1
|
Wu Y, Xiong F, Ling J. The role of heat shock protein B8 in neuronal protection against oxidative stress and mitochondrial dysfunction: A literature review. Int Immunopharmacol 2024; 140:112836. [PMID: 39094362 DOI: 10.1016/j.intimp.2024.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Excessive oxidative stress triggers cerebrovascular and neurodegenerative diseases resulting in acute and chronic brain injury. However, the underlying mechanisms remain unknown. Levels of small heat shock protein B8 (HSPB8), which is highly expressed in the brain, are known to be significantly elevated in cerebral injury models. Exogenous HSPB8 protects the brain against mitochondrial damage. One potential mechanism underlying this protection is that HSPB8 overexpression alleviates the mitochondria-dependent pathways of apoptosis; mitochondrial biogenesis, fission, and mitophagy. Overexpression of HSPB8 may therefore have potential as a clinical therapy for cerebrovascular and neurodegenerative diseases. This review provides an overview of advances in the protective effects of HSPB8 against excessive cerebral oxidative stress, including the modulation of mitochondrial dysfunction and potent signaling pathways.
Collapse
Affiliation(s)
- Yanqing Wu
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
2
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Yang X, Zhou D, Gao L, Wang Y, Wang Y, Jia R, Bai Y, Shi D, Lu F. Effects of Astaxanthin on the Physiological State of Porcine Ovarian Granulose Cells Cultured In Vitro. Antioxidants (Basel) 2024; 13:1185. [PMID: 39456440 PMCID: PMC11504050 DOI: 10.3390/antiox13101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
The physiological state of Granulosa cells (GCs) is intricately linked to the growth and development of oocytes. Oxidative stress has been found to cause damage to GCs in vitro. Astaxanthin (AST), a well-known natural ketone-type carotenoid, has demonstrated strong antioxidant properties. This study investigates the impact of astaxanthin supplementation on the physiological state of porcine ovarian granulosa cells cultured in vitro. Variations in morphology, apoptosis, reactive oxygen species (ROS) levels, and the expression of apoptosis and anti-oxidation-related genes in porcine GCs from different passages were observed. Significant morphological changes, increases in apoptosis, and decreases in antioxidant capacity resulting from passage were observed. Subsequently, treatment with 5 μmol/L astaxanthin significantly enhanced cell viability, proliferation, antioxidant capacity and mitochondrial function while also regulating the estradiol (E2) and progesterone (P4) levels. Additionally, the gene expression of antioxidation, E2, and P4 synthesis markers was assessed, revealing reduced apoptosis and ROS levels in porcine GCs. In conclusion, supplementation with 5 μmol/L astaxanthin in vitro effectively enhances the physiological condition of porcine GCs and optimizes the culture system for these cells in vitro. Optimizing the culture system of porcine GCs in vitro can simulate the function of granulosa cells in vivo and provide a theoretical reference for further promoting follicular development, which is beneficial to improving sow fertility in actual production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fenghua Lu
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, 75 Xiuling Road, Nanning 530005, China; (X.Y.); (D.Z.); (L.G.); (Y.W.); (Y.W.); (R.J.); (Y.B.); (D.S.)
| |
Collapse
|
4
|
Zhang Q, Zheng X, Zhang X, Zheng L. Protective effect of afamin protein against oxidative stress related injury in human ovarian granulosa cells. J Ovarian Res 2024; 17:189. [PMID: 39342320 PMCID: PMC11437624 DOI: 10.1186/s13048-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Ovarian granulosa cells (GCs) play crucial roles in follicular growth and development. Their normal function is influenced by various factors, including oxidative stress, which is a significant factor. Afamin protein is a vitamin E-specific binding protein that acts as a vitamin E carrier in follicular fluid. Although the mechanism of the protective effect of afamin on human ovarian GCs is still unclear, there is evidence it has an antioxidant effect in neuronal cells. METHODS In this study, we investigated the protective effects of afamin proteins on testosterone propionate (TP)-induced ovarian GCs using a human ovarian tumor granulosa cell line (KGN). RESULTS The results showed that afamin reduced TP-induced oxidative stress in KGN cells by decreasing the levels of oxidative damage markers, enhancing the activity of antioxidant enzymes, and exerting a protective effect on GCs. Supplementation with afamin repaired mitochondrial dysfunction by improving mitochondrial membrane potential damage and ATP levels. It counteracted TP-induced apoptosis by decreasing the activity of Caspase-3 and upregulating the expression of the anti-apoptotic gene (BCL-2) while downregulating the expression of the pro-apoptotic gene BCL-2-associated X protein (BAX). In addition, afamin regulated the expression of genes related to ovarian steroid hormone synthesis, ameliorating the endocrine dysfunction observed in TP-induced KGN cells. CONCLUSION Therefore, Afamin proteins may serve as important complementary factors that protect GCs from other types of damage, such as oxidative stress, and may help improve ovarian follicle quality and female reproductive function.
Collapse
Affiliation(s)
- Qiang Zhang
- Reproductive Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130022, China
| | - Xiaoyu Zheng
- Department of Gynecology, Dongguan Songshan Lake Tungwah Hospital, NO.1 Songshan Lake Science Development Seven Road, DongGuan, 523822, China
| | - Xueying Zhang
- Reproductive Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130022, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130022, China.
| |
Collapse
|
5
|
Sanadgol N, Amini J, Khalseh R, Bakhshi M, Nikbin A, Beyer C, Zendehdel A. Mitochondrial genome-derived circRNAs: Orphan epigenetic regulators in molecular biology. Mitochondrion 2024; 79:101968. [PMID: 39321951 DOI: 10.1016/j.mito.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are vital for cellular activities, influencing ATP production, Ca2+ signaling, and reactive oxygen species generation. It has been proposed that nuclear genome-derived circular RNAs (circRNAs) play a role in biological processes. For the first time, this study aims to comprehensively explore experimentally confirmed human mitochondrial genome-derived circRNAs (mt-circRNAs) via in-silico analysis. We utilized wide-ranging bioinformatics tools to anticipate their roles in molecular biology, involving miRNA sponging, protein antagonism, and peptide translation. Among five well-characterized mt-circRNAs, SCAR/mc-COX2 stands out as particularly significant with the potential to sponge around 41 different miRNAs, which target several genes mostly involved in endocytosis, MAP kinase, and PI3K-Akt pathways. Interestingly, circMNTND5 and mecciND1 specifically interact with miRNAs through their unique back-splice junction sequence. These exclusively targeted miRNAs (has-miR-5186, 6888-5p, 8081, 924, 672-5p) are predominantly associated with insulin secretion, proteoglycans in cancer, and MAPK signaling pathways. Moreover, all mt-circRNAs intricately affect the P53 pathway through miRNA sequestration. Remarkably, mc-COX2 and circMNTND5 appear to be involved in the RNA's biogenesis by antagonizing AGO1/2, EIF4A3, and DGCR8. All mt-circRNAs engaged with IGF2BP proteins crucial in redox signaling, and except mecciND1, they all potentially generate at least one protein resembling the immunoglobulin heavy chain protein. Given P53's function as a redox-sensitive transcription factor, and insulin's role as a crucial regulator of energy metabolism, their indirect interplay with mt-circRNAs could influence cellular outcomes. However, due to limited attention and infrequent data availability, it is advisable to conduct more thorough investigations to gain a deeper understanding of the functions of mt-circRNA.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, 94149-75516 Bojnurd, Iran
| | - Roghayeh Khalseh
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Mostafa Bakhshi
- Department of Electrical and Computer Engineering, Kharazmi University, 15719-14911 Tehran, Iran
| | - Arezoo Nikbin
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendehdel
- Institut of Anatomy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
6
|
Chen S, Wang Y, Chen K, Xing X, Jiang Q, Xu T. Unraveling the mechanism of quercetin alleviating BHPF-induced apoptosis in Epithelioma papulosum cyprini cells: SIRT3-mediated mitophagy. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109907. [PMID: 39278380 DOI: 10.1016/j.fsi.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Fluorene-9-bisphenol (BHPF), as an alternative to bisphenol A, is now increasingly used in plastic products. The accumulation of BHPF in the water environment has posed potential safety risks to aquatic organisms. Unfortunately, the toxicity of BHPF on the physiological metabolism of aquatic animals remains unclear, especially on the molecular mechanisms of BHPF kidney toxicity and antagonizing BHPF toxicity. Quercetin (QCT), a naturally occurring flavonoid, has been reported to mitigate the toxic effects on aquatic organisms induced by a variety of environmental contaminants. It is unclear whether QCT can be a candidate for mitigating BHPF toxicity. In this study, we investigated the protective effect of QCT on BHPF-induced apoptosis and elucidated the possible mechanism of the protective effect mediated by QCT. We treated epithelioma papulosum cyprini cells (EPCs) with 20 μM of BHPF and/or 20 μM of QCT, and the results showed that BHPF significantly increased the release of reactive oxygen species (ROS) from EPCs, decreased the expression of SIRT3, and initiated endogenous apoptosis. Molecular docking provides evidence for the interaction of QCT and SIRT3. Our intervention with Honokiol (HKL) showed that QCT or HKL treatment significantly attenuated BHPF-induced mitochondrial dysfunction and mitochondrial apoptosis (mtApoptosis) in EPCs, and activated mitophagy, restoring autophagy flux. To further investigate the specific mechanism of the protective effect of QCT, we intervened with Cyclosporin A (CsA), and our results suggest that QCT activation of SIRT3-promoted regulation of mitophagy may be a therapeutic strategy to attenuate the toxic effects of BHPF on EPCs. In conclusion, our findings suggest that BHPF induces oxidative damage and mtApoptosis in EPCs and that QCT activates mitophagy and improves autophagic flux through activation of SIRT3, thereby alleviating apoptosis mediated by mitochondrial dysfunction in EPCs. Our study provides a theoretical basis for reassessing the safety of BHPF for aquatic organisms and reveals a novel detoxification mechanism against the toxic effects of BHPF.
Collapse
Affiliation(s)
- Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyue Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
7
|
Moqaddam MA, Nemati M, Dara MM, Hoteit M, Sadek Z, Ramezani A, Rand MK, Abbassi-Daloii A, Pashaei Z, Almaqhawi A, Razi O, Escobar KA, Supriya R, Saeidi A, Zouhal H. Exploring the Impact of Astaxanthin Supplementation in Conjunction with a 12-Week CrossFit Training Regimen on Selected Adipo-Myokines Levels in Obese Males. Nutrients 2024; 16:2857. [PMID: 39275173 PMCID: PMC11397083 DOI: 10.3390/nu16172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males. MATERIAL AND METHODS This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation [20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main interventional protocols, and then 72 h after the final session of the training protocol. RESULTS There was no significant difference in the baseline data between the groups (p > 0.05). There were significant interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST (η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001), also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). CONCLUSIONS The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and metabolic factors and also serum lipid levels while producing positive changes in body composition and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were other affirmative responses to both interventions.
Collapse
Affiliation(s)
- Mohammad Ahmadi Moqaddam
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Morteza Nemati
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Marjan Mansouri Dara
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Maha Hoteit
- Food Science Unit, National Council for Scientific Research of Lebanon (CNRS-L), Beirut 11-8281, Lebanon
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Zahra Sadek
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Motor System, Handicap and Rehabilitation (MOHAR), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Akbar Ramezani
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Mahboubeh Khak Rand
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Asieh Abbassi-Daloii
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Abdullah Almaqhawi
- Department of Family Medicine and Community, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 6714414971, Iran
| | - Kurt A Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Academy of Wellness and Human Development, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 1517566177, Iran
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Université Rennes, 35044 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
8
|
Araujo SL, Martins PL, Pereira THDS, Sampaio TL, de Menezes RRPPB, da Costa MDR, Martins AMC, da Silva ING, de Morais GB, Evangelista JSAM. Evidence of obesity-induced inflammatory changes in client-owned cats. Vet World 2024; 17:1685-1692. [PMID: 39328456 PMCID: PMC11422647 DOI: 10.14202/vetworld.2024.1685-1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/08/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Insulin resistance and type 2 diabetes mellitus are common health issues in obese (OB) cats. In humans, obesity leads to alterations in adipokine and proinflammatory cytokine secretion, causing persistent inflammation. The inflammatory impact of obesity in cats remains unproven. This study investigated associations between obesity and inflammatory and metabolic changes in three groups of client-owned Brazilian domestic shorthair cats: naturally lean, overweight (OW), and OB. Materials and Methods Cats from the Veterinary Hospital of Professor Sylvio Barbosa e Cardoso (FAVET/UECE) were clinically evaluated. Blood samples were collected for hematological and biochemical profile measurements, and part of the serum was used for measuring adipokine and inflammatory cytokines using sandwich enzyme-linked immunosorbent assay. Results In both the OW and OB groups, serum cholesterol and insulin concentrations increased, while triglyceride concentrations were notably elevated in the OB group. In the OW and OB groups, serum adiponectin, tumor necrosis factor-α, and interleukin-1β levels were elevated, and leptin levels were significantly higher in the OB group. Conclusion This study is the first in Brazil to reveal increased serum levels of inflammatory markers in OW and OB client-owned felines. OW cats exhibited higher proinflammatory marker levels, implying obesity-induced inflammation.
Collapse
Affiliation(s)
- Steffi L. Araujo
- Laboratory of Comparative Experimental Morphology, Faculty of Veterinary, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | - Patricia L. Martins
- Laboratory of Comparative Experimental Morphology, Faculty of Veterinary, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | | | - Tiago L. Sampaio
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | | | - Mac D. Rodrigues da Costa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | - Alice M. Costa Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | - Isaac Neto Goes da Silva
- Laboratoy of Veterinary Clinical Pathology, Faculty of Veterinary, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | - Glayciane Bezerra de Morais
- Laboratory of Comparative Experimental Morphology, Faculty of Veterinary, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | | |
Collapse
|
9
|
Luo Y, Zhang Z, Zheng W, Zeng Z, Fan L, Zhao Y, Huang Y, Cao S, Yu S, Shen L. Molecular Mechanisms of Plant Extracts in Protecting Aging Blood Vessels. Nutrients 2024; 16:2357. [PMID: 39064801 PMCID: PMC11279783 DOI: 10.3390/nu16142357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Plant Extracts (PE) are natural substances extracted from plants, rich in various bioactive components. Exploring the molecular mechanisms and interactions involved in the vascular protective effects of PE is beneficial for the development of further strategies to protect aging blood vessels. For this review, the content was obtained from scientific databases such as PubMed, China National Knowledge Infrastructure (CNKI), and Google Scholar up to July 2024, using the search terms "Plant extracts", "oxidative stress", "vascular aging", "endothelial dysfunction", "ROS", and "inflammation". This review highlighted the effects of PE in protecting aging blood vessels. Through pathways such as scavenging reactive oxygen species, activating antioxidant signaling pathways, enhancing respiratory chain complex activity, inhibiting mitochondrial-reactive oxygen species generation, improving nitric oxide bioavailability, downregulating the secretion of inflammatory factors, and activating sirtuins 1 and Nrf2 signaling pathways, it can improve vascular structural and functional changes caused by age-related oxidative stress, mitochondrial dysfunction, and inflammation due to aging, thereby reducing the incidence of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| |
Collapse
|
10
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
11
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
12
|
Utomo NP, Pinzon RT, Latumahina PK, Damayanti KRS. Astaxanthin and improvement of dementia: A systematic review of current clinical trials. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100226. [PMID: 39036318 PMCID: PMC11260299 DOI: 10.1016/j.cccb.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024]
Abstract
Worldwide, the incidence of neurodegenerative diseases especially dementia is steadily increasing due to the aging population. Abundant research emerges on the probability of combating or preventing the degeneration process, with the most established one being to tackle the existence of oxidative stress and free radicals production due to their nature of aggravating dementia. Astaxanthin, a marine carotenoid, was proven to be a protective agent of cerebral ischemia through many animal model clinical trials. This review summarizes the evidence of Astaxanthin's benefits for cognitive function across clinical trials done in older age. The results are of interest as its supplementation does not exhibit unwanted issues on the consumer based on physical and laboratory examinations. Despite not being supported statistically, however, subjective and objective cognitive amelioration were reported according to the majority of this review's trial subjects. Although there is no clear and direct mechanism for cognitive improvement by Astaxanthin activity in the body systems, the encouragement of Astaxanthin supplementation should be considered as the elderly with dementia may highly benefit from the improved cognitive function.
Collapse
Affiliation(s)
- Nunki Puspita Utomo
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Rizaldy Taslim Pinzon
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Patrick Kurniawan Latumahina
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Kadex Reisya Sita Damayanti
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Cao X, Yu C, Cheng S, Wang Y, Zhang Z, Huang J. Co-Delivery of Astaxanthin and si TGF-β1 via Ionizable Liposome Nanoparticles for Improved Idiopathic Pulmonary Fibrosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597290 DOI: 10.1021/acsami.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Alleviating the injury of type II alveolar epithelial cells (AEC 2s) and inhibiting the activation and differentiation of fibroblasts are significant for improving the therapeutic effect of idiopathic pulmonary fibrosis (IPF). To this aim, ionizable liposome nanoparticles (ASNPs) coloaded with antioxidant drug astaxanthin (AST) and small interfering RNA targeting transforming growth factor β1 (siTGF-β1) were developed for enhanced IPF therapy. ASNPs showed high loading and intracellular delivery efficiency for AST and siTGF-β1. After the injection of ASNPs in an IPF mice model, the loaded AST largely scavenged reactive oxygen species (ROS) in the diseased lung to reduce AEC2 apoptosis, thereby ensuring the integrity of the alveolar epithelium. Meanwhile, siTGF-β1, delivered by ASNPs, significantly silenced the expression of TGF-β1 in fibroblasts, inhibiting the differentiation of fibroblasts into myofibroblasts as well as reducing the excessive deposition of extracellular matrix (ECM). The combined use of the two drugs exhibited an excellent synergistic antifibrotic effect and was conducive to minimizing alveolar epithelial damage. This work provides a codelivery strategy of AST and siTGF-β1, which shows great promise for the treatment of IPF by simultaneously reducing alveolar epithelial damage and inhibiting fibroblast activation.
Collapse
Affiliation(s)
- Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
14
|
Zhu N, Liu R, Xu M, Li Y. The Potential of Bioactive Fish Collagen Oligopeptides against Hydrogen Peroxide-Induced NIH/3T3 and HUVEC Damage: The Involvement of the Mitochondria. Nutrients 2024; 16:1004. [PMID: 38613037 PMCID: PMC11013636 DOI: 10.3390/nu16071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1β (IL-1β), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
15
|
周 豪, 陈 涛, 吴 爱. [Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:249-255. [PMID: 38645848 PMCID: PMC11026887 DOI: 10.12182/20240360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/23/2024]
Abstract
Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.
Collapse
Affiliation(s)
- 豪 周
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 涛 陈
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 爱悯 吴
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
16
|
Harrison DE, Strong R, Reifsnyder P, Rosenthal N, Korstanje R, Fernandez E, Flurkey K, Ginsburg BC, Murrell MD, Javors MA, Lopez-Cruzan M, Nelson JF, Willcox BJ, Allsopp R, Watumull DM, Watumull DG, Cortopassi G, Kirkland JL, Tchkonia T, Choi YG, Yousefzadeh MJ, Robbins PD, Mitchell JR, Acar M, Sarnoski EA, Bene MR, Salmon A, Kumar N, Miller RA. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. GeroScience 2024; 46:795-816. [PMID: 38041783 PMCID: PMC10828146 DOI: 10.1007/s11357-023-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
In genetically heterogeneous (UM-HET3) mice produced by the CByB6F1 × C3D2F1 cross, the Nrf2 activator astaxanthin (Asta) extended the median male lifespan by 12% (p = 0.003, log-rank test), while meclizine (Mec), an mTORC1 inhibitor, extended the male lifespan by 8% (p = 0.03). Asta was fed at 1840 ± 520 (9) ppm and Mec at 544 ± 48 (9) ppm, stated as mean ± SE (n) of independent diet preparations. Both were started at 12 months of age. The 90th percentile lifespan for both treatments was extended in absolute value by 6% in males, but neither was significant by the Wang-Allison test. Five other new agents were also tested as follows: fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate. None of these increased lifespan significantly at the dose and method of administration tested in either sex. Amounts of dimethyl fumarate in the diet averaged 35% of the target dose, which may explain the absence of lifespan effects. Body weight was not significantly affected in males by any of the test agents. Late life weights were lower in females fed Asta and Mec, but lifespan was not significantly affected in these females. The male-specific lifespan benefits from Asta and Mec may provide insights into sex-specific aspects of aging.
Collapse
Affiliation(s)
- David E Harrison
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter Reifsnyder
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Ron Korstanje
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Kevin Flurkey
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Brett C Ginsburg
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Meredith D Murrell
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Martin A Javors
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - James F Nelson
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Physiology, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Bradley J Willcox
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | - Richard Allsopp
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | | | | | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | | | | | | | | | | | | | - Murat Acar
- Department of Basic Medical Sciences, School of Medicine, Koç University, 34450, Istanbul, Turkey
| | - Ethan A Sarnoski
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Michael R Bene
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adam Salmon
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Uguz H, Avcı B, Palabıyık E, Nurseli Sulumer A, Kızıltunç Özmen H, Demir Y, Aşkın H. Naringenin, Hesperidin and Quercetin Ameliorate Radiation-Induced Damage In Rats: In Vivo And In Silico Evaluations. Chem Biodivers 2024; 21:e202301613. [PMID: 38105348 DOI: 10.1002/cbdv.202301613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/19/2023]
Abstract
In this study, we sought to determine how well naringenin, hesperidin, and quercetin prevented damage brought on by radiotherapy. During the investigation, 48 adult female Sprague Dawley rats were used. Eight groups of eight rats each were formed by randomly assigning the rats to the groups. The normal control group was represented by Group 1. Group 2 rats were those that received a dose of 15 Gray (Gy) of radiotherapy. The rats assigned to Group 3 received only Naringenin, whereas those assigned to Group 4 received only quercetine, and those assigned to Group 5 received only hesperidin. Rats in Group 6, 7 and 8 were received naringenin, quarcetin and hesperidin at a dose of 50 mg/kg daily for one week prior to radiotheraphy exposition. After radiotheraphy and phenolic compounds rats were sacrificed and some metabolic enzyme (aldose reductase (AR), sorbitol dehydrogenase (SDH), paraoxonase-1 (PON1), butyrylcholinesterase (BChE) and glutathione S-transferase (GST)) activity was determined in eye and brain tissues. It was found that phenolic compounds have protective effect against radiation-induced damage because of their anti-diabetic antioxidant and anti-inflammatory properties. In addition, hesperidin was found to be superior to quercetin and naringenin in terms of enzyme activity efficacy. Furthermore, hesperidin exhibited favorable binding affinity for BChE in silico compared to other enzymes.
Collapse
Affiliation(s)
- Handan Uguz
- Deparment Department of Field Crops, Ataturk University, 25200, Erzurum, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25200, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25200, Erzurum, Turkey
| | - Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25200, Erzurum, Turkey
| | - Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25200, Erzurum, Turkey
| | - Hilal Kızıltunç Özmen
- Department of Radiation Oncology, Faculty of Medicine, Ataturk University, 25200 Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Hakan Aşkın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25200, Erzurum, Turkey
| |
Collapse
|
18
|
Rogov AG, Goleva TN, Aliverdieva DA, Zvyagilskaya RA. SkQ3 Exhibits the Most Pronounced Antioxidant Effect on Isolated Rat Liver Mitochondria and Yeast Cells. Int J Mol Sci 2024; 25:1107. [PMID: 38256179 PMCID: PMC10816539 DOI: 10.3390/ijms25021107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Oxidative stress is involved in a wide range of age-related diseases. A critical role has been proposed for mitochondrial oxidative stress in initiating or promoting these pathologies and the potential for mitochondria-targeted antioxidants to fight them, making their search and testing a very urgent task. In this study, the mitochondria-targeted antioxidants SkQ1, SkQ3 and MitoQ were examined as they affected isolated rat liver mitochondria and yeast cells, comparing SkQ3 with clinically tested SkQ1 and MitoQ. At low concentrations, all three substances stimulated the oxidation of respiratory substrates in state 4 respiration (no ADP addition); at higher concentrations, they inhibited the ADP-triggered state 3 respiration and the uncoupled state, depolarized the inner mitochondrial membrane, contributed to the opening of the mPTP (mitochondrial permeability transition pore), did not specifically affect ATP synthase, and had a pronounced antioxidant effect. SkQ3 was the most active antioxidant, not possessing, unlike SkQ1 or MitoQ, prooxidant activity with increasing concentrations. In yeast cells, all three substances reduced prooxidant-induced intracellular oxidative stress and cell death and prevented and reversed mitochondrial fragmentation, with SkQ3 being the most efficient. These data allow us to consider SkQ3 as a promising potential therapeutic agent to mitigate pathologies associated with oxidative stress.
Collapse
Affiliation(s)
- Anton G. Rogov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.G.R.); (T.N.G.)
| | - Tatyana N. Goleva
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.G.R.); (T.N.G.)
| | - Dinara A. Aliverdieva
- Precaspian Institute of Biological Resources, Daghestan Federal Research Center of the Russian Academy of Sciences, 367000 Makhachkala, Russia;
| | - Renata A. Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
19
|
Jabarpour M, Aleyasin A, Shabani Nashtaei M, Khodarahmian M, Lotfi S, Amidi F. The modulating effects of astaxanthin on apoptosis in women with polycystic ovarian syndrome: A randomized clinical trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:64-77. [PMID: 38948179 PMCID: PMC11210694 DOI: 10.22038/ajp.2023.23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 07/02/2024]
Abstract
Objective Astaxanthin (ASX) is a lipid-soluble keto-carotenoid with several biological effects. These effects may benefit polycystic ovarian syndrome (PCOS) patients. Imbalanced apoptosis/anti-apoptosis signaling has been considered the major pathogenesis of PCOS. In a randomized clinical trial, we tested the impact of ASX on the apoptotic pathway in PCOS granulosa cells (GCs). The present study hypothesizes that ASX may improve apoptosis in PCOS patients. Materials and Methods This trial recruited patients with confirmed PCOS. A total of 58 patients were randomly assigned to take ASX (12 mg) or placebo for 8 weeks. Aspirated follicular fluid (FF) and blood samples were taken from both groups to measure BAX and BCL2 protein expression. Following FF aspiration, GCs from both groups were obtained; Real-Time PCR and Western blotting were used to evaluate the apoptotic pathway's gene and protein expression levels in GCs.BAXBCL2. Results In GCs analysis, ASX reduced DR5 gene and protein expression after 8 weeks compared to placebo(p<0.05). Also, Caspase8 (p>0.05) and BAX (p<0.05) gene expression declined, although the difference was not statistically significant for Caspase8. Besides,ASX treatment contributed to an elevated BCL2 gene expression in GCs(p<0.05). In FF and serum analysis, a statistically significant increase was found in BCL2 concentration in the ASX group (p<0.05). Moreover, a reduction in BAX level was confirmed in both FF and serum of the ASX group; however, this change was not significant in the serum (p>0.05). Conclusion It seems that ASX consumption among women with PCOS improved serum and FF levels of apoptotic factors and modulated genes and protein expression of the apoptosis pathway in GCs. Nevertheless, further investigations are needed to reveal the potential role of this compound in PCOS treatment.
Collapse
Affiliation(s)
- Masoome Jabarpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Lotfi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Aziz MM, El-Sheikh MM, Mohamed MA, Abdelrahman SS, Mekkawy MH. The senomorphic impact of astaxanthin on irradiated rat spleen: STING, TLR4 and mTOR contributed pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241297342. [PMID: 39475763 PMCID: PMC11528771 DOI: 10.1177/03946320241297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Exposure of spleen tissues to ionizing radiation during radiotherapy can induce cellular stress and immune-dysfunction leading to cellular senescence. INTRODUCTION The process of a cancerous development is facilitated by the accumulation of senescent cells. This justifies the incorporation of anti-senescent medications during splenic irradiation (SI). METHODS In this study senescence was induced in the spleen of male albino rats by radiation exposure (5Gy-single whole body gamma-irradiation) then after 2 weeks, oral astaxanthin regimen was started once daily in a dose of 25 mg/kg for 7 consecutive days. Concurrent control groups were carried out. RESULTS the present data reflected that irradiation provoked an increase in the oxidative stress biomarkers (nitric oxide, lipid peroxidation and total reactive oxygen species levels)and the inflammatory biomarkers (Myeloperoxidase and interleukin-6). In addition irradiation led to the over expression of stimulator of interferon genes (cGAS-STING), mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) along with the lactate dehydrogenase (LDH), cyclin-dependent kinase inhibitor 1 (p21) cyclin-dependent kinase inhibitor 2A (p16) increment with elevation of tumor suppressor protein (p53) level. However, reduced glutathione contents and catalase activity were reduced post irradiation in spleen tissues, all these changes reflecting induction of cellular senescence. Astaxanthin treatment showed an improvement in the antioxidant/oxidative stress balance, inflammatory biomarkers, histopathological examination and immunohistochemical expressions of the tested proteins in the irradiated rats. CONCLUSION the current findings offer a new insight into the senomorphic effect of astaxanthin following radiation-induced spleen senescence via STING, mTOR, and TLR4 signalling pathways.
Collapse
Affiliation(s)
- Maha M Aziz
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa A Mohamed
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
21
|
Wang C, Han D, Feng X, Hu L, Wu J. Docosahexaenoic acid alleviates LPS-induced cytotoxicity in HL-1 cardiac cells via improving stress-induced mitochondrial fragmentation. Heliyon 2023; 9:e22465. [PMID: 38107281 PMCID: PMC10724566 DOI: 10.1016/j.heliyon.2023.e22465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Sepsis-induced cardiac injury is associated with oxidative stress and mitochondrial dysfunction. Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects the injured myocardium by modulating mitochondrial dysfunction. We aimed to confirm whether the cardioprotective effect of DHA is mediated via the alleviation of mitochondrial fragmentation in lipopolysaccharide (LPS)-induced cardiomyopathy in vitro. We found that DHA improved cell viability and alleviated cardiac cell apoptosis by reducing lactate dehydrogenase (LDH) release, expression levels of Cleaved caspase-3, and Caspase 3 activity. DHA attenuated oxidative stress as evidenced by decreased ROS production and increased superoxide dismutase activity. In addition, DHA ameliorated mitochondrial dysfunction by modulating mitochondrial respiratory chain injury and mitochondrial fragmentation, especially decreasing the mitochondrial fission-related protein p-Drp1(ser 616) but no effects on Drp1, p-Drp1(ser 637), and mitochondrial fusion-related protein. Our data suggest that DHA conferred cardioprotection by alleviating oxidative stress-induced apoptosis, which may be associated with alleviation of stress-induced mitochondrial fragmentation.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xiaojing Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Li Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| |
Collapse
|
22
|
Ko SF, Yang CC, Sung PH, Cheng BC, Shao PL, Chen YL, Yip HK. Dapagliflozin-entresto protected kidney from renal hypertension via downregulating cell-stress signaling and upregulating SIRT1/PGC-1α/Mfn2-medicated mitochondrial homeostasis. Exp Biol Med (Maywood) 2023; 248:2421-2439. [PMID: 38059322 PMCID: PMC10903247 DOI: 10.1177/15353702231198087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/10/2023] [Indexed: 12/08/2023] Open
Abstract
This study tested whether combined dapagliflozin and entresto would be superior to mere one therapy on protecting the residual renal function and integrity of kidney parenchyma in hypertensive kidney disease (HKD) rat. In vitro results showed that the protein expressions of oxidative-stress/mitochondrial-damaged (NOX-1/NOX-2/oxidized-protein/cytosolic-cytochrome-C)/apoptotic (mitochondrial-Bax/cleaved caspeases 3, 9)/cell-stress (p-ERK/p-JNK/p-p38) biomarkers were significantly increased in H2O2-treated NRK-52E cells than those of controls that were reversed by dapagliflozin or entresto treatment. Adult-male SD rats (n = 50) were equally categorized into group 1 (sham-operated-control), group 2 (HKD by 5/6 nephrectomy + DOCA-salt/25 mg/kg/subcutaneous injection/twice weekly), group 3 (HKD + dapagliflozin/orally, 20 mg/kg/day for 4 weeks since day 7 after HKD induction), group 4 (HKD + entresto/orally, 100 mg/kg/day for 4 weeks since day 7 after HKD induction), and group 5 (HKD + dapagliflozin + entresto/the procedure and treatment strategy were identical to groups 2/3/4). By day 35, circulatory levels of blood-urine-nitrogen (BUN)/creatinine and urine protein/creatinine ratio were lowest in group 1, highest in group 2, and significantly lower in group 5 than in groups 3/4, but no difference between groups 3/4. Histopathological findings showed the kidney injury score/fibrotic area/cellular expressions of oxidative-stress/kidney-injury-molecule (8-OHdG+/KIM-1+) exhibited an identical trend, whereas the cellular expressions of podocyte components (synaptopodin/ZO-1/E-cadherin) exhibited an opposite pattern of BUN level among the groups. The protein expressions of oxidative stress/mitochondrial-damaged (NOX-1/NOX-2/oxidized protein/cytosolic-cytochrome-C/cyclophilin-D)/apoptotic (mitochondrial-Bax/cleaved-caspase 3)/mitochondrial-fission (PINK1/Parkin/p-DRP1)/autophagic (LC3BII/LC3BI ratio, Atg5/beclin-1)/MAPK-family (p-ERK/p-JNK/p-p38) biomarkers displayed a similar pattern, whereas the protein expression of mitochondria-biogenesis signaling (SIRT1/PGC-1α-Mfn2/complex I-V) displayed an opposite pattern of BUN among the groups. In conclusion, combined dapagliflozin-entresto therapy offered additional benefits on protecting the residual kidney function and architectural integrity in HKD rat.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Ben-Chung Cheng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 88301
- Department of Nursing, Asia University, Taichung 41354
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302
| |
Collapse
|
23
|
Jurčacková Z, Ciglanová D, Mudroňová D, Bárcenas-Pérez D, Cheel J, Hrčková G. Influence of standard culture conditions and effect of oleoresin from the microalga Haematococcus pluvialis on splenic cells from healthy Balb/c mice - a pilot study. In Vitro Cell Dev Biol Anim 2023; 59:764-777. [PMID: 38062299 PMCID: PMC10739404 DOI: 10.1007/s11626-023-00822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 12/22/2023]
Abstract
In this work, we used splenocytes from healthy mice to study the effects of the two most commonly used cell culture media (A, B) with different compositions of redox reagents. The incubation of cells for 24 h resulted in a significant decrease in viability and metabolic activity of splenocytes, and the negative effects of incubation in medium B were more pronounced. In standard conditions, oxidative stress in cells was manifested by reduced mitochondrial potential, and this effect correlated with the transition of 58.3% of cells to the early stage of apoptosis under reducing conditions of medium A and up to 66.1% of cells under super-reducing conditions in medium B, suggesting altered cell physiology. High levels of ROS/RNS activated transcription factor Nrf2, superoxide dismutase 1, and catalase. The higher mRNA levels of these genes were under the conditions of medium B, whose super-reducing environment in combination with the environment of conventional incubators proved to be less suitable for the cells compared to medium A. Treatment of the cells with a lower concentration (10 µg/ml) of oleoresin obtained from the microalga H. pluvialis partially eliminated the negative effects of cultivation. Higher concentration of oleoresin (40 µg/ml) was slightly cytotoxic, due to the significant antioxidant effect of astaxanthin, the main bioactive component of the extract, which eliminated most of the ROS/RNS acting as signalling molecules. This study shows that the standard culture conditions do not reflect the physiological in vivo cell conditions; therefore, they are not generally suitable for incubation of all cell types.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovakia
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181, Košice, Slovakia
| | - Denisa Ciglanová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181, Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181, Košice, Slovakia
| | - Daniela Bárcenas-Pérez
- Laboratory of Algal Biotechnology - Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 37981, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, 1760, 37005, České Budějovice, Czech Republic
| | - José Cheel
- Laboratory of Algal Biotechnology - Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 37981, Třeboň, Czech Republic.
| | - Gabriela Hrčková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovakia.
| |
Collapse
|
24
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
25
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
26
|
Zhou M, Yin Y, Zhao J, Zhou M, Bai Y, Zhang P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci 2023; 11:7512-7530. [PMID: 37877241 DOI: 10.1039/d3bm01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Over the past decade, researchers have proposed a new class of drug delivery systems, bio-hybrid micro-robots, designed with a variety of living cell-driven micro-robots that utilize the unique mobility of natural organisms (bacteria, cells, exosomes, etc.) to transport effective drugs. Microalgae are considered potential drug delivery carriers. Recent studies have shown that microalga-based drug delivery systems exhibit excellent biocompatibility. In addition, microalgae have a large surfactant area, phototaxis, oxygen production, and other characteristics, so they are used as a carrier for the treatment of bacterial infections, cancer, etc. This review summarizes the modification of microalgae including click chemistry and electrostatic adsorption, and can improve the drug loading efficiency through dehydration and hydration strategies. The prepared microalgal drug delivery system can be targeted to different organs by different dosing methods or using external forces. Finally, it summarizes its antibacterial (gastritis, periodontitis, skin wound inflammation, etc.) and antitumor applications.
Collapse
Affiliation(s)
- Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yanjie Bai
- Department of Stomatology, People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Supriya R, Shishvan SR, Kefayati M, Abednatanzi H, Razi O, Bagheri R, Escobar KA, Pashaei Z, Saeidi A, Shahrbanian S, Bagchi S, Sengupta P, Al Kiyumi MH, Heinrich KM, Zouhal H. Astaxanthin Supplementation Augments the Benefits of CrossFit Workouts on Semaphorin 3C and Other Adipokines in Males with Obesity. Nutrients 2023; 15:4803. [PMID: 38004197 PMCID: PMC10675419 DOI: 10.3390/nu15224803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Regular physical activity and the use of nutritional supplements, including antioxidants, are recognized as efficacious approaches for the prevention and mitigation of obesity-related complications. This study investigated the effects of 12 weeks of CrossFit training combined with astaxanthin (ASX) supplementation on some plasma adipokines in males with obesity. Sixty-eight males with obesity (BMI: 33.6 ± 1.4 kg·m-2) were randomly assigned into four groups: the control group (CG; n = 11), ASX supplementation group (SG; n = 11), CrossFit group (TG; n = 11), and training plus supplement group (TSG; n = 11). Participants underwent 12 weeks of supplementation with ASX or placebo (20 mg/day capsule daily), CrossFit training, or a combination of both interventions. Plasma levels of semaphorin 3C (SEMA3C), apelin, chemerin, omentin1, visfatin, resistin, adiponectin, leptin, vaspin, and RBP4 were measured 72 h before the first training session and after the last training session. The plasma levels of all measured adipokines were significantly altered in SG, TG, and TSG groups (p < 0.05). The reduction of resistin was significantly higher in TSG than in SG (p < 0.05). The plasma levels of omentin1 were significantly higher in both training groups of TG and TSG than SG (p < 0.05), although such a meaningful difference was not observed between both training groups (p > 0.05). Significant differences were found in the reductions of plasma levels of vaspin, visfatin, apelin, RBP4, chemerin, and SEMA3C between the SG and TSG groups (p < 0.05). The study found that a 12-week intervention using ASX supplementation and CrossFit exercises resulted in significant improvements in several adipokines among male individuals with obesity. Notably, the combined approach of supplementation and training had the most pronounced results. The findings presented in this study indicate that the supplementation of ASX and participation in CrossFit exercise have the potential to be effective therapies in mitigating complications associated with obesity and enhancing metabolic health.
Collapse
Affiliation(s)
- Rashmi Supriya
- Centre for Health and Exercise Science Research, SPEH, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China;
| | - Sevda Rahbari Shishvan
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 15847-15414, Iran; (S.R.S.); (M.K.); (H.A.)
| | - Movahed Kefayati
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 15847-15414, Iran; (S.R.S.); (M.K.); (H.A.)
| | - Hossein Abednatanzi
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 15847-15414, Iran; (S.R.S.); (M.K.); (H.A.)
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 94Q5+6G3, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Kurt A. Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA;
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran
| | - Shahnaz Shahrbanian
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran 14117-13116, Iran;
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (S.B.); (P.S.)
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (S.B.); (P.S.)
| | - Maisa Hamed Al Kiyumi
- Department of Family Medicine and Public Health, Sultan Qaboos University, Muscat P.O. Box 35, Oman;
- Department of Family Medicine and Public Health, Sultan Qaboos University Hospital, Muscat P.O. Box 35, Oman
| | - Katie M. Heinrich
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA;
- Research Department, The Phoenix, Manhattan, KS 66502, USA
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)—EA 1274, Université de Rennes, 35000 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
28
|
Li J, Zhu M, Xian R, Chen S, Zang Q, Zhu H, Cao C. A preliminary study on the pathology and molecular mechanism of fumonisin B 1 nephrotoxicity in young quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114438-114451. [PMID: 37858030 DOI: 10.1007/s11356-023-30291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Fumonisin B1 (FB1) is a widely present mycotoxin that accumulates in biological systems and poses a health risk to animals. However, few studies have reported the molecular mechanism by which FB1 induces nephrotoxicity. The aim of this study was to assess the extent of nephrotoxicity during FB1 exposure and the possible molecular mechanisms behind it. Therefore, 180 young quails were equally divided into two groups. The control group was fed typical quail food, while the experimental group was fed quail food containing 30 mg·kg-1 FB1. Various parameters were assessed, which included histopathological, ultrastructural changes, levels of biochemical parameters, oxidative indicators, inflammatory factors, possible target organelles mitochondrial and endoplasmic reticulum (ER)-related factors, nuclear xenobiotic receptors (NXR) response, and cytochrome P450 system (CYP450s)-related factors in the kidneys on days 14, 28, and 42. The results showed that FB1 can induce oxidative stress through NXR response and disorder of the CYP450s system, leading to mitochondrial dysfunction and ER stress, promoting the expression of inflammatory factors (including IL-1β, IL-6, and IL-8) and causing kidney damage. This study elucidated the possible molecular mechanism by which FB1 induces nephrotoxicity in young quails.
Collapse
Affiliation(s)
- Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Mingzhan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Runxi Xian
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Siqiu Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qian Zang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Huquan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
29
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
30
|
高 毅, 王 培, 逯 素, 马 万. [METTL3 inhibitor STM2457 improves metabolic dysfunction-associated fatty liver disease by regulating mitochondrial function in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1689-1696. [PMID: 37933644 PMCID: PMC10630206 DOI: 10.12122/j.issn.1673-4254.2023.10.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the effect of methyltransferase-like 3 (METTL3) inhibitor STM2457 in metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS C57BL/6J mouse models of MAFLD induced by high-fat diet feeding for 16 weeks were treated with intraperitoneal injections of STM2457 (50 mg/kg) for 2 weeks. The changes in m6A modification level in the liver tissue of the mice were determined with dot-blot hybridization, and the hepatic levels of triglyceride (TG), alanine aminotransferase (ALT) and glutathione aminotransferase (AST) were detected. The histological changes of the liver and changes in insulin resistance and metabolic profile of the mice were evaluated using HE staining, insulin tolerance tests and metabolic cages; transmission electron microscopy (TEM) was employed to examine the changes in mitochondrial morphology. In a HepG2 cell model of steatosis induced by treatment with sodium oleate/sodium palmitate for 48 h, the protective effect of STM2457 (1 μmol/L) on mitochondrial function was assessed by measuring mitochondrial membrane potential using a fluorescence probe (JC-1). RESULTS The mouse models of MAFLD showed significant elevation of m6A modification level in the liver tissues and obviously upregulated mRNA expression of METT3 (P<0.05). Treatment with STM2457 significantly reduced body weight and liver lipid deposition and m6A modification levels, increased glucose tolerance and insulin sensitivity, lowered hepatic TG and serum ALT and AST levels, and increased respiratory entropy (RQ) in the mouse models (all P<0.05). HepG2 cells with steatosis exhibited obvious mitochondrial swelling with decreased mitochondrial membrane potential, but the STM2457-treated cells maintained a normal mitochondrial morphology with a higher membrane potential (P<0.05). CONCLUSION The METTL3 inhibitor STM2457 improves MAFLD by reducing high-fat diet-induced mitochondrial damage in mice.
Collapse
Affiliation(s)
- 毅男 高
- />山东第一医科大学第一附属医院(山东省千佛山医院)检验科//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 培君 王
- />山东第一医科大学第一附属医院(山东省千佛山医院)检验科//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 素梅 逯
- />山东第一医科大学第一附属医院(山东省千佛山医院)检验科//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - 万山 马
- />山东第一医科大学第一附属医院(山东省千佛山医院)检验科//山东省医药卫生临床检验诊断学重点实验室,山东 济南 250014Department of Clinical Laboratory Medicine, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| |
Collapse
|
31
|
Li J, She X, Ding Z, Yao L, Yang Y, Tang H, Liu H, Zhao D, Li B. Astaxanthin protects the radiation-induced lung injury in C57BL/6 female mice. RADIATION PROTECTION DOSIMETRY 2023; 199:2096-2103. [PMID: 37544990 DOI: 10.1093/rpd/ncad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
Radiation-induced lung injury (RILI) is one of the common complications of radiotherapy for chest tumors and nuclear radiation accidents. The excessive reactive oxygen species induced by radiation is the main mediator. So far, the effective prevention and treatment for RILI are still lacking. Astaxanthin is a carotenoid that belongs to red natural lutein family and is commonly found in Marine organisms such as shrimp, oysters and salmon. It has been confirmed that astaxanthin has strong antioxidant and anti-inflammatory properties, therefore we speculated that astaxanthin may be a potential treatment for RILI. First, with a mice model of RILI, the protected effects of astaxanthin were observed. Furthermore, the experiments in vitro were performed by detecting apoptosis. As a result, astaxanthin protects the RILI, inhibits the process of pulmonary fibrosis, and reduces the elevation of inflammatory factors. The experiments in vitro demonstrated that astaxanthin could reduce radiation-induced apoptosis and especially inhibit activation of apoptosis pathway. In conclusion, astaxanthin could protect RILI of mice, which is mediated by inhibiting activation of apoptosis pathway.
Collapse
Affiliation(s)
- Junshi Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Xiandong She
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Zijian Ding
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Yajie Yang
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Haibo Tang
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Deyun Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Military Medical University, Xiangyin Road 800, Shanghai 200433, China
| |
Collapse
|
32
|
Ye W, Miao Q, Xu G, Jin K, Li X, Wu W, Yu L, Yan M. CircRNA itchy E3 ubiquitin protein ligase improves mitochondrial dysfunction in sepsis-induced acute kidney injury by targeting microRNA-214-3p/ATP-binding cassette A1 axis. Ren Fail 2023; 45:2261552. [PMID: 37782276 PMCID: PMC10547449 DOI: 10.1080/0886022x.2023.2261552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are promising biomarkers and therapeutic targets for acute kidney injury (AKI). In this study, we investigated the mechanism by which circRNA itchy E3 ubiquitin protein ligase (circ-ITCH) regulates sepsis-induced AKI. METHODS A sepsis-induced AKI mouse model was created using LPS induction and circ-ITCH overexpression. Circ-ITCH levels were confirmed via RT-qPCR. Kidney tissue changes were examined through various stains and TUNEL. Enzyme-linked immunosorbent assay (ELISA) gauged oxidative stress and inflammation. Mitochondrial features were studied with electron microscopy. RT-qPCR and western blotting assessed mitochondrial function parameters. Using starBase, binding sites between circ-ITCH and miR-214-3p, as well as miR-214-3p and ABCA1, were predicted. Regulatory connections were proven by dual-luciferase assay, RT-qPCR, and western blotting. RESULTS Circ-ITCH expression was downregulated in LPS-induced sepsis mice. Overexpression of circ-ITCH ameliorates indicators of renal function (serum creatinine [SCr], blood urea nitrogen [BUN], neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [Kim-1]), reduces renal cell apoptosis, mitigates oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDA]), and diminishes inflammatory markers (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF-α]). Moreover, circ-ITCH overexpression alleviated mitochondrial damage and dysfunction. Furthermore, circ-ITCH acts as a sponge for miR-214-3p, thereby upregulating ABCA1 expression. In addition, the miR-214-3p inhibitor repressed oxidative stress, inflammation, and mitochondrial dysfunction, which was reversed by circ-ITCH knockdown. Further cellular analysis in HK-2 cells supported these findings, highlighting the protective role of circ-ITCH against sepsis-induced AKI, particularly through the miR-214-3p/ABCA1 axis. CONCLUSION The novel circ-ITCH/miR-214-3p/ABCA1 pathway plays an essential role in the regulation of oxidative stress and mitochondrial dysfunction in sepsis-induced AKI.
Collapse
Affiliation(s)
- Weidi Ye
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi Miao
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guangxin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Kai Jin
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Weidong Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
33
|
Bi F, Xiang H, Li J, Sun J, Wang N, Gao W, Sun M, Huan Y. Astaxanthin enhances the development of bovine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming of pluripotency genes. Theriogenology 2023; 209:193-201. [PMID: 37423043 DOI: 10.1016/j.theriogenology.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Low cloning efficiency limits the wide application of somatic cell nuclear transfer technology. Apoptosis and incomplete DNA methylation reprogramming of pluripotency genes are considered as the main causes for low cloning efficiency. Astaxanthin (AST), a powerfully antioxidative and antiapoptotic carotenoid, is recently shown to improve the development of early embryos, however, the potential role of AST during the development of cloned embryos remains unclear. This study displayed that treating cloned embryos with AST significantly increased the blastocyst rate and total blastocyst cell number in a concentration dependent manner, and also alleviated the damage of H2O2 to the development of cloned embryos. In addition, compared with the control group, AST significantly reduced the apoptotic cell number and rate in cloned blastocysts, and the significantly upregulated expression of anti-apoptotic gene Bcl2l1 and antioxidative genes (Sod1 and Gpx4) and downregulated transcription of pro-apoptotic genes (Bax, P53 and Caspase3) were observed in the AST group. Moreover, AST treatment facilitated DNA demethylation of pluripotency genes (Pou5f1, Nanog and Sox2), in accompany with the improved transcription levels of DNA methylation reprogramming genes (Tet1, Tet3, Dnmt1, Dnmt3a and Dnmt3b) in cloned embryos, and then, the significantly upregulated expression levels of embryo development related genes including Pou5f1, Nanog, Sox2 and Cdx2 were observed in comparison with the control group. In conclusion, these results revealed that astaxanthin enhanced the developmental potential of bovine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming of pluripotency genes, and provided a promising approach to improve cloning efficiency.
Collapse
Affiliation(s)
- Fanglong Bi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Hongxiao Xiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Jian Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Jianqiang Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Wenju Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Mingju Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China.
| |
Collapse
|
34
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
35
|
Liu N, Lyu X, Zhang X, Zhang F, Chen Y, Li G. Astaxanthin attenuates cognitive deficits in Alzheimer's disease models by reducing oxidative stress via the SIRT1/PGC-1α signaling pathway. Cell Biosci 2023; 13:173. [PMID: 37710272 PMCID: PMC10503143 DOI: 10.1186/s13578-023-01129-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVE Oxidative stress plays a pivotal role in neurodegenerative diseases. Astaxanthin (AST) can play a neuroprotective role owing to its long-chain conjugated unsaturated double bond, which imparts potent antioxidant, anti-neuroinflammatory, and anti-apoptotic properties. However, the biological mechanisms underlying these effects remain unknown. Therefore, this study aimed to investigate and validate the protective effect of AST on neuronal senescence and apoptosis caused by oxidative stress induced by Aβ25-35 peptide, with the goal of preventing the onset of cognitive dysfunction. METHODS Alzheimer's disease models comprising ICR mice and PC12 cells were established using Aβ25-35. The Morris water maze test was used to assess mouse behavior. Nissl staining revealed morphological changes in the mouse hippocampal neurons. To elucidate the mechanism of action of AST, ICR mice and PC12 cells were treated with the silent information regulator 1 (SIRT1) inhibitor nicotinamide (NAM). Additionally, immunofluorescence, western blotting, and reverse transcription polymerase chain reaction were used to evaluate changes in the expression of Bcl-2 and Bax in the mouse hippocampus, and SIRT1/PGC-1α signaling pathway proteins were detected. Moreover, the oxidative stress markers in ICR mice and PC12 cells were evaluated. Further, CCK-8 assays, Annexin V/PI double staining, and β-galactosidase activity assays were performed in PC12 cells to evaluate the anti-senescence and apoptotic effects of AST. RESULTS In vivo experiments showed that Aβ25-35 impaired cognitive function, promoted morphological changes in hippocampal neurons, decreased Bcl-2 expression, increased Bax expression, decreased superoxide dismutase and GSH-px levels, and increased reactive oxygen species and malondialdehyde levels. Conversely, AST alleviated the impact of Aβ25-35 in mice, with reversed outcomes. NAM administration reduced SIRT1 and PGC-1α expression in the hippocampus. This decrease was accompanied by cognitive dysfunction and hippocampal neuron atrophy, which were also evident in the mice. Additionally, in vitro experiments showed that Aβ25-35 could promote oxidative stress and induce the senescence and apoptosis of PC12 cells. Nonetheless, AST treatment counteracted this effect by inhibiting oxidative stress and altering the state of PC12 cells. Notably, the Aβ + NAM group exhibited the most significant rates of senescence and apoptosis in PC12 cells following NAM treatment. CONCLUSION AST can improve cellular senescence and apoptosis mediated by oxidative stress via the SIRT1/PGC-1α signaling pathway and plays a vital role in inhibiting neuronal senescence and apoptosis and enhancing cognitive ability.
Collapse
Affiliation(s)
- Ning Liu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaohong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Xianglin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yiming Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Gang Li
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
36
|
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar Drugs 2023; 21:433. [PMID: 37623714 PMCID: PMC10455645 DOI: 10.3390/md21080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.
Collapse
Affiliation(s)
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
37
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
39
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
Kothe B, Klein S, Petrosky SN. Urolithin A as a Potential Agent for Prevention of Age-Related Disease: A Scoping Review. Cureus 2023; 15:e42550. [PMID: 37637627 PMCID: PMC10460156 DOI: 10.7759/cureus.42550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
The aging of an organism is hallmarked by systemic loss of functional tissue, resulting in increased fragility and eventual development of age-related neurodegenerative, musculoskeletal, cardiovascular, and neoplastic diseases. Growing scientific evidence points to mitochondrial dysfunction as a key contributor in the aging process and subsequent development of age-related pathologies. Under normal physiologic conditions, the body removes dysfunctional mitochondria via an autophagic process known as mitophagy. Urolithin A (UA), a metabolite produced when gut microflora digests the polyphenol compounds ellagitannin and ellagic acid, is a known inducer of mitophagy via several identified mechanisms of action. The primary objective of this scoping review is to identify and summarize the clinical relevance of UA supplementation in the prevention of age-related pathology and diseases. A computer-assisted literature review was performed using PubMed and EMBASE for primary source research articles examining UA supplementation and aging-related pathologies. A total of 293 articles were initially identified from a database search, and 15 articles remained for inclusion in this review, based on predetermined criteria. Analysis of the 15 identified publications demonstrated that UA holds potential as a dietary intervention for slowing the progression of aging and preventing the development of age-related disease. This review also illustrates the potential role that mitochondrial health and inflammation play in the progression of age-related pathology. Identifying the clinical relevance of UA supplementation in the prevention of age-related pathology and diseases will help further the focus of research on treatments that may improve the longevity and quality of life in patients at risk for these comorbidities.
Collapse
Affiliation(s)
- Breanne Kothe
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Sarah Klein
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Stephanie N Petrosky
- Nutrition, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
41
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
42
|
Duan F, Li H, Lu H. In vivo and molecular docking studies of the pathological mechanism underlying adriamycin cardiotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114778. [PMID: 36989556 DOI: 10.1016/j.ecoenv.2023.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Adriamycin (ADR), one of the most effective broad-spectrum antitumor chemotherapeutic agents in clinical practice, is used to treat solid tumors as well as hematological malignancies in adults and children. However, long-term ADR use causes several adverse reactions, including time- and dose-dependent cardiotoxicity, which limit its clinical application. In addition, the mechanism by which ADR induces cardiotoxicity remains unclear. Therefore, we used zebrafish as animal models to evaluate ADR toxicity during embryonic heart development owing to the similarity of this process in zebrafish to that in humans. Exposure of zebrafish embryos to 1.25, 2.5, and 5 mg/L ADR induced abnormal embryonic development, with the occurrence of cardiac malformations, pericardial edema, decreased movement speed and activity, and increased distance between the venous sinus and the arterial bulb (SV-BA). ADR exposure induced dysregulated cardiogenesis during the precardiac mesoderm formation period. We also observed irregular expression of cardiac-related genes, an upregulation of apoptotic gene expression, and a dose-dependent increase in oxidative stress levels. Furthermore, oxidative stress-induced apoptosis exerted deleterious effects on cardiac development in zebrafish embryos, and treatment with astaxanthin (ATX) alleviated these heart defects. ADR- and Wnt pathway-related genes exhibited good energy and spatial matching, and ADR upregulated the Wnt signaling pathway in zebrafish. Moreover, IWR-1 effectively alleviated ADR-induced heart defects. In conclusion, we demonstrated that the toxic effects of ADR on cardiac development in zebrafish embryos could provide a theoretical basis for explaining the pathogenesis of ADR-induced cardiotoxicity, which occurs through the upregulation of oxidative stress and Wnt signaling pathway, as well as its prevention and treatment in humans. These findings will help develop effective treatment strategies to combat ADR-induced cardiotoxicity and broaden the application of ADR for clinical practice.
Collapse
Affiliation(s)
- Fangfang Duan
- Central Laboratory, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330038, China
| | - Hong Li
- Central Laboratory, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330038, China.
| | - Huiqiang Lu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343000, China.
| |
Collapse
|
43
|
Xu H, She P, Zhao Z, Ma B, Li G, Wang Y. Duplex Responsive Nanoplatform with Cascade Targeting for Atherosclerosis Photoacoustic Diagnosis and Multichannel Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300439. [PMID: 36828777 DOI: 10.1002/adma.202300439] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Indexed: 05/26/2023]
Abstract
The culprits of atherosclerosis are endothelial damage, local disorders of lipid metabolism, and progressive inflammation. Early atherosclerosis is typically difficult to diagnose in time due to the lack of obvious symptoms, thus missing the best period of treatment. In this work, a π-conjugated polymer (PMeTPP-MBT) based on 3,6-bis(4-methylthiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione is designed as a novel photoacoustic contrast agent. On this basis, an intelligent responsive theranostic nanoplatform (PA/ASePSD) combining astaxanthin and SS-31 peptide and loading with PMeTPP-MBT is developed. The high affinity between the dextran shell with the broken endothelial surface VCAM-1 and CD44 confers active targeting of PA/ASePSD to atherosclerotic lesions. High levels of ROS in the acidic plaque microenvironment act as an intelligent cascade switch to achieve controlled release of astaxanthin, SS-31 peptide, and PMeTPP-MBT for non-invasive photoacoustic diagnosis, as well as plaque inhibition mediated by anti-inflammation and multichannel regulation (including ABCA1, ABCG1, CD36, and LOX-1) of lipid metabolism. Both in vitro and in vivo evaluations confirm the impressive anti-atherosclerotic capability and the accurate photoacoustic diagnosis of PA/ASePSD nanoparticles, thus promising a candidate for early-stage atherosclerosis theranostics.
Collapse
Affiliation(s)
- Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Peiyi She
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| |
Collapse
|
44
|
Zhuang J, Jiang Z, Chen D, Li J, Crabbe MJC, Qiu M, Zheng Y, Qu W. Thyroid-Disrupting Effects of Exposure to Fipronil and Its Metabolites from Drinking Water Based on Human Thyroid Follicular Epithelial Nthy-ori 3-1 Cell Lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6072-6084. [PMID: 37022920 DOI: 10.1021/acs.est.2c08627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fipronil is a broad-spectrum insecticide used for plants and poultry. Owing to its widespread use, fipronil and its metabolites (fipronil sulfone, fipronil desulfinyl, and fipronil sulfide), termed FPM, can be frequently detected in drinking water and food. Fipronil can affect the thyroid function of animals, but the effects of FPM on the human thyroid remain unclear. We employed human thyroid follicular epithelial Nthy-ori 3-1 cells to examine combined cytotoxic responses, thyroid-related functional proteins including the sodium-iodide symporter (NIS), thyroid peroxidase (TPO), deiodinases I-III (DIO I-III), and the nuclear factor erythroid-derived factor 2-related factor 2 (NRF2) pathway induced by FPM of 1-1000-fold concentrations detected in school drinking water collected from a heavily contaminated area of the Huai River Basin. Thyroid-disrupting effects of FPM were evaluated by examining biomarkers of oxidative stress and thyroid function and tetraiodothyronine (T4) levels secreted by Nthy-ori 3-1 cells after FPM treatment. FPM activated the expression of NRF2, HO-1 (heme oxygenase 1), TPO, DIO I, and DIO II but inhibited NIS expression and increased the T4 level of thyrocytes, indicating that FPM can disrupt the function of human thyrocytes through oxidative pathways. Given the adverse impact of low FPM concentrations on human thyrocytes, supportive evidence from rodent studies, and the critical importance of thyroid hormones on development, the effects of FPM on the neurodevelopment and growth of children warrant priority attention.
Collapse
Affiliation(s)
- Jianhui Zhuang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dawei Chen
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, U.K
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023; 62:1453-1466. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoping Chen
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, 999077, HK, People's Republic of China
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK
| | - Shujun Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Xiaoming Bao
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, People's Republic of China.
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Torres J, Pereira JM, Marques-Oliveira R, Costa I, Gil-Martins E, Silva R, Remião F, Peixoto AF, Sousa Lobo JM, Silva AC. An In Vitro Evaluation of the Potential Neuroprotective Effects of Intranasal Lipid Nanoparticles Containing Astaxanthin Obtained from Different Sources: Comparative Studies. Pharmaceutics 2023; 15:pharmaceutics15041035. [PMID: 37111521 PMCID: PMC10142572 DOI: 10.3390/pharmaceutics15041035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The intranasal route has been suggested as a promising alternative to improve the direct transport of molecules to the brain, avoiding the need to cross the blood-brain barrier (BBB). In this area, the use of lipid nanoparticles, namely solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has been highlighted as a promising strategy to improve the treatment of neurodegenerative diseases. In this work, formulations containing SLN and NLC that were loaded with astaxanthin that was obtained from different sources (astaxanthin extract (AE) from the algae Haematococcus pluvialis and pure astaxanthin (PA) from the fungi Blakeslea trispora) were prepared for nose-to-brain administration, and comparative in vitro experiments were performed to evaluate the biocompatibility of the formulations with nasal (RPMI 2650) and neuronal (SH-SY5Y) cells. Afterwards, the antioxidant activity of the formulations was evaluated for its potential neuroprotective effects, using different chemical aggressors. Finally, the cellular uptake of the astaxanthin was evaluated for the formulations that showed the greatest neuroprotection of the neuronal cells against chemical-induced damage. On the production day, all the formulations showed a particle size, a high encapsulation efficiency (EE), the presence of nanoparticles with a typical spherical shape, and a polydispersity index (PDI) and zeta potential (ZP) that are suitable for nose-to-brain administration. After three months of storage at room temperature, no significant changes were observed in the characterization parameters, predicting a good long-term stability. Furthermore, these formulations were shown to be safe with concentrations of up to 100 µg/mL in differentiated SH-SY5Y and RPMI 2650 cells. Regarding neuroprotection studies, the PA-loaded SLN and NLC formulations showed an ability to counteract some mechanisms of neurodegeneration, including oxidative stress. Moreover, when compared with the PA-loaded SLN, the PA-loaded NLC showed greater neuroprotective effects against the cytotoxicity induced by aggressors. In contrast, the AE-loaded SLN and NLC formulations showed no significant neuroprotective effects. Although further studies are needed to confirm these neuroprotective effects, the results of this study suggest that the intranasal administration of PA-loaded NLC may be a promising alternative to improve the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - José Miguel Pereira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Rita Marques-Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Andreia Filipa Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4099-002 Porto, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4099-002 Porto, Portugal
| |
Collapse
|
47
|
Tian Y, Che H, Yang J, Jin Y, Yu H, Wang C, Fu Y, Li N, Zhang J. Astaxanthin Alleviates Aflatoxin B1-Induced Oxidative Stress and Apoptosis in IPEC-J2 Cells via the Nrf2 Signaling Pathway. Toxins (Basel) 2023; 15:toxins15030232. [PMID: 36977123 PMCID: PMC10057844 DOI: 10.3390/toxins15030232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties. The aim of the present research was to determine whether AST eases the AFB1-induced impairment in IPEC-J2 cells, and its specific mechanism of action. AFB1 and AST were applied to IPEC-J2 cells in different concentrations for 24 h. The AST (80 µM) significantly prevented the reduction in the IPEC-J2 cell viability that was induced by AFB1 (10 μM). The results showed that treatment with AST attenuated the AFB1-induced ROS, and cytochrome C, the Bax/Bcl2 ratio, Caspase-9, and Caspase-3, which were all activated by AFB1, were among the pro-apoptotic proteins which were diminished by AST. AST activates the Nrf2 signaling pathway and ameliorates antioxidant ability. This was further evidenced by the expression of the HO-1, NQO1, SOD2, and HSP70 genes were all upregulated. Taken together, the findings show that the impairment of oxidative stress and apoptosis, caused by the AFB1 in the IPEC-J2 cells, can be attenuated by AST triggering the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yue Tian
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoyu Che
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jinsheng Yang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yongcheng Jin
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yurong Fu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
48
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
49
|
Chen L, Mao M, Liu D, Liu W, Wang Y, Xie L, Deng Y, Lin Y, Xu Y, Zhong X, Cao W. HC067047 as a potent TRPV4 inhibitor repairs endotoxemia colonic injury. Int Immunopharmacol 2023; 116:109648. [PMID: 36706595 DOI: 10.1016/j.intimp.2022.109648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023]
Abstract
Colonic injury causes severe inflammation during systemic infections in patients with endotoxemia. The prevention of colonic injury could effectively reduce the progression of endotoxemia. We investigated the protective effects and detailed mechanisms of the TRPV4 inhibitor HC067047 in the treatment of colonic injury caused by endotoxemia. An LPS-induced endotoxemia colonic injury model was used to assess the in vivo effects of HC067047. Colon slices were detected by hematoxylin and eosin (HE) staining and immunofluorescence assays. Spectrophotometry was used to determine the levels of MDA, calcium, GSH, and GSSG. Alterations in oxidative stress/mitophagy/inflammatory pyroptosis-related markers were evaluated by Q-PCR and western blot assays. HC067047 reduced the body weight loss and spleen weight index of endotoxemic mice and partly recovered the normal morphology of the colonic mucous layer. As an inhibitor of the calcium permeant cation channel, HC067047 suppressed the phosphorylation of the CAMKIIɑ protein and levels of MDA and calcium, upregulated the ratio of GSH/GSSG, shortened the expression of oxidative stress-related proteins, and enhanced the expression of the anti-oxidative protein CAT in damaged colon tissues. Additionally, HC067047 maintained normal mitochondrial functions in endotoxemia colons by promoting mitochondrial fusion and biosynthesis and suppressing mitochondrial fission and the PINK/Parkin/mitophagy pathway. HC067047 potently blocked inflammatory pyroptosis and protected the colonic tight junction barrier. HC067047 restores endotoxemia colons against oxidative stress, mitophagy, inflammatory pyroptosis, and colonic barrier dysfunction. Hence, HC067047 therapy may be potentially useful in the treatment of colonic injury in endotoxemia.
Collapse
Affiliation(s)
- Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mingli Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dandan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenjia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yajuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lihua Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Lin
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
50
|
Yurube T, Takeoka Y, Kanda Y, Ryosuke K, Kakutani K. Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2023; 14:100210. [PMID: 37090223 PMCID: PMC10113901 DOI: 10.1016/j.xnsj.2023.100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Background Degenerative disc disease, a major cause of low back pain and associated neurological symptoms, is a global health problem with the high morbidity, workforce loss, and socioeconomic burden. The present surgical strategy of disc resection and/or spinal fusion results in the functional loss of load, shock absorption, and movement; therefore, the development of new biological therapies is demanded. This achievement requires the understanding of intervertebral disc cell fate during aging and degeneration. Methods Literature review was performed to clarify the current concepts and future perspectives of disc cell fate, focused on apoptosis, senescence, and autophagy. Results The intervertebral disc has a complex structure with the nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates. While the AF arises from the mesenchyme, the NP originates from the notochord. Human disc NP notochordal phenotype disappears in adolescence, accompanied with cell death induction and chondrocyte proliferation. Discs morphologically and biochemically degenerate from early childhood as well, thereby suggesting a possible involvement of cell fate including age-related phenotypic changes in the disease process. As the disc is the largest avascular organ in the body, nutrient deprivation is a suspected contributor to degeneration. During aging and degeneration, disc cells undergo senescence, irreversible growth arrest, producing proinflammatory cytokines and matrix-degradative enzymes. Excessive stress ultimately leads to programmed cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis. Autophagy, the intracellular degradation and recycling system, plays a role in maintaining cell homeostasis. While the incidence of apoptosis and senescence increases with age and degeneration severity, autophagy can be activated earlier, in response to limited nutrition and inflammation, but impaired in aged, degenerated discs. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a signal integrator to determine disc cell fate. Conclusions Cell fate and microenvironmental regulation by modulating PI3K/Akt/mTOR signaling is a potential biological treatment for degenerative disc disease.
Collapse
|