This chapter briefly summarizes the bioinformatic tools and strategies that could be used for the characterization and functional analysis of non-coding RNAs, with special emphasis in their applications to the cardiovascular field.
Collapse
Affiliation(s)
- Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André F Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal. .,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Chao CT, Yeh HY, Yuan TH, Chiang CK, Chen HW. MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. J Cell Mol Med 2019; 23:5884-5894. [PMID: 31301111 PMCID: PMC6714222 DOI: 10.1111/jcmm.14535] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/02/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes, particularly non‐coding RNAs, have been implicated extensively in the pathogenesis of vascular diseases. Specific miRNAs are involved in the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition of endothelial cells and/or vascular smooth muscle cells. MicroRNA‐125b has been studied in depth for its role in carcinogenesis with a double‐edged role; that is, it can act as an oncogene in some cancer types and as a tumour suppressor gene in others. However, cumulative evidence from the use of advanced miRNA profiling techniques and bioinformatics analysis suggests that miR‐125b can be a potential mediator and useful marker of vascular diseases. Currently, the exact role of miR‐125b in vascular diseases is not known. In this systematic review, we intend to provide an updated compilation of all the recent findings of miR‐125b in vascular diseases, using a systematic approach of retrieving data from all available reports followed by data summarization. MiR‐125b serves as a pathogenic player in multiple vascular pathologies involving endothelia and vascular smooth muscle cells and also serves as a diagnostic marker for vascular diseases. We further provide a computational biologic presentation of the complex network of miR‐125b and its target genes within the scope of vascular diseases.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital BeiHu Branch, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Tzu-Hang Yuan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20123079. [PMID: 31238513 PMCID: PMC6627372 DOI: 10.3390/ijms20123079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the most serious health problem in the world, displaying high rates of morbidity and mortality. One of the main risk factors for CVDs is age. Indeed, several mechanisms are at play during aging, determining the functional decline of the cardiovascular system. Aging cells and tissues are characterized by diminished autophagy, causing the accumulation of damaged proteins and mitochondria, as well as by increased levels of oxidative stress, apoptosis, senescence and inflammation. These processes can induce a rapid deterioration of cellular quality-control systems. However, the molecular mechanisms of age-associated CVDs are only partially known, hampering the development of novel therapeutic strategies. Evidence has emerged indicating that noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and micro RNAs (miRNAs), are implicated in most patho-physiological mechanisms. Specifically, lncRNAs can bind miRNAs and act as competing endogenous-RNAs (ceRNAs), therefore modulating the levels of the mRNAs targeted by the sponged miRNA. These complex lncRNA/miRNA/mRNA networks, by regulating autophagy, apoptosis, necrosis, senescence and inflammation, play a crucial role in the development of age-dependent CVDs. In this review, the emerging knowledge on lncRNA/miRNA/mRNA networks will be summarized and the way in which they influence age-related CVDs development will be discussed.
Collapse
|
12
|
YANG K, HU X. [Research progress on miR-21 in heart diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:214-218. [PMID: 31309761 PMCID: PMC8800808 DOI: 10.3785/j.issn.1008-9292.2019.04.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 06/10/2023]
Abstract
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Collapse
Affiliation(s)
| | - Xiaosheng HU
- 胡晓晟(1970-), 女, 博士, 主任医师, 硕士生导师, 主要从事心脏起搏与心电生理学研究, E-mail:
,
https://orcid.org/0000-0002-4025-7068
| |
Collapse
|
13
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|