1
|
Jo SH, Jo KA, Park SY, Kim JY. Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis. J Microbiol Biotechnol 2024; 34:880-890. [PMID: 38379288 DOI: 10.4014/jmb.2401.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.
Collapse
Affiliation(s)
- Seon Ha Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Ah Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Oladimeji BM, Adebo OA. Antiobesity effect of healthy food crops and functional foods: A systematic review of their mechanisms. Food Sci Nutr 2024; 12:1380-1398. [PMID: 38455221 PMCID: PMC10916587 DOI: 10.1002/fsn3.3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024] Open
Abstract
Diet is a modifiable risk factor in the prevention and management of obesity, and various foods have the potential to aid in obesity management by modulating different pathways involved in the disease's pathology. We performed a systematic review of literature, using CINAHL, PubMed, and Google Scholar, focusing on the antiobesity potential of foods crops and functional food products, and their mechanisms of action and clinical evidence. Sixty-four articles were identified, of which 41 investigated food crops, while 23 investigated functional products. Food crops, such as cereals, vegetables, fruits, mushrooms, seaweeds, legumes, herbs, spices, and cocoa seeds, have antiobesity effects through mechanisms such as altering the metabolism of glucolipids by inhibiting enzymes like α-amylase and α-glucosidase, stimulating the bioenergetics of thermogenic fat, modulating gut microbiota, and inhibiting lipogenesis and storage. In addition, developed functional teas, beverages, and yoghurt have antiobesity effects through similar or different mechanisms, such as enhancing energy expenditure and satiety, suppressing adipogenesis and lipolysis, improving glucose and lipid metabolism, and altering hormonal secretion. This review reemphasized the significance of food in the control of obesity, and highlights the distinct methods these explored foods exert their antiobesity effects. In conclusion, foods are safe and effective means of combating obesity without the side effects of conventional drugs, which can help inform dietary choices, assist professionals in providing more accurate advice, and also lead to better understanding of food and its effect on overall health of the public. This approach will eradicate global diseases, especially if more underutilized and indigenous food crops are extensively researched.
Collapse
Affiliation(s)
- Beatrice Mofoluwaso Oladimeji
- Food Innovation Research Group, Department of Biotechnology & Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology & Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
3
|
Li L, Chen J, Sun H, Niu Q, Zhao Y, Yang X, Sun Q. Orm2 Deficiency Aggravates High-Fat Diet-Induced Obesity through Gut Microbial Dysbiosis and Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300236. [PMID: 37853937 DOI: 10.1002/mnfr.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/09/2023] [Indexed: 10/20/2023]
Abstract
SCOPE Orosomucoid 2 (Orm2) is a hepatocyte-secreted protein that plays a crucial role in regulating obesity-type metabolic disease and immunity. The imbalance of gut microbiota is one of the causes of obesity, but the mechanism of the relationship between Orm2 and gut microbiota in obesity remains unclear. METHODS AND RESULTS Orm2-/- (Orm2 knockout) mice on a normal diet developed spontaneous obesity and metabolic disturbances at the 20th week. Through 16S rRNA gene sequencing, the study finds that the gut microbiota of Orm2-/- mice has a different microbial composition compared to wild type (WT) mice. Furthermore, a high-fat diet (HFD) for 16 weeks exacerbates obesity in Orm2-/- mice. Lack of Orm2 promotes dysregulation of gut microbiota under the HFD, especially a reduction of Clostridium spp. Supplementation with Clostridium butyricum alleviates obesity and alters the gut microbial composition in WT mice, but has minimal effects on Orm2-/- mice. In contrast, co-housing of Orm2-/- mice with WT mice rescues Orm2-/- obesity by reducing pathogenic bacteria and mitigating intestinal inflammation. CONCLUSION These findings suggest Orm2 deficiency exacerbates HFD-induced gut microbiota disturbance and intestinal inflammation, providing a novel insight into the complex bacterial flora but not a single probiotic administration in the therapeutic strategy of obesity.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jionghao Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoming Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Niu
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Zhao
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Yang H, Li Y, Xu W, Liu W, Xie Y. Exploring the underlying mechanisms of Ashitaba in the management of non-alcoholic fatty liver disease by integrating the analysis of transcriptomics and metabolomics. Front Med (Lausanne) 2023; 10:1247851. [PMID: 37920601 PMCID: PMC10618682 DOI: 10.3389/fmed.2023.1247851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Ashitaba seems to improve glucose intolerance and decrease triglyceride (TG) and total cholesterol (TC), which contribute to the development of non-alcoholic fatty liver disease (NAFLD). However, it remains to be explored the mechanism of Ashitaba in managing NAFLD. We determined the impact of Ashitaba on NAFLD, particularly its underlying mechanisms at the bioinformatic level. The established NAFLD mouse model was treated with or without Ashitaba, and the underlying mechanism was explored using transcriptomics paired with metabolomics. Ashitaba reduced obesity and liver steatosis in NAFLD mice. It identified 429 differentially expressed genes (DEGs) and verified 45 differential metabolites, especially those that alleviate NAFLD via the FXR signaling pathway. Our data may provide insight into the therapeutic impact of Ashitaba in the management of NAFLD and may be useful in clinical interventions for NAFLD.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Changning Administration Center of Public Hospital and Community Healthcare Center, Shanghai, China
| | - Yunshan Li
- Department of Endocrinology, Seven People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Xu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Liu
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
7
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
8
|
The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, obesity is a leading public health problem worldwide. The growing prevalence of obesity significantly accounts for other cardio-metabolic diseases, including hypertension and diabetes. Several studies have shown that obesity is strongly associated with genetic, environmental, lifestyle, and dietary factors, especially the disordered profiles of gut microbiota (GM). The present review concluded mechanistic studies and potential correspondent treatments for obesity. Specifically, the anti-obesity effects of food-derived compounds manipulating GM were highlighted. The potential limitations of bioactive compounds on absorption in the intestinal tract were also discussed. Thus, the future direction of fecal microbiota transplantation (FMT) as an approach to support modulating host GM (considered to be a potential therapeutic target for obesity) was discussed. This review shed light on the role of GM modulation strategies for the prevention/treatment of obesity.
Collapse
|
9
|
Yang H, Choi K, Kim KJ, Park SY, Jeon JY, Kim BG, Kim JY. Immunoenhancing Effects of Euglena gracilis on a Cyclophosphamide-Induced Immunosuppressive Mouse Model. J Microbiol Biotechnol 2022; 32:228-237. [PMID: 35001010 PMCID: PMC9628845 DOI: 10.4014/jmb.2112.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In this study, the effects of the immune stimulator Euglena gracilis (Euglena) in cyclophosphamide (CCP)-induced immunocompromised mice were assessed. The key component β-1,3-glucan (paramylon) constitutes 50% of E. gracilis. Mice were orally administered Euglena powder (250 and 500 mg/kg body weight (B.W.)) or β-glucan powder (250 mg/kg B.W.) for 19 days. In a preliminary immunology experiment, ICR mice were intraperitoneally injected with 80 mg of CCP/kg B.W. during the final 3 consecutive days. In the main experiment, BALB/c mice were treated with CCP for the final 5 days. To evaluate the enhancing effects of Euglena on the immune system, mouse B.W., the spleen index, natural killer (NK) cell activity and mRNA expression in splenocytes lungs and livers were determined. To detect cytokine and receptor expression, splenocytes were treated with 5 μg/ml concanavalin A or 1 μg/ml lipopolysaccharide. The B.W. and spleen index were significantly increased and NK cell activity was slightly enhanced in all the experimental groups compared to the CCP group. In splenocytes, the gene expression levels of tumor necrosis factor-α, interferon-γ, interleukin (IL)-10, IL-6, and IL-12 receptor were increased in the E. gracilis and β-glucan groups compared to the CCP group, but there was no significant difference. Treatment with 500mg of Euglena/kg B.W. significantly upregulated dectin-1 mRNA expression in the lung and liver compared to the CCP group. These results suggest that Euglena may enhance the immune system by strengthening innate immunity through immunosuppression.
Collapse
Affiliation(s)
- Hyeonji Yang
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kwanyong Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-yeon Park
- Lab of Nanobio, Seoul National University of Science and Technology, Seoul 08826, Republic of Korea
| | - Jin-Young Jeon
- BIO R&D center, Daesang Corp., Icheon 17384, Republic of Korea
| | - Byung-Gon Kim
- BIO R&D center, Daesang Corp., Icheon 17384, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Corresponding author Phone: +82-2-970-6740 E-mail:
| |
Collapse
|
10
|
Mao K, Gao J, Wang X, Li X, Geng S, Zhang T, Sadiq FA, Sang Y. Bifidobacterium animalis subsp. lactis BB-12 Has Effect Against Obesity by Regulating Gut Microbiota in Two Phases in Human Microbiota-Associated Rats. Front Nutr 2022; 8:811619. [PMID: 35083265 PMCID: PMC8784422 DOI: 10.3389/fnut.2021.811619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is an extensively studied probiotics species, which has been reported to improve the human gut microbiota. This study aimed to confirm the effects of BB-12 on high-fat diet (HFD)-induced gut microbiota disorders. The probiotic BB-12 was consumed by human microbiota-associated rats and changes in gut microbiota were compared using next generation sequencing of the fecal samples collected from the normal chow group, the HFD group, and the BB-12-supplemented group. The enterotypes switched from Prevotella dominant to Akkermansia dominant as a result of switching diet from normal chow to HFD. BB-12 conferred protection on the gut microbiota composition of the rats by increasing the abundance of Prevotella and decreasing the abundance of Clostridium, Blautia, and Bacteroides in 0-3 weeks. In addition, Prevotella-dominant enterotype was maintained, which provides improve obesity effects. A decrease in body weight and the Firmicutes/Bacteroidetes ratio were also observed at week 3. While in 4-8 weeks, the enrichment of short-chain fatty acids-producing bacteria such as Eubacterium and Parabacteroides and probiotics such as Bifidobacterium was observed. The results revealed that BB-12 against obesity by regulating gut microbiota in two phases. After a short-term intervention, BB-12 supplementation suppressed the transition from the healthy to obesity state by protecting Prevotella-dominant enterotype, whereas after a long-term intervention, BB-12 ameliorates obesity by enriching beneficial bacteria in the gut.
Collapse
Affiliation(s)
- Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuo Geng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Tuo Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
Kanna SD, Domonkos I, Kóbori TO, Dergez Á, Böde K, Nagyapáti S, Zsiros O, Ünnep R, Nagy G, Garab G, Szilák L, Solymosi K, Kovács L, Ughy B. Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization of Thylakoid Membranes in Euglena gracilis Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:725699. [PMID: 34868111 PMCID: PMC8636990 DOI: 10.3389/fpls.2021.725699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.
Collapse
Affiliation(s)
- Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tímea Ottília Kóbori
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Ágnes Dergez
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Kinga Böde
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Sarolta Nagyapáti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Renáta Ünnep
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely Nagy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Eötvös Loránd Research Network, Budapest, Hungary
- European Spallation Source ESS ERIC, Lund, Sweden
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Villigen, Switzerland
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gyözö Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Faculty of Science, University of Ostrava, Ostrava, Czechia
| | | | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
12
|
Tang Q, Ma B, Zhao Y, Zhao L, Zhang Z, Gao H, Liu W, Li L, Chen Y, Xie L. Soluble Dietary Fiber Significance against Obesity in a Western China Population. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5754160. [PMID: 34676062 PMCID: PMC8526253 DOI: 10.1155/2021/5754160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
Objectives This study aimed to investigate whether soluble dietary fibers (SDFs) could protect against obesity by influencing weight, body mass index (BMI), body fat rate (BFR), visceral fat rate (VFR), or waistline. Methods We examined obese adult patients from western China at 0 and 3 weeks after an SDF diet. Index assessments of obesity including height, weight, BMI, BFR, VFR, and waistline were carried out. We used the Mann-Whitney U test to examine the difference between the usual diet and the SDF group. Results Weight, BMI, BFR, and waistline were reduced in both the control group and the SDF group (P < 0.001). The reduction of the four indices in the SDF group was significantly higher than in the control group (P < 0.001). Higher intake of various SDFs has significantly reduced the weight, BMI, BFR, and waistline than the usual diet group in obesity. Conclusion Our results indicated that increased intake of SDFs in the diet of obese patients would protect against obesity in the first 3 weeks.
Collapse
Affiliation(s)
- Qi Tang
- Department of Rehaibilitation Medicine, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bei Ma
- Department of Health Management, Sichuan Electric Power Hospital, Chengdu, China
| | - Yuli Zhao
- Department of Geriatrics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Li Zhao
- Department of Health Policy and Management, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenye Zhang
- Duhui Health (Chengdu) Medical Technology Co., Ltd., Chengdu, China
| | - Han Gao
- Duhui Health (Chengdu) Medical Technology Co., Ltd., Chengdu, China
| | - Wenjie Liu
- Duhui Health (Chengdu) Medical Technology Co., Ltd., Chengdu, China
| | - Linfeng Li
- Duhui Health (Chengdu) Medical Technology Co., Ltd., Chengdu, China
| | - Yi Chen
- Duhui Health (Chengdu) Medical Technology Co., Ltd., Chengdu, China
| | - Linlin Xie
- Classical Tcm Diagnosis and Treament Center, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Microarray Analysis of Paramylon, Isolated from Euglena Gracilis EOD-1, and Its Effects on Lipid Metabolism in the Ileum and Liver in Diet-Induced Obese Mice. Nutrients 2021; 13:nu13103406. [PMID: 34684408 PMCID: PMC8538961 DOI: 10.3390/nu13103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
We previously showed that supplementation of a high fat diet with paramylon (PM) reduces the postprandial glucose rise, serum total and LDL cholesterol levels, and abdominal fat accumulation in mice. The purpose of this study was to explore the underlying mechanism of PM using microarray analysis. Male mice (C57BL/BL strain) were fed an experimental diet (50% fat energy) containing 5% PM isolated from Euglena gracilis EOD-1 for 12 weeks. After confirming that PM had an improving effect on lipid metabolism, we assessed ileal and hepatic mRNA expression using DNA microarray and subsequent analysis by gene ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results suggested that dietary supplementation with PM resulted in decreased abdominal fat accumulation and serum LDL cholesterol concentrations via suppression of the digestion and absorption pathway in the ileum and activation of the hepatic PPAR signaling pathway. Postprandial glucose rise was reduced in mice fed PM, whereas changes in the glucose metabolism pathway were not detected in GO classification and KEGG pathway analysis. PM intake might enhance serum secretory immunoglobulin A concentrations via promotion of the immunoglobulin production pathway in the ileum.
Collapse
|
14
|
Yin C, Tang S, Liu L, Cao A, Xie J, Zhang H. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals (Basel) 2021; 11:ani11030630. [PMID: 33673472 PMCID: PMC7997420 DOI: 10.3390/ani11030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The negative impacts of heat stress (HS) on growth performance and lipid metabolism have been reported, but there are still no effective nutritional strategies to alleviate heat stress. Bile acids are new for their antioxidative properties and regulatory effect on lipid metabolism. This study was carried out to evaluate the growth performance and lipid metabolism in chickens under heat stress when fed with bile acid supplements in their diet. The results showed that mild heat stress (32 °C) induced hepatic lipogenic gene (hepatic SREBP-1c) expressions and lipid deposition, without obvious tissue damage in broilers. Dietary supplementation of bile acid could decrease hepatic lipid deposition without affecting endogenous bile acid biosynthesis. Therefore, bile acid supplements can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress. Abstract This study aimed to investigate whether dietary bile acid (BA) supplements can improve growth performance and lipid metabolism in heat-stressed broiler chickens. A total of 288 Arbor Acres broilers were blocked by BW and then randomly allocated into 4 treatments at 21 days of age. Birds reared under 32 °C had a higher cloacal temperature (p = 0.01), faster respiratory rate (p < 0.001), and a greatly reduced average daily feed intake (ADFI, p = 0.016), average daily gain (ADG, p = 0.006), final body weight (FBW, p = 0.008), and feed conversion rate (FCR, p = 0.004). In heat stress (HS) birds, the breast muscle rate (p = 0.006) and pH 24 h postmortem (p = 0.065) were lower, and the shear force was higher (p = 0.027). Dietary BA supplements tended to increase the breast muscle rate (p = 0.075) without affecting the growth performance and serum lipids (p > 0.05). Serum total bile acid (TBA) was roughly duplicated after BA supplements (p = 0.001). In the liver, total cholesterol was lower (p = 0.046), and triglycerides were higher (p = 0.04) in the HS birds, whereas the expression of SREBP-1c showed an increasing trend (p = 0.06). In contrast, dietary BA decreased triglycerides and the expressions of hepatic SREBP-1c and FAS in the liver (p < 0.05). In summary, mild HS causes hepatic lipid accumulation without obvious tissue damages, whereas BA has positive effects on relieving abnormal lipid metabolism, indicating that BA as a nutritional strategy has a certain potential in alleviating HS.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Aizhi Cao
- Shandong Longchang Animal Health Care Co., Ltd., Jinan 251100, China;
| | - Jingjing Xie
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
- Correspondence:
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| |
Collapse
|
15
|
Nakashima A, Sasaki K, Sasaki D, Yasuda K, Suzuki K, Kondo A. The alga Euglena gracilis stimulates Faecalibacterium in the gut and contributes to increased defecation. Sci Rep 2021; 11:1074. [PMID: 33441865 PMCID: PMC7806897 DOI: 10.1038/s41598-020-80306-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The alga Euglena gracilis (E. gracilis) has recently gained attention as a health food, but its effects on human gut microbiota remain unknown. This study aimed to determine the effect of E. gracilis on gut microbiota and defecation due to modulation of microbiota composition in vitro and in vivo. The in vitro model simulating human colonic microbiota revealed that E. gracilis addition stimulated the growth of commensal Faecalibacterium. Further, E. gracilis addition enhanced butyrate production by Faecalibacterium prausnitzii. Paramylon, an insoluble dietary fibre that accumulates in E. gracilis and is the main component of E. gracilis, did not stimulate Faecalibacterium growth in vitro. Daily ingestion of 2 g of E. gracilis for 30 days increased bowel movement frequency as well as stool volume in 28 human participants. Collectively, these findings indicate that E. gracilis components other than paramylon, stimulate the growth of Faecalibacterium to improve digestive health as well as promote defecation by increasing butyrate production.
Collapse
Affiliation(s)
- Ayaka Nakashima
- The Research and Development Department, euglena Co., Ltd., Tokyo, 108-0014, Japan.
| | - Kengo Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Daisuke Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Kosuke Yasuda
- The Research and Development Department, euglena Co., Ltd., Tokyo, 108-0014, Japan
| | - Kengo Suzuki
- The Research and Development Department, euglena Co., Ltd., Tokyo, 108-0014, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
16
|
Nakashima A, Yasuda K, Murata A, Suzuki K, Miura N. Effects of Euglena gracilis Intake on Mood and Autonomic Activity under Mental Workload, and Subjective Sleep Quality: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:nu12113243. [PMID: 33113956 PMCID: PMC7690740 DOI: 10.3390/nu12113243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
While the human body maintains homeostasis by altering the balance in the autonomic nervous, endocrine, and immune systems, a prolonged imbalance in these systems can result in physical and mental symptoms, including a decline in sleep quality and work efficiency. Euglena gracilis (Euglena) is a single-celled microalga with the properties of both plants and animals and contains abundant nutrients, such as vitamins, minerals, amino acids, and fatty acids, which have various beneficial health effects. This study evaluated the effects of Euglena intake on the mood states and stress coping under mental workload tasks, and subjective sleep quality. We assigned men and women aged 20 to 64 years to Euglena and placebo intake groups, and measured indices related to the autonomic nervous system, psychological states, and sleep quality together with the application of workload stress before food intake, and 4, 8, and 12 weeks after commencing intake. Euglena intake regulated the autonomic nervous system under a workload and improved psychological parameters and sleep conditions. These results indicate that the consumption of Euglena may regulate the balance of the autonomic nervous system during stress and may have a favorable effect on psychological status and sleep quality.
Collapse
Affiliation(s)
- Ayaka Nakashima
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
- Correspondence: ; Tel.: +81-3-5442-4907
| | - Kosuke Yasuda
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Ako Murata
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Kengo Suzuki
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Naoki Miura
- Miura Clinic, Medical Corporation Kanonkai, Osaka 530-0044, Japan;
| |
Collapse
|
17
|
Euglena Gracilis and β-Glucan Paramylon Induce Ca 2+ Signaling in Intestinal Tract Epithelial, Immune, and Neural Cells. Nutrients 2020; 12:nu12082293. [PMID: 32751743 PMCID: PMC7468862 DOI: 10.3390/nu12082293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
The intestinal tract contains over half of all immune cells and peripheral nerves and manages the beneficial interactions between food compounds and the host. Paramylon is a β-1,3-glucan storage polysaccharide from Euglena gracilis (Euglena) that exerts immunostimulatory activities by affecting cytokine production. This study investigated the signaling mechanisms that regulate the beneficial interactions between food compounds and the intestinal tract using cell type-specific calcium (Ca2+) imaging in vivo and in vitro. We successfully visualized Euglena- and paramylon-mediated Ca2+ signaling in vivo in intestinal epithelial cells from mice ubiquitously expressing the Yellow Cameleon 3.60 (YC3.60) Ca2+ biosensor. Moreover, in vivo Ca2+ imaging demonstrated that the intraperitoneal injection of both Euglena and paramylon stimulated dendritic cells (DCs) in Peyer’s patches, indicating that paramylon is an active component of Euglena that affects the immune system. In addition, in vitro Ca2+ imaging in dorsal root ganglia indicated that Euglena, but not paramylon, triggers Ca2+ signaling in the sensory nervous system innervating the intestine. Thus, this study is the first to successfully visualize the direct effect of β-1,3-glucan on DCs in vivo and will help elucidate the mechanisms via which Euglena and paramylon exert various effects in the intestinal tract.
Collapse
|
18
|
Taylor HB, Gudi R, Brown R, Vasu C. Dynamics of Structural and Functional Changes in Gut Microbiota during Treatment with a Microalgal β-Glucan, Paramylon and the Impact on Gut Inflammation. Nutrients 2020; 12:E2193. [PMID: 32717991 PMCID: PMC7468787 DOI: 10.3390/nu12082193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Previously, we have shown that oral administration of yeast derived β-1,3/1,6-d-glucan enhances immune regulation and alters the composition of the gut microbiota. However, it is not known if other structurally distinct β-glucans have similar properties. Here, using C57BL/6 mice, we show the potential of a microalgae derived β-1,3-d-glucan, paramylon (PM), in shaping the gut microbiota and modulating the susceptibility to colitis. The community structure within the gut microbiota showed progressive changes including selective enrichment of specific communities and lowered community richness and diversity during prolonged oral treatment with PM. Compared to control mice, the gut microbiota of PM-treated mice had significantly higher abundance of Verrucomicrobia and lower abundance of Firmicutes. Specific taxa that were significantly more abundant in PM-treated mice include Akkermansia muciniphila and several Bacteroides members. Predictive functional analysis revealed overrepresentation of carbohydrate metabolism function in the fecal microbiota of PM recipients compared to controls, and this function was linked to Bacteroides spp. Prolonged pretreatment with PM not only diminished susceptibility to dextran sulfate sodium induced colitis severity, but also caused enhanced immune regulation. Overall, this study demonstrates the prebiotic properties of PM and the potential benefits of its prolonged oral consumption to gut health.
Collapse
Affiliation(s)
| | | | | | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (H.B.T.); (R.G.); (R.B.)
| |
Collapse
|
19
|
Harada R, Nomura T, Yamada K, Mochida K, Suzuki K. Genetic Engineering Strategies for Euglena gracilis and Its Industrial Contribution to Sustainable Development Goals: A Review. Front Bioeng Biotechnol 2020; 8:790. [PMID: 32760709 PMCID: PMC7371780 DOI: 10.3389/fbioe.2020.00790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
The sustainable development goals (SDGs) adopted at the 2015 United Nations Summit are globally applicable goals designed to help countries realize a sustainable future. To achieve these SDGs, it is necessary to utilize renewable biological resources. In recent years, bioeconomy has been an attractive concept for achieving the SDGs. Microalgae are one of the biological resources that show promise in realizing the "5F"s (food, fiber, feed, fertilizer, and fuel). Among the microalgae, Euglena gracilis has the potential for achieving the "5F"s strategy owing to its unique features, such as production of paramylon, that are lacking in other microalgae. E. gracilis has already been produced on an industrial scale for use as an ingredient in functional foods and cosmetics. In recent years, genetic engineering methods for breeding E. gracilis have been researched and developed to achieve higher yields. In this article, we summarize how microalgae contribute toward achieving the SDGs. We focus on the contribution of E. gracilis to the bioeconomy, including its advantages in industrial use as well as its unique characteristics. In addition, we review genetic engineering-related research trends centered on E. gracilis, including a complete nuclear genome determination project, genome editing technology using the CRISPR-Cas9 system, and the development of a screening method for selecting useful strains. In particular, genome editing in E. gracilis could be a breakthrough for molecular breeding of industrially useful strains because of its high efficiency.
Collapse
Affiliation(s)
- Ryo Harada
- RIKEN Baton Zone Program, Yokohama, Japan
| | - Toshihisa Nomura
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Koji Yamada
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| | - Keiichi Mochida
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kengo Suzuki
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| |
Collapse
|
20
|
Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, Šimek P, Lukeš J. Unique Dynamics of Paramylon Storage in the Marine Euglenozoan Diplonema papillatum. Protist 2020; 171:125717. [PMID: 32087573 DOI: 10.1016/j.protis.2020.125717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/07/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Diplonemids belong to the most diverse and abundant marine protists, which places them among the key players of the oceanic ecosystem. Under in vitro conditions, their best-known representative Diplonema papillatum accumulates in its cytoplasm a crystalline polymer. When grown under the nutrient-poor conditions, but not nutrient-rich conditions, D. papillatum synthesizes a β-1,3-glucan polymer, also known as paramylon. This phenomenon is unexpected, as it is in striking contrast to the accumulation of paramylon in euglenids, since these related flagellates synthesize this polymer solely under nutrient-rich conditions. The capacity of D. papillatum to store an energy source in the form of polysaccharides when the environment is poor in nutrients is unexpected and may contribute to the wide distribution of these protists in the ocean.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
21
|
Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother 2020; 125:109914. [PMID: 32035395 DOI: 10.1016/j.biopha.2020.109914] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUD/AIM Previous studies have found that probiotic fermented camel milk has anti-diabetic effect by inducing (glucagon-like peptide-1) GLP-1 secretion. Probiotics are valuable in prevention and treatment of diabetes. As a result, our team islolated 14 probiotics from fermented camel milk. These probiotics have beneficial characteristics, but the possible anti-diabetic mechanisms remains unclear. The present study aimed to explore the possoble anti-diabetic mechanisms of 14 probiotics. METHODS C57BL/Ks mice were normal group. The db/db mice were randomized into five groups: model group, metformin group, liraglutide group, low-dose and high-dose probiotic group. Biochemical parameters were determined by the respective assay kits. The levels of the short-chain fatty acids (SCFAs) and microbiota were respectively determined by gas chromatography and qRT-PCR. HE staining and immunofluorescence were used for histomorphological observation. Quantitative PCR and western-blot were determined the gene and protein expression of Bax, Bcl-2, Caspase-3 and PI3K/AKT. RESULTS Probiotics significantly improved blood glucose and blood lipid parameters, as well as the morphological changes of pancreas, liver and kidney. Probiotics improved the gut barrier function through increasing the levels of SCFA-producing bacteria and SCFAs as well as the expression of claudin-1 and mucin-2, and decreasing Escherichia coli and LPS level. In additon, probiotics enhanced insulin secretion through glucose-triggered GLP-1 secretion by upregulating G protein-coupled receptor 43/41 (GPR43/41), proglucagon and proconvertase 1/3 activity. Forthermore, probiotics protected pancreas against apoptosis, which may be dependent on the upregulation of PI3K/AKT pathway. CONCLUSIONS The anti-diabetic effect of 14 probiotics in db/db mice seem to be related to an increase of SCFA-producing bacteria, the improvement of intestinal barrier function and the upregulation of GLP-1 production, and indicate these probiotics might be a good candidate to prevent and treat diabetes.
Collapse
|
22
|
Aoe S, Yamanaka C, Koketsu K, Nishioka M, Onaka N, Nishida N, Takahashi M. Effects of Paramylon Extracted from Euglena gracilis EOD-1 on Parameters Related to Metabolic Syndrome in Diet-Induced Obese Mice. Nutrients 2019; 11:nu11071674. [PMID: 31330894 PMCID: PMC6682983 DOI: 10.3390/nu11071674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/01/2023] Open
Abstract
Paramylon (PM), a type of β-glucan, functions like dietary fiber, which has been suggested to exert a protective effect against obesity. We evaluated the potential beneficial effects of PM powder on obesity in mice. Male C57BL/6J mice were fed a high-fat diet supplemented with either 2.5 or 5% PM powder, extracted from Euglena gracilis, for 74 days. Growth parameters, abdominal fat content, serum biochemical markers, hepatic lipid accumulation and hepatic mRNA expression were measured. Dietary supplementation with PM resulted in decreased food efficiency ratios and abdominal fat accumulation. Dose-dependent decreases were observed in postprandial glucose levels, serum low-density lipoprotein (LDL)-cholesterol, and serum secretary immunoglobulin A (sIgA) concentrations. PM supplementation increased peroxisome proliferator-activated receptor α (PPARα) mRNA expression in the liver which is suggested to induce β-oxidation through activation of acyl-coenzyme A oxidase (ACOX), carnitine palmitoyltransferase (CPT) and fatty acid transport protein 2 (FATP2) mRNA expression. Changes in fatty acid metabolism may improve lipid and glucose metabolism. In conclusion, a preventive effect against obesity was observed in mice given a PM-enriched diet. The mechanism is suggested to involve a reduction in both serum LDL-cholesterol levels and the accumulation of abdominal fat, in addition to an improvement in postprandial glucose concentration.
Collapse
Affiliation(s)
- Seiichiro Aoe
- Studies in Human Life Sciences, Graduate School of Studies in Human Culture, Otsuma Women's University, Chiyoda-ku, Tokyo 102-8357, Japan.
- The Institute of Human Culture Studies, Otsuma Women's University Chiyoda-ku, Tokyo 102-8357, Japan.
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women's University Chiyoda-ku, Tokyo 102-8357, Japan
| | - Kotone Koketsu
- Studies in Human Life Sciences, Graduate School of Studies in Human Culture, Otsuma Women's University, Chiyoda-ku, Tokyo 102-8357, Japan
| | | | - Nobuteru Onaka
- Kobelco Eco-Solutions Co., Ltd., Kobe, Hyogo 651-2241, Japan
| | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Obesity is a state of chronic inflammation. This review aims to summarize recent data supporting the role of the intestinal mucosal barrier and the microbiome in causing adipose tissue inflammation as well as metabolic factors that can affect the intestinal barrier. RECENT FINDINGS Obesity and its metabolic consequences, such as diabetes mellitus, are associated with disruption of the intestinal barrier function. Intestinal microbiota and diet play a key role in the maintenance of a healthy intestinal epithelium. Intestinal barrier dysfunction can lead to heightened inflammation, which in turn can further damage the intestinal barrier through the disruption of tight junction proteins. Intestinal barrier breakdown is associated with adipose tissue inflammation in different disease states, such as obesity, diabetes mellitus, HIV, and inflammatory bowel disease. Future therapeutic strategies to ameliorate intestinal barrier function may help reduce inflammation in obesity and other chronic conditions of increased intestinal permeability.
Collapse
Affiliation(s)
- Lediya Cheru
- Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, LON-207, Boston, MA, 02114, USA
| | - Charles F Saylor
- Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, LON-207, Boston, MA, 02114, USA
| | - Janet Lo
- Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, LON-207, Boston, MA, 02114, USA.
| |
Collapse
|