1
|
Siliman Misha M, Destrumelle S, Le Jan D, Mansour NM, Fizanne L, Ouguerram K, Desfontis JC, Mallem MY. Preventive effects of a nutraceutical mixture of berberine, citrus and apple extracts on metabolic disturbances in Zucker fatty rats. PLoS One 2024; 19:e0306783. [PMID: 39058681 PMCID: PMC11280259 DOI: 10.1371/journal.pone.0306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The prevention of obesity represents a major health and socio-economic challenge. Nutraceuticals are regularly highlighted for their beneficial effects in preventing the metabolic disturbances associated with obesity. However, few studies have described the combined action of nutraceutical mixtures combining polyphenols with alkaloids. OBJECTIVE The aim of this study was to evaluate the effects of long-term dietary supplementation with a mixture of Berberine, Citrus and Apple extracts (BCA) in the primary prevention of obesity and its metabolic and vascular complications in the obese Zucker rat, a spontaneous model of genetic obesity and insulin resistance. METHODS Sixteen 8-week-old obese Zucker male rats were randomly divided into two groups: all rats received oral gavage daily either with water, untreated obese (U-ObZ) or BCA (BCA-ObZ) mixture for thirteen weeks. Morphological and metabolic parameters were measured along the study. Cumulative concentration-response curves to insulin, acetylcholine and phenylephrine were determined on isolated thoracic aorta. Colon permeability measurements were performed using the Ussing chamber technique. Fecal samples collected at the beginning and the end of the protocol were used as a template for amplification of the V3-V4 region of the 16S rDNA genes. RESULTS BCA supplementation reduced weight gain (p<0.05) and food intake (p<0.05) in the BCA-ObZ group rats compared to the U-ObZ group rats. It also improved glucose tolerance (p<0.001) and decreased fasting insulin and Homeostasis model assessment index (p<0.05). Through ex vivo experiments, the BCA mixture enhanced significantly aortic insulin relaxation (p<0.01), reduced α1-adrenoceptor-mediated vasoconstriction (p<0.01), and decreased distal colon permeability. Moreover, short-chain fatty acid producers such as Bacteroides, Blautia, and Akkermansia were found to be increased by the BCA mixture supplementation. CONCLUSION The results showed that a 13-week-supplementation with BCA mixture prevented weight gain and improved glucose metabolism in obese Zucker rats. We also demonstrated that BCA supplementation improved vascular function, colonic barrier permeability and gut microbiota profile.
Collapse
Affiliation(s)
- Mohamed Siliman Misha
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Sandrine Destrumelle
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Dylan Le Jan
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Nahla M. Mansour
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical Industries, National Research Centre, Giza, Egypt
| | - Lionel Fizanne
- Laboratoire HIFIH UPRES EA 3859, SFR ICAT 4208, Université d’Angers, Angers, France
| | - Khadija Ouguerram
- INRAE, UMR 1280, Physiopathology of Nutritional Adaptations, Nantes, France
| | - Jean-Claude Desfontis
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Mohamed-Yassine Mallem
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| |
Collapse
|
2
|
Hassanin SO, Hegab AMM, Mekky RH, Said MA, Khalil MG, Hamza AA, Amin A. Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Mar Drugs 2024; 22:328. [PMID: 39057437 PMCID: PMC11278317 DOI: 10.3390/md22070328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment.
Collapse
Affiliation(s)
- Soha Osama Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11585, Egypt;
| | - Amany Mohammed Mohmmed Hegab
- Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Developmental Pharmacology and Acute Toxicity Department, Giza 12611, Egypt;
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Mohamed Adel Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mona G. Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11829, Egypt
| | - Alaaeldin Ahmed Hamza
- Biology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza 12611, Egypt
- Medical Research Council, Academy of Scientific Research and Technology, Cairo 11334, Egypt
| | - Amr Amin
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Althobaiti F, Taher ES, Ahmed Alkeridis L, Ibrahim AM, El-Shafai N, A Al-Shuraym L, Fericean L, Imbrea F, A Kassab M, Farrag FA, Abdeen A, Almalki DA, AL-Farga A, Afifi M, Shukry M. Exploring the NRF2/HO-1 and NF-κB Pathways: Spirulina Nanoparticles as a Novel Approach to Combat Diabetic Nephropathy. ACS OMEGA 2024; 9:23949-23962. [PMID: 38854532 PMCID: PMC11154939 DOI: 10.1021/acsomega.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ehab S. Taher
- Department
of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Lamya Ahmed Alkeridis
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ateya M. Ibrahim
- Department
of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nagi El-Shafai
- Nanotechnology
Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Laila A Al-Shuraym
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O.
Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Department
of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I”
from Timişoara, 300645 Timisoara, Romania
| | - Florin Imbrea
- Department
of Crop Science Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania
| | - Mohamed A Kassab
- Department
of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Foad A. Farrag
- Department
of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Basic veterinary sciences,
Faculty of Veterinary Medicine, Delta University
for Science and Technology, Dakahlia 7730103, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty
of Veterinary
Medicine, Benha University, Toukh 13736, Egypt
| | - Daklallah A. Almalki
- Biology Department,
Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al Baha 1988, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of
Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mustafa Shukry
- Department
of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
4
|
Song C, Long X, He J, Huang Y. Recent evaluation about inflammatory mechanisms in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1081334. [PMID: 37007030 PMCID: PMC10061077 DOI: 10.3389/fphar.2023.1081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common chronic metabolic liver disorder which is associated with fat accumulation in the liver. It causes a wide range of pathological effects such as insulin resistance, obesity, hypertension, diabetes, non-alcoholic steatohepatitis (NASH) and cirrhosis, cardiovascular diseases. The molecular mechanisms that cause the initiation and progression of NAFLD remain fully unclear. Inflammation is regarded as a significant mechanism which could result in cell death and tissue injury. Accumulation of leukocytes and hepatic inflammation are important contributors in NAFLD. Excessive inflammatory response can deteriorate the tissue injury in NAFLD. Thus, inhibition of inflammation improves NAFLD by reducing intrahepatic fat content, increasing β-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Therefore, understanding the molecules and signaling pathways suggests us valuable information about NAFLD progression. This review aimed to evaluate the inflammation in NAFLD and the molecular mechanism on NAFLD.
Collapse
Affiliation(s)
- Chong Song
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| | - Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| |
Collapse
|
5
|
Plants-based medicine implication in the evolution of chronic liver diseases. Biomed Pharmacother 2023; 158:114207. [PMID: 36916432 DOI: 10.1016/j.biopha.2022.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatic disorders are considered major health problems, due to their high incidence, increased risk of chronicling or death and the costs involved in therapies. A large number of patients with chronic liver diseases use herbal medicines and dietary supplements in parallel with allopathic treatment. The current review provides a thorough analysis of the studies conducted on the most important species of medicinal plants used in this disease, bioactive compounds and on the activity of herbal medicines in the evolution of chronic liver diseases. However, a negative aspect is that there is frequently a lack of comprehensive data on the progression of the illness and the living standards of patients who are affected when evaluating the effects of these phytocomponents on the evolution of chronic liver disease, the patients' health, and their quality of life. It is essential to take this impairment into account when evaluating the long-term effects of herbal treatments on the health of individuals who suffer from liver illness. Bioactive phytocomponents may be a suitable source for the development of novel medications due to the correlation between traditional uses and medical advances. Additional high-quality preclinical examinations utilizing cutting-edge approaches are needed to assess safety and effectiveness and to detect, categorize, and standardize the active substances and their formulations for the most suitable therapeutic management of liver illnesses.
Collapse
|
6
|
Le Gouill-Jaijarat C, Péréon Y, Leroy M, Lépine O, Loloum A, Peluchon C, Volteau C, Martineau AS, Korner S, Perrault C, Benmaziane A, Girot P, Petorin C, Perret C, Ligeza-Poisson C, Mayeur D, Flet L, Chiffoleau A, Poinas A, Bennouna J. PROPERTY: study protocol for a randomized, double-blind, multicenter placebo-controlled trial assessing neurotoxicity in patients with metastatic gastrointestinal cancer taking PHYCOCARE® during oxaliplatin-based chemotherapy. Trials 2023; 24:50. [PMID: 36670495 PMCID: PMC9854012 DOI: 10.1186/s13063-023-07071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common adverse effects of antineoplastic agents, ranging in prevalence from 19% to over 85%. Clinically, CIPN is a predominantly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. The high prevalence of CIPN among cancer patients makes it a major problem for both patients and survivors, as well as for their health care providers, especially because there is currently no single effective method of preventing CIPN; moreover, the options for treating this syndrome are very limited. Phycocyanin, a biliprotein pigment and an important constituent of the blue-green algae Spirulina platensis, has been reported to possess significant antioxidant and radical-scavenging properties, offering protection against oxidative stress, which is one of the hypothetic mechanisms, between others, of CIPN occurrence. METHODS Our hypothesis is that phycocyanin may give protection against oxaliplatin-induced neuropathy in the treatment of gastrointestinal cancers. Our trial will be a randomized double-blind placebo-controlled study with 110 randomized patients suffering from metastatic gastrointestinal adenocarcinoma including esogastric, colorectal, and pancreatic cancers. Patients are being followed up in the gastroenterology or oncology departments of seven French hospitals. DISCUSSION Due to the neuropathy, patients need to avoid injury by paying careful attention to home safety; patients' physicians often prescribe over-the-counter pain medications. If validated, our hypothesis should help to limit neurotoxicity without the need to discontinue chemotherapy. TRIAL REGISTRATION ClinicalTrials.gov NCT05025826. First published on August 27, 2021.
Collapse
Affiliation(s)
- Christele Le Gouill-Jaijarat
- grid.277151.70000 0004 0472 0371Gastroenterology Department, CHU Nantes (Nantes Teaching Hospital), Nantes Université, Nantes, France
| | - Yann Péréon
- grid.277151.70000 0004 0472 0371Department of Clinical Neurophysiology, Reference Centre for Neuromuscular Diseases AOC, Filnemus, Euro-NMD, CHU Nantes, Nantes Université, Place Alexis-Ricordeau, Nantes, France
| | - Maxime Leroy
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | | | | | - Claire Peluchon
- grid.277151.70000 0004 0472 0371Gastroenterology Department, CHU Nantes (Nantes Teaching Hospital), Nantes Université, Nantes, France ,grid.277151.70000 0004 0472 0371Clinical Investigation Centre CIC1413, Nantes Université, CHU Nantes, Inserm, Nantes, France
| | - Christelle Volteau
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Anne-Sophie Martineau
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Simon Korner
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Caroline Perrault
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Asmahane Benmaziane
- grid.414106.60000 0000 8642 9959Medical Oncology Department, Hôpital Foch, Paris, France
| | - Paul Girot
- grid.477015.00000 0004 1772 6836Gastroenterology Department, CHD Vendée, La Roche sur Yon, France
| | - Caroline Petorin
- grid.411163.00000 0004 0639 4151CHU Estaing, Clermont-Ferrant, France
| | | | | | - Didier Mayeur
- grid.418037.90000 0004 0641 1257Centre Georges et François Leclerc, Dijon, France
| | - Laurent Flet
- grid.277151.70000 0004 0472 0371Department of Pharmacy, CHU Nantes, Nantes Université, Nantes, France
| | - Anne Chiffoleau
- grid.277151.70000 0004 0472 0371Sponsor Department, Nantes Université, CHU Nantes, Nantes, France
| | - Alexandra Poinas
- grid.277151.70000 0004 0472 0371Clinical Investigation Centre CIC1413, Nantes Université, CHU Nantes, Inserm, Nantes, France
| | - Jaafar Bennouna
- grid.414106.60000 0000 8642 9959Medical Oncology Department, Hôpital Foch, Paris, France
| |
Collapse
|
7
|
Lugarà R, Renner S, Wolf E, Liesegang A, Bruckmaier R, Giller K. Crossbred Sows Fed a Western Diet during Pre-Gestation, Gestation, Lactation, and Post-Lactation Periods Develop Signs of Lean Metabolic Syndrome That Are Partially Attenuated by Spirulina Supplementation. Nutrients 2022; 14:nu14173574. [PMID: 36079836 PMCID: PMC9460909 DOI: 10.3390/nu14173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive dietary intake of fats and sugars (“Western diet”, WD) is one of the leading causes of obesity. The consumption of the microalga Arthrospira platensis (spirulina, Sp) is increasing due to its presumed health benefits. Both WD and Sp are also consumed by pregnant and breastfeeding women. This study investigated if gestating and lactating domestic pigs are an appropriate model for WD-induced metabolic disturbances similar to those observed in humans and if Sp supplementation may attenuate any of these adverse effects. Pigs were fed a WD high in fat, sugars, and cholesterol or a control diet. Half of the animals per diet group were supplemented with 20 g Sp per day. The WD did not increase body weight or adipose tissue accumulation but led to metabolic impairments such as higher cholesterol concentration in plasma, lower IGF1 plasma levels, and signs of hepatic damage compared to the control group. Spirulina supplementation could not reduce all the metabolic impairments observed in WD-fed animals. These findings indicate limited suitability of gestating and lactating domestic pigs as a model for WD but a certain potential of low-dose Sp supplementation to partially attenuate negative WD effects.
Collapse
Affiliation(s)
- Rosamaria Lugarà
- Animal Nutrition, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilian University Munich, Gene Center, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilian University Munich, Gene Center, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Annette Liesegang
- Animal Nutrition, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057 Zurich, Switzerland
| | - Rupert Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Katrin Giller
- Animal Nutrition, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland
- Correspondence: ; Tel.: +41-52-3549209
| |
Collapse
|
8
|
Koite NLN, Sanogo NI, Lépine O, Bard JM, Ouguerram K. Antioxidant Efficacy of a Spirulina Liquid Extract on Oxidative Stress Status and Metabolic Disturbances in Subjects with Metabolic Syndrome. Mar Drugs 2022; 20:md20070441. [PMID: 35877734 PMCID: PMC9318250 DOI: 10.3390/md20070441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/30/2023] Open
Abstract
Lipid peroxidation is associated with the development of some pathologies, such as cardiovascular diseases. Reduction in oxidative stress by antioxidants, such as Arthrospira (formely Spirulina), helps improving this redox imbalance. The aim of the study was to evaluate the effect of the Arthrospira liquid extract “Spirulysat®” on oxidative markers—in particular, oxidized LDL (oxLDL)/total LDL cholesterol—and isoprostanes and to investigate its impact on lipid and glucose metabolism in the metabolic syndrome subject. A controlled, randomised, double-blind design was conducted in 40 subjects aged 18 to 65 years with metabolic syndrome after a daily intake of Spirulysat® or placebo for twelve weeks. Blood and urinary samples were collected at three visits (V1, V2, V3) in the two groups for parameters determination. Although the Spirulysat® group showed a decrease at all visits of the oxLDL/total cholesterol ratio, there was no significant difference compared to the placebo (p = 0.36). The urinary isoprostanes concentration in the Spirulysat® group was reduced (p = 0.014) at V3. Plasma triglycerides decreased at V3 (p = 0.003) and HDL-cholesterol increased (p = 0.031) at all visits with Spirulysat®. In conclusion, Spirulysat® did not change the oxidized LDL (oxLDL)/LDL ratio but decreased the urinary isoprostanes, plasma triglycerides and increased HDL cholesterol, suggesting a beneficial effect on metabolic syndrome.
Collapse
Affiliation(s)
- N’Deye Lallah Nina Koite
- Département de Recherche en Santé Publique, Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, Bamako J287+PM5, Mali;
| | | | | | - Jean-Marie Bard
- Centre National de la Recherche Scientifique, ISOMer—UE 2160, IUML—Institut Universitaire Mer et Littoral, Nantes Université, 44035 Nantes, France;
- Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
- Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), 44093 Nantes, France
| | - Khadija Ouguerram
- Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), Unité Mixte de Recherche, Institut des Maladies de l’Appareil Digestif (IMAD), NRAE, Physiopathologie des Adaptations Nutritionnelles (PhAN), Nantes Université, 44093 Nantes, France
- Correspondence: ; Tel.: +33-240-084-485
| |
Collapse
|
9
|
El-Tantawy WH, Temraz A. Anti-fibrotic activity of natural products, herbal extracts and nutritional components for prevention of liver fibrosis: review. Arch Physiol Biochem 2022; 128:382-393. [PMID: 31711319 DOI: 10.1080/13813455.2019.1684952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a grave problem worldwide, and the development of this condition is the first step towards cirrhosis. In fact, when lesions of different aetiologies chronically affect the liver, it triggers fibrogenesis, the resulting damage and the progression of fibrosis cause serious clinical influences including severe complications, expensive treatments, and death in end-stage liver disease. Although impressive progress has been reported in understanding the pathogenesis of liver fibrosis, no effective agent has been developed to prevent or reverse the fibrotic process directly. This article reviews natural products, herbal medicines and nutritional components that exhibited an anti-fibrotic activity through different mechanisms of action, including suppressing of cytokine production, inhibition of hepatic stellate cells "HSCs" propagation, modulation of the molecular mechanisms leading to hepatic fibrosis, free radical scavenging and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy For Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Late-Stage Glioma Is Associated with Deleterious Alteration of Gut Bacterial Metabolites in Mice. Metabolites 2022; 12:metabo12040290. [PMID: 35448477 PMCID: PMC9028041 DOI: 10.3390/metabo12040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.
Collapse
|
11
|
Wei Q, Guo JS. Developing natural marine products for treating liver diseases. World J Clin Cases 2022; 10:2369-2381. [PMID: 35434070 PMCID: PMC8968605 DOI: 10.12998/wjcc.v10.i8.2369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, marine-derived bioactive compounds have gained increasing attention because of their higher biodiversity vs land-derived compounds. A number of marine-derived compounds are proven to improve lipid metabolism, modulate the gut microbiota, and possess anti-inflammatory, antioxidant, antibacterial, antiviral, and antitumor activities. With the increasing understanding of the molecular landscape underlying the pathogenesis of chronic liver diseases, interest has spiked in developing new therapeutic drugs and medicine food homology from marine sources for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Qian Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Sheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Coué M, Croyal M, Habib M, Castellano B, Aguesse A, Grit I, Gourdel M, Billard H, Lépine O, Michel C, Ouguerram K. Perinatal Administration of C-Phycocyanin Protects Against Atherosclerosis in apoE-Deficient Mice by Modulating Cholesterol and Trimethylamine-N-Oxide Metabolisms. Arterioscler Thromb Vasc Biol 2021; 41:e512-e523. [PMID: 34706557 DOI: 10.1161/atvbaha.121.316848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Gestational hypercholesterolemia concomitantly with a highly oxidative environment is associated with higher atherosclerosis in human and animal offspring. This work aimed to determine whether perinatal administration of a C-phycocyanin concentrate, a powerful antioxidant, can protect against atherosclerosis development in genetically hypercholesterolemic mice in adult life. Approach and Results: C-Phycocyanin was administered during gestation solely or gestation and lactation to apolipoprotein E-deficient mice. Male and female offspring were studied until 25 weeks old. Progenies born to supplemented mothers displayed significantly less atherosclerotic root lesions than control group in all groups excepted in male supplemented during gestation and lactation. Female born to supplemented mothers had a greater gallbladder total bile acid pool, lower secondary hydrophobic bile acid levels such as lithocholic acid, associated with less plasma trimethylamine N-oxide at 16 weeks old compared with control mice. Regarding male born to C-Phycocyanin administrated mothers, they expressed a higher high-density lipoprotein cholesterol level, more soluble bile acids such as β-muricholic acids, and a decreased plasma trimethylamine at 16 weeks old. Liver reduced-to-oxidized glutathione ratio were increased and liver gene expression of superoxide dismutase and glutathione peroxidase were significantly decreased in male born to gestational supplemented mothers. No difference in the composition of cecal microbiota was found between groups, regardless of sex. CONCLUSIONS Our findings suggest a protective effect of perinatal antioxidant administration on atherosclerosis development in apolipoprotein E-deficient mice involving sex-specific mechanisms.
Collapse
Affiliation(s)
- Marine Coué
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Mikael Croyal
- Université de Nantes, CNRS, INSERM, Institut du thorax, F-44000 Nantes, France (M. Croyal).,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France (M. Croyal).,CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, A.A., M.G.)
| | - Marina Habib
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Blandine Castellano
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Audrey Aguesse
- CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, A.A., M.G.)
| | - Isabelle Grit
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Mathilde Gourdel
- CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, A.A., M.G.)
| | - Hélène Billard
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | | | - Catherine Michel
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Khadija Ouguerram
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| |
Collapse
|
13
|
Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9986299. [PMID: 34257827 PMCID: PMC8257344 DOI: 10.1155/2021/9986299] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the “nonmitochondrial” hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the “nonmitochondrial” lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.
Collapse
|
14
|
Spirulina liquid extract prevents metabolic disturbances and improves liver sphingolipids profile in hamster fed a high-fat diet. Eur J Nutr 2021; 60:4483-4494. [PMID: 34110469 DOI: 10.1007/s00394-021-02589-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Metabolic syndrome is characterized by hyperglycemia, hyperlipemia and exacerbated oxidative stress. The aim of the study was to determine whether Spirulysat®, a Spirulina liquid extract (SLE) enriched in phycocyanin, would prevent metabolic abnormalities induced by high-fat diet. METHODS The effect of acute SLE supplementation on postprandial lipemia and on triton-induced hyperlipidemia was studied in hamster fed control diet (C). The effect of chronic SLE supplementation on lipid content in plasma, liver and aorta, and on glycemia and oxidative stress was studied in hamster fed control (C) or high-fat diet (HF) for two weeks and then treated with SLE for two weeks (CSp and HFSp) or not (C and HF). RESULTS The acute SLE supplementation lowered plasma cholesterol and non-esterified fatty acid concentrations after olive oil gavage (P < 0.05) in CSp, while no effect was observed on triglyceridemia. HFD increased plasma MDA, basal glycemia, triglyceridemia, total plasma cholesterol, VLDL, LDL and HDL cholesterol, ceramide, sphingomyelin and glucosylceramide content in liver in HF compared to C (P < 0.05). SLE did not affect SOD and GPx activities nor total antioxidant status in HFSp group but lowered glycemia, glucoceramide and cholesterol in liver and cholesterol in aorta compared to HF (P < 0.05). SLE also decreased HMGCoA and TGF-β1 gene expression in liver (P < 0.05) and tended to lower G6Pase (P = 0.068) gene expression in HFSp compared to HF. CONCLUSION Although 2-week SLE supplementation did not affect oxidative stress, it protected from hyperglycemia and lipid accumulation in liver and aorta suggesting a protective effect against metabolic syndrome.
Collapse
|
15
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
16
|
Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse. Cells 2021; 10:cells10020435. [PMID: 33670755 PMCID: PMC7922179 DOI: 10.3390/cells10020435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Septic shock is the most severe complication of sepsis, being characterized by a systemic inflammatory response following bacterial infection, leading to multiple organ failure and dramatically high mortality. Aquaporin-9 (AQP9), a membrane channel protein mainly expressed in hepatocytes and leukocytes, has been recently associated with inflammatory and infectious responses, thus triggering strong interest as a potential target for reducing septic shock-dependent mortality. Here, we evaluated whether AQP9 contributes to murine systemic inflammation during endotoxic shock. Wild type (Aqp9+/+; WT) and Aqp9 gene knockout (Aqp9−/−; KO) male mice were submitted to endotoxic shock by i.p. injection of lipopolysaccharide (LPS; 40 mg/kg) and the related survival times were followed during 72 h. The electronic paramagnetic resonance and confocal microscopy were employed to analyze the nitric oxide (NO) and superoxide anion (O2−) production, and the expression of inducible NO-synthase (iNOS) and cyclooxigenase-2 (COX-2), respectively, in the liver, kidney, aorta, heart and lung of the mouse specimens. LPS-treated KO mice survived significantly longer than corresponding WT mice, and 25% of the KO mice fully recovered from the endotoxin treatment. The LPS-injected KO mice showed lower inflammatory NO and O2− productions and reduced iNOS and COX-2 levels through impaired NF-κB p65 activation in the liver, kidney, aorta, and heart as compared to the LPS-treated WT mice. Consistent with these results, the treatment of FaO cells, a rodent hepatoma cell line, with the AQP9 blocker HTS13268 prevented the LPS-induced increase of inflammatory NO and O2−. A role for AQP9 is suggested in the early acute phase of LPS-induced endotoxic shock involving NF-κB signaling. The modulation of AQP9 expression/function may reveal to be useful in developing novel endotoxemia therapeutics.
Collapse
|
17
|
Mahmoud YI, Shehata AMM, Fares NH, Mahmoud AA. Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis. Life Sci 2020; 265:118827. [PMID: 33253720 DOI: 10.1016/j.lfs.2020.118827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Most hepatocellular carcinoma cases are diagnosed at late stages of the disease, which makes it the second cause of cancer mortality worldwide. For advanced-stage patients, chemotherapeutic drugs are the best treatment option; however, their adverse effects and high cost are still major obstacles for effective treatment. Spirulina microalga is a rich source of nutritional and bioactive elements and potential pharmaceuticals, which has an -proliferative effect against several cancer cell lines. It also has a prophylactic effect against the early stages of some cancer models, including hepatocellular carcinoma. AIMS The present study was carried out to evaluate the therapeutic anticarcinogenic effect of spirulina against advanced murine hepatocellular carcinoma. MAIN METHODS Hepatocarcinoma was induced by a single injection of diethylnitrosamine (100 mg/kg, intraperitoneally) followed by 22 weekly injections of carbon-tetrachloride (0.5 mg/kg, i.p). Spirulina (250 and 500 mg/kg bw) was given orally, from week 25 to 28, after the establishment of hepatocellular carcinoma. KEY FINDINGS Spirulina inhibited HCC structural and functional alterations, manifested by improving the survival rate, significantly decreasing the tumor marker AFP, and the count and size of the hepatic nodules, as well as downstaging HCC. This was accompanied with the augmentation of the endogenous antioxidant capacity, apoptosis (Bax) and the tumor suppressor protein (p53), as well as the suppression of tissue levels of the lipid peroxidation marker (MDA) and neoangiogenesis marker (VEGF). SIGNIFICANCE In conclusion, spirulina has an anticarcinogenic effect against advanced hepatocellular carcinoma exerted through activating the tumor suppressor protein p53 and apoptosis, and suppressing oxidative stress and angiogenesis.
Collapse
Affiliation(s)
- Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| | - Aya M M Shehata
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Asmaa A Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| |
Collapse
|
18
|
Ali FEM, Hassanein EHM, Bakr AG, El-Shoura EAM, El-Gamal DA, Mahmoud AR, Abd-Elhamid TH. Ursodeoxycholic acid abrogates gentamicin-induced hepatotoxicity in rats: Role of NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS pathways. Life Sci 2020; 254:117760. [PMID: 32418889 DOI: 10.1016/j.lfs.2020.117760] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
AIM The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Dalia A El-Gamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Anatomy, Unaizah College of Medicine, Qassim University, Unaizah Al Qassim Region, Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
19
|
Spirulina Lipids Alleviate Oxidative Stress and Inflammation in Mice Fed a High-Fat and High-Sucrose Diet. Mar Drugs 2020; 18:md18030148. [PMID: 32143330 PMCID: PMC7143263 DOI: 10.3390/md18030148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
High-fat and high-sucrose diet (HFHSD)-induced obesity leads to oxidative stress and chronic inflammatory status. However, little is known about the beneficial effects of total lipids extracted from Spirulina. Hence, in the present study, Spirulina lipids were extracted with chloroform/methanol (SLC) or ethanol (SLE) and then their effects on oxidative stress and inflammation in the mice fed a HFHSD were investigated. The results show that the major lipid classes and fatty acid profiles of SLC and SLE were almost similar, but the gamma-linolenic acid (GLA) and carotenoid contents in SLE was a little higher than that in SLC. Dietary 4% SLC or SLE for 12 weeks effectively decreased the hepatic lipid hydroperoxide levels as well as increased the activities and mRNA levels of antioxidant enzymes in the mice fed a HFHSD. In addition, supplementation with SLC and SLE also markedly decreased the levels of serum pro-inflammatory cytokines and the mRNA expression of pro-inflammatory cytokines in the liver and epididymal white adipose tissue of mice fed a HFHSD, and the effects of SLC and SLE were comparable. These findings confirm for the first time that dietary Spirulina lipids could alleviate HFHSD-induced oxidative stress and inflammation.
Collapse
|
20
|
Le Goff M, Le Ferrec E, Mayer C, Mimouni V, Lagadic-Gossmann D, Schoefs B, Ulmann L. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie 2019; 167:106-118. [DOI: 10.1016/j.biochi.2019.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/18/2019] [Indexed: 01/19/2023]
|