1
|
Deng Q, Liu X, Wen X, Huang H, Tang H. UVB Induces Sympathetic Nervous System Activation and Norepinephrine Secretion to Regulate The Skin Color of Mice Through the β2-AR/AP-1 Pathway in Epidermal Keratinocytes. Inflammation 2025:10.1007/s10753-024-02221-0. [PMID: 39794626 DOI: 10.1007/s10753-024-02221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells. The results of the siRNA-mediated transfection of keratinized cells with downregulated β2-AR expression were further verified in vitro. Our results suggest that UVB alters the color of the dorsal skin in mice by activating the AP-1/IL-6 pathway, which triggers the sympathetic release of norepinephrine, thereby increasing β2-AR expression in keratinocytes. Overall, our study improves the current understanding of how UVB light influences skin color changes and highlights the complex interplay between ultraviolet radiation and skin physiology.
Collapse
Affiliation(s)
- Qirui Deng
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinyan Liu
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
| | - Xiujuan Wen
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
| | - Hao Huang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
| | - Hongfeng Tang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Park JY, Lee JY, Hong S, Heo H, Lee H, Kim YG, Kim BK, Choi SI, Lee J. Limosilactobacillus fermentum MG5368 and Lactiplantibacillus plantarum MG989 Regulates Skin Health in UVB-Induced HaCaT Cells and Hairless Mice Model. Nutrients 2024; 16:4083. [PMID: 39683478 DOI: 10.3390/nu16234083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Photoaging, induced by chronic ultraviolet B (UVB) exposure, results in the degradation of extracellular matrix (ECM) components, leading to skin roughness, wrinkle formation, and reduced elasticity. Recent studies have explored probiotics as potential inhibitors of extrinsic aging, primarily through mechanisms that protect the skin barrier and reduce collagen breakdown. METHODS This study investigates the anti-photoaging effects of Limosilactobacillus fermentum MG5368 (L. fermentum MG5368) and Lactiplantibacillus plantarum MG989 (L. plantarum MG989) in UVB-exposed keratinocytes and an SKH-1 hairless mice model. RESULTS Both strains demonstrated significant efficacy in preserving collagen through the inhibition of activating protein-1 (AP-1) and reducing the expression of matrix metalloproteinase (MMP)-1 and MMP-3. Additionally, both strains restored COL1A1 protein expressions, thereby enhancing collagen synthesis and ECM stability. Enhanced skin elasticity was observed, attributed to restored levels of hyaluronic acid and hyaluronan synthase 2 (HAS2) protein expressions. CONCLUSIONS These findings suggest that L. fermentum MG5368 and L. plantarum MG989 may serve as promising probiotic-based agents for anti-photoaging applications.
Collapse
Affiliation(s)
- Jeong-Yong Park
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Ji Yeon Lee
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Yong Gyeong Kim
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Byoung-Kook Kim
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Soo-Im Choi
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
3
|
Park S, Kim H, Ahn HS, Na C, Shin YK. Hair Growth-Promoting Effect of Hydrangea serrata (Thunb.) Ser. Extract and Its Active Component Hydrangenol: In Vitro and In Vivo Study. Int J Mol Sci 2024; 25:10370. [PMID: 39408700 PMCID: PMC11477035 DOI: 10.3390/ijms251910370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
With the escalating prevalence of hair loss, the demand for effective hair loss treatment has surged. This study evaluated the effects of hot water extract of Hydrangea serrata (Thunb.) Ser. leaf (WHS) on hair growth, employing cell cultures, mice, and human skin organoid models. Both WHS and hydrangenol were found to enhance 5α-reductase inhibitory activity. WHS and hydrangenol have been shown to stimulate dermal papilla cell (DPC) growth, potentially through factors like keratinocyte growth factor (KGF), fibroblast growth factor 10 (FGF10), and transforming growth factor-β1 (TGF-β1). They also elevated the expression levels of keratin genes (K31 and K85) and the ceramide synthase (CerS3) gene, crucial clinical indicators of hair health. Furthermore, they exhibited notable anti-inflammatory and anti-androgenic properties by reducing the levels of tumor necrosis factor-α (TNF-α) and androgen signaling molecules, including androgen receptor (AR) and dickkopf-1 (DKK-1) gene expression. Oral administration of WHS to C57BL/6 mice for 3 weeks confirmed its hair growth-promoting effects, improving hair growth parameters and gene expression without significant changes in hair weight. Additionally, in a human skin organoid model, WHS was found to stimulate hair formation and augment the expression of follicle markers. These findings position WHS as a promising nutraceutical for promoting hair health, as evidenced by its efficacy in both in vitro and in vivo models.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (S.P.); (H.K.); (H.S.A.); (C.N.)
| |
Collapse
|
4
|
Hu X, Chen M, Nawaz J, Duan X. Regulatory Mechanisms of Natural Active Ingredients and Compounds on Keratinocytes and Fibroblasts in Mitigating Skin Photoaging. Clin Cosmet Investig Dermatol 2024; 17:1943-1962. [PMID: 39224224 PMCID: PMC11368101 DOI: 10.2147/ccid.s478666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Background The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts. Methods We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Results In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects. Conclusion The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jahanzeb Nawaz
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Yu JS, Kim HJ, Kim YE, Yang HO, Shin YK, Kim H, Park S, Lee G. Lipidomic Assessment of the Inhibitory Effect of Standardized Water Extract of Hydrangea serrata (Thunb.) Ser. Leaves during Adipogenesis. Nutrients 2024; 16:1508. [PMID: 38794745 PMCID: PMC11124303 DOI: 10.3390/nu16101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is primarily exacerbated by excessive lipid accumulation during adipogenesis, with triacylglycerol (TG) as a major lipid marker. However, as the association between numerous lipid markers and various health conditions has recently been revealed, investigating the lipid metabolism in detail has become necessary. This study investigates the lipid metabolic effects of Hydrangea serrata (Thunb.) Ser. hot water leaf extract (WHS) on adipogenesis using LC-MS-based lipidomics analysis of undifferentiated, differentiated, and WHS-treated differentiated 3T3-L1 cells. WHS treatment effectively suppressed the elevation of glycerolipids, including TG and DG, and prevented a molecular shift in fatty acyl composition towards long-chain unsaturated fatty acids. This shift also impacted glycerophospholipid metabolism. Additionally, WHS stabilized significant lipid markers such as the PC/PE and LPC/PE ratios, SM, and Cer, which are associated with obesity and related comorbidities. This study suggests that WHS could reduce obesity-related risk factors by regulating lipid markers during adipogenesis. This study is the first to assess the underlying lipidomic mechanisms of the adipogenesis-inhibitory effect of WHS, highlighting its potential in developing natural products for treating obesity and related conditions. Our study provides a new strategy for the development of natural products for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Hee Ju Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Yeo Eun Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Hyunjae Kim
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Soyoon Park
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
6
|
Lei D, Ye L, Wen S, Zhang J, Zhang L, Man MQ. Preventive and Therapeutic Benefits of Natural Ingredients in Photo-Induced Epidermal Dysfunction. Skin Pharmacol Physiol 2024; 37:1-18. [PMID: 38615652 DOI: 10.1159/000538832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The skin, particularly the epidermis, is subjected to various external stresses, including ultraviolet (UV) irradiation. UV irradiation, mainly UVB at wavelength of 280-315 nm, can alter several epidermal functions, including cutaneous inflammation, epidermal hyperproliferation, DNA damage, disruption of epidermal permeability barrier and reduction in stratum corneum hydration levels. Because of the negative impacts of UVB irradiation on epidermal functions, great efforts have been made to develop regimens for the protection of alterations in epidermal function induced by UV irradiation. SUMMARY While sunscreen can provide physical barrier to UV light, some natural ingredients can also effectively protect the skin from UVB irradiation-induced damages. Studies have demonstrated that either topical or oral administrations of some natural ingredients attenuate UVB irradiation-induced alterations in the epidermal function. The underlying mechanisms by which natural ingredients improve epidermal functions are attributable to antioxidation, stimulation of keratinocyte differentiation, increases in the content of epidermal natural moisturizers and inhibition of inflammation. KEY MESSAGE Some natural ingredients exhibit protective and therapeutical benefits in photo-induced epidermal dysfunctions via divergent mechanisms.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
8
|
Meng Y, Li C, Liang Y, Jiang Y, Zhang H, Ouyang J, Zhang W, Deng R, Tan Q, Yu X, Luo Z. Umbilical Cord Mesenchymal-Stem-Cell-Derived Exosomes Exhibit Anti-Oxidant and Antiviral Effects as Cell-Free Therapies. Viruses 2023; 15:2094. [PMID: 37896871 PMCID: PMC10612094 DOI: 10.3390/v15102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to cell aging and death. Equally, the skeletal muscle usually hosts enteroviral persistent infection in inflammatory muscle diseases. As excellent bioactive products, the exosomes derived from umbilical cord mesenchymal stem cells (ucMSCs) have been proven to be safe and have low immunogenicity with a potential cell-free therapeutic function. Here, exosomes derived from ucMSCs (ucMSC-EXO) were extracted and characterized. In a model of oxidative damage to skin fibroblasts (HSFs) under exposure to H2O2, ucMSC-EXO had an observable repairing effect for the HSFs suffering from oxidative damage. Furthermore, ucMSC-EXO inhibited mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways, thereby promoting p21 protein expression while decreasing lamin B1 protein expression, and finally alleviated oxidative stress-induced cell damage and aging. In a model of rhabdomyosarcoma (RD) cells being infected by enterovirus 71 (EV71) and coxsackievirus B3 (CVB3), the ucMSC-EXO enhanced the expression of interferon-stimulated gene 15 (ISG15) and ISG56 to inhibit enteroviral replication, whereafter reducing the virus-induced proinflammatory factor production. This study provides a promising therapeutic strategy for ucMSC-EXO in anti-oxidative stress and antiviral effects, which provides insight into extending the function of ucMSC-EXO in cell-free therapy.
Collapse
Affiliation(s)
- Yi Meng
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Chengcheng Li
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yicong Liang
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Jianhua Ouyang
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Rumei Deng
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
9
|
Yoon JH, Park SH, Yoon SE, Hong SY, Lee JB, Lee J, Cho JY. Hydrangea serrata Hot Water Extract and Its Major Ingredient Hydrangenol Improve Skin Moisturization and Wrinkle Conditions via AP-1 and Akt/PI3K Pathway Upregulation. Nutrients 2023; 15:nu15112436. [PMID: 37299400 DOI: 10.3390/nu15112436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/12/2023] Open
Abstract
Hydrangea serrata is a plant grown in Korea and Japan with a particular natural compound, hydrangenol. H. serrata has been researched for its anti-fungal properties, and ability to attenuate allergies and promote muscle growth. Its ability to reduce skin dryness is poorly understood. For that reason, we investigated whether H. serrata hot water extracts (Hs-WE) can moisturize keratinocytes. In clinical studies (Approval Code: GIRB-21929-NY and approval Date: 5 October 2021), skin wrinkles and skin moisturizing levels were improved in subjects applying 0.5% Hs-WE compared to the placebo group. We confirmed the components of Hs-WE from the LC/MS-MS analysis. Hs-WE and hydrangenol did not show cytotoxicity in HaCaT cells at all concentrations. Cell growth was also promoted by Hs-WE (5-20 µg/mL) and hydrangenol (15-60 µM) in a wound healing assay. Skin moisturizing factors were upregulated by the presence of Hs-WE or hydrangenol, and the hyaluronidases (HYAL) were inhibited at the mRNA level. Meanwhile, COL1A1 was increased by the presence of Hs-WE or hydrangenol. MAPK, AP-1, and Akt/PI3k signaling proteins, which are associated with cell proliferation and moisturizing factors, were increased by the administration of Hs-WE and hydrangenol. Has-1, 2, and 3 levels were enhanced via JNK when using the inhibitors of MAPK proteins and Hs-WE and hydrangenol, respectively. Taken together, Hs-WE could be used as cosmeceutical materials for improving skin conditions.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si Eun Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Yoon Hong
- Innovation Lab., Cosmax R&I Center, Seongnam 13486, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam 13486, Republic of Korea
| | - Jongsung Lee
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Jung J, Choi YJ, Yoo J, Choi SY, Kim E. Antiphotoaging Effect of AGEs Blocker™ in UVB-Irradiated Cells and Skh:HR-1 Hairless Mice. Curr Issues Mol Biol 2023; 45:4181-4199. [PMID: 37232735 DOI: 10.3390/cimb45050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chronic exposure to ultraviolet (UV) radiation is a major cause of photoaging. It involves extrinsic aging, wrinkle formation, and skin dehydration, and leads to excessive production of active oxygen that adversely affects the skin. Here, we investigated the antiphotoaging effect of AGEs BlockerTM (AB), which comprises Korean mint aerial part and fig and goji berry fruits. Compared to its individual components, AB was more potent at increasing the expression of collagen and hyaluronic acid and decreasing MMP-1 expression in UVB-irradiated Hs68 fibroblasts and HaCaT keratinocytes. In Skh:HR-1 hairless mice exposed to 60 mJ/cm2 UVB for 12 weeks, oral administration of 20 or 200 mg/kg/day AB restored skin moisture by improving UVB-induced erythema, skin moisture, and transepidermal water loss, and alleviated photoaging by improving UVB-induced elasticity and wrinkles. Moreover, AB upregulated the mRNA levels of hyaluronic acid synthase and collagen-related Col1a1, Col3a1, and Col4a1 genes, increasing hyaluronic acid and collagen expression, respectively. AB inhibited UVB-induced MAPK and AP-1 (c-fos) activation, resulting in significantly downregulated expression of MMP-1 and -9, which are responsible for collagen degradation. AB also stimulated the expression and activity of antioxidative enzymes and reduced lipid peroxidation. Thus, AB is a potential preventive and therapeutic agent for photoaging.
Collapse
Affiliation(s)
- JaeIn Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea
| | - JinHee Yoo
- Functional Ingredient Development Team, COSMAX NS, INC., Seongnam-si 13486, Republic of Korea
| | - Su-Young Choi
- Functional Ingredient Development Team, COSMAX NBT, INC., Seongnam-si 13486, Republic of Korea
| | - EunJi Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
11
|
Park JY, Lee JY, Kim Y, Kang CH. Latilactobacillus sakei Wikim0066 Protects Skin through MMP Regulation on UVB-Irradiated In Vitro and In Vivo Model. Nutrients 2023; 15:nu15030726. [PMID: 36771432 PMCID: PMC9919521 DOI: 10.3390/nu15030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Ultraviolet (UV) B exposure induces wrinkle formation, collagen fiber breakdown, and transepidermal water loss (TEWL). UVB irradiation induces the expression of mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and nuclear factor kappa B (NF-κB), which affect the expression of matrix metalloproteinases (MMP). We confirmed the effects of Latilactobacillus sakei wikim0066 (wikim0066) on UVB-irradiated Hs68 cells and HR-1 hairless mice cells. wikim0066 restored the production of type I procollagen by regulating the expression of MMP-1 and -3, MAPK, AP-1, and NF-κB in UVB-irradiated Hs68 cells and HR-1 mice. Oral administration of wikim0066 alleviates wrinkle formation, epidermal thickness, and TEWL in UVB-irradiated HR-1 hairless mice. These results indicated that wikim0066 has the potential to prevent UVB-induced wrinkle formation.
Collapse
|
12
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Mechanism of action and therapeutic effects of oxidative stress and stem cell-based materials in skin aging: Current evidence and future perspectives. Front Bioeng Biotechnol 2023; 10:1082403. [PMID: 36698629 PMCID: PMC9868183 DOI: 10.3389/fbioe.2022.1082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with multiple degenerative diseases, including atherosclerosis, osteoporosis, and Alzheimer's disease. As the most intuitive manifestation of aging, skin aging has received the most significant attention. Skin aging results from various intrinsic and extrinsic factors. Aged skin is characterized by wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation. The underlying mechanism is complex and may involve cellular senescence, DNA damage, oxidative stress (OS), inflammation, and genetic mutations, among other factors. Among them, OS plays an important role in skin aging, and multiple antioxidants (e.g., vitamin C, glutathione, and melatonin) are considered to promote skin rejuvenation. In addition, stem cells that exhibit self-replication, multi-directional differentiation, and a strong paracrine function can exert anti-aging effects by inhibiting OS. With the further development of stem cell technology, treatments related to OS mitigation and involving stem cell use may have a promising future in anti-skin aging therapy.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| |
Collapse
|
13
|
Jia H, Vashisth MK, Ge Y, Dai Q, He F, Wang X. Anti-inflammation and anti-aging mechanisms of mercaptopurine in vivo and in vitro. Biochem Biophys Res Commun 2023; 638:103-111. [PMID: 36442232 DOI: 10.1016/j.bbrc.2022.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Skin is the biggest organ of the human body, which easily gets irritated by exposure to the sun. Skin photoaging and acute photodamage are caused by intense UV-B radiation. Therefore, it is imperative to find new compounds to prevent skin damage and aging. Mercaptopurine is an immunologic agent commonly used for treating Acute lymphoblastic leukemia and inflammatory bowel disease. The beneficial effects of mercaptopurine on the skin have not been reported, and its intrinsic mechanism of action is unclear. Therefore, this study was to explore mercaptopurine when exposed to UV-B radiation in HacaT cells and C57BL6 mice aging and damage effects. The model of in vivo UV-B-induced skin damage and skin photoaging was established, and the impact of mercaptopurine on cell and animal skin was studied. The study found that mercaptopurine, on the one hand, inhibits cellular and animal senescence. On the other, it inhibits the expression of mitogen-activated protein kinase (MAPK) and the nuclear factor κB (NF-κB), which are important signaling molecules in the early UV-B reaction signaling pathway. In addition, mercaptopurine downregulates matrix metalloproteinase expression, increases collagen fiber content, and facilitates collagen synthesis. Treatment with mercaptopurine also inhibits the expression of inflammatory factors and reduces inflammatory cell infiltration of the skin. In conclusion, our study elucidates mercaptopurine's anti-photoaging and anti-inflammatory activity in cellular and animal models.
Collapse
Affiliation(s)
- HuiJie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Manoj Kumar Vashisth
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Department of Human Anatomy, School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Fei He
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
14
|
Park JY, Lee JY, Kim Y, Kang CH. Lactic Acid Bacteria Improve the Photoprotective Effect via MAPK/AP-1/MMP Signaling Pathway on Skin Fibroblasts. Microorganisms 2022; 10:2481. [PMID: 36557732 PMCID: PMC9782026 DOI: 10.3390/microorganisms10122481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet B (UVB) exposure causes a breakdown of collagen, oxidative stress, and inflammation. UVB activates mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and matrix metalloproteinases (MMPs). In this study, we evaluated 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging activity and the photoprotective effect of lactic acid bacteria LAB strains, including Lactobacillus, Bifidobacterium, and Streptococcus genera in UVB-exposed skin fibroblasts. Nine LAB strains displayed antioxidant activity by regulating superoxide dismutase in UVB-exposed skin fibroblasts. Four LAB strains (MG4684, MG5368, MG4511, and MG5140) recovered type I procollagen level by inhibiting MMPs, MAPK, and AP-1 protein expression. Additionally, these four strains reduced the expression of proinflammatory cytokines by inhibiting oxidative stress. Therefore, L. fermentum MG4684, MG5368, L. rhamnosus MG4511, and S. thermophilus MG5140 are potentially photoprotective.
Collapse
Affiliation(s)
| | | | | | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| |
Collapse
|
15
|
Kim JM, Chung KS, Yoon YS, Jang SY, Heo SW, Park G, Jang YP, Ahn HS, Shin YK, Lee SH, Lee KT. Dieckol Isolated from Eisenia bicyclis Ameliorates Wrinkling and Improves Skin Hydration via MAPK/AP-1 and TGF-β/Smad Signaling Pathways in UVB-Irradiated Hairless Mice. Mar Drugs 2022; 20:md20120779. [PMID: 36547926 PMCID: PMC9785544 DOI: 10.3390/md20120779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Repetitive exposure to ultraviolet B (UVB) is one of the main causes of skin photoaging. We previously reported that dieckol isolated from Eisenia bicyclis extract has potential anti-photoaging effects in UVB-irradiated Hs68 cells. Here, we aimed to evaluate the anti-photoaging activity of dieckol in a UVB-irradiated hairless mouse model. In this study, hairless mice were exposed to UVB for eight weeks. At the same time, dieckol at two doses (5 or 10 mg/kg) was administered orally three times a week. We found that dieckol suppressed UVB-induced collagen degradation and matrix metalloproteinases (MMPs)-1, -3, and -9 expression by regulating transforming growth factor beta (TGF-β)/Smad2/3 and mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) signaling. In addition, dieckol rescued the production of hyaluronic acid (HA) and effectively restored the mRNA expression of hyaluronan synthase (HAS)-1/-2 and hyaluronidase (HYAL)-1/-2 in UVB-irradiated hairless mice. We observed a significant reduction in transepidermal water loss (TEWL), epidermal/dermal thickness, and wrinkle formation in hairless mice administered dieckol. Based on these results, we suggest that dieckol, due to its anti-photoaging role, may be used as a nutricosmetic ingredient for improving skin health.
Collapse
Affiliation(s)
- Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Young-Seo Yoon
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Geonha Park
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-9610860
| |
Collapse
|
16
|
Chemical Distance Measurement and System Pharmacology Approach Uncover the Novel Protective Effects of Biotransformed Ginsenoside C-Mc against UVB-Irradiated Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4691576. [PMID: 35186187 PMCID: PMC8850047 DOI: 10.1155/2022/4691576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Long-term exposure to ultraviolet light induces photoaging and may eventually increase the risk of skin carcinogenesis. Rare minor ginsenosides isolating from traditional medicine Panax (ginseng) have shown biomedical efficacy as antioxidation and antiphotodamage agents. However, due to the difficulty of component extraction and wide variety of ginsenoside, the identification of active antiphotoaging ginsenoside remains a huge challenge. In this study, we proposed a novel in silico approach to identify potential compound against photoaging from 82 ginsenosides. Specifically, we calculated the shortest distance between unknown and known antiphotoaging ginsenoside set in the chemical space and applied chemical structure similarity assessment, drug-likeness screening, and ADMET evaluation for the candidates. We highlighted three rare minor ginsenosides (C-Mc, Mx, and F2) that possess high potential as antiphotoaging agents. Among them, C-Mc deriving from American ginseng (Panax quinquefolius L.) was validated by wet-lab experimental assays and showed significant antioxidant and cytoprotective activity against UVB-induced photodamage in human dermal fibroblasts. Furthermore, system pharmacology analysis was conducted to explore the therapeutic targets and molecular mechanisms through integrating global drug-target network, high quality photoaging-related gene profile from multiomics data, and skin tissue-specific expression protein network. In combination with in vitro assays, we found that C-Mc suppressed MMP production through regulating the MAPK/AP-1/NF-κB pathway and expedited collagen synthesis via the TGF-β/Smad pathway, as well as enhanced the expression of Nrf2/ARE to hold a balance of endogenous oxidation. Overall, this study offers an effective drug discovery framework combining in silico prediction and in vitro validation, uncovering that ginsenoside C-Mc has potential antiphotoaging properties and might be a novel natural agent for use in oral drug, skincare products, or functional food.
Collapse
|
17
|
Zhang Z, Xu Y, Lai R, Deng H, Zhou F, Wang P, Pang X, Huang G, Chen X, Lin H, Lin Y, Chen Z, Lin J. Protective Effect of the Pearl extract from Pinctada fucata martensii Dunker on UV-induced Photoaging in Mice. Chem Biodivers 2022; 19:e202100876. [PMID: 35098641 DOI: 10.1002/cbdv.202100876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Although the effect of pearl powder has been recognized for more than a thousand years from healthcare to beauty care, there has yet to be an in-depth understanding of its anti-photoaging effect. In the present study, the protective effect of pearl extract (PE) on UV-induced photoaging in mice was evaluated. First, the amino acid analysis of PE was carried out. Then, different dosages of pearl extract gel (PEG) were applied topically on the shaved dorsal skins regions of mice before UV irradiation. Skin physiological and histological analysis, antioxidant enzymes and inflammatory factor test were used to evaluate the anti-photoaging effect of PEG. The results showed that PEG contained 14 amino acids, and could inhibit UV-irritated skin wrinkles, laxity, thickness, and dryness. Moreover, PEG upregulated the activities of CAT, GSH-Px, SOD and decreased MDA level, and suppressed the production of IL-1𝛽, IL-6, PGE 2 , TNF-𝛼, and COX-2 in UV-irradiated mice. The therapeutic effect in high dose PEG group was superior to those of positive control (Vitamin E). This study demonstrated the underlying mechanisms of PEG against UV-irritated photoaging. And PEG possesses a potential use in photoprotective medicines and cosmetics.
Collapse
Affiliation(s)
- Zhongmin Zhang
- GuangXi University of Chinese Medicine, College of Pharmacy, Wuhe Road No.13, Nanning, CHINA
| | - Yunling Xu
- Zhejiang Academy of Traditional Chinese Medicine, Deparment of Basic Medicine, No.132 Tianmushan Road, Hangzhou, CHINA
| | - Ruicheng Lai
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Huiyuan Deng
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Fengling Zhou
- GuangXi University of Chinese Medicine, College of Pharmacy, Wuhe Road No.13, Nanning, CHINA
| | - Peiyan Wang
- GuangXi University of Chinese Medicine, College of Basic Medince, Wuhe Road No.13, Nanning, CHINA
| | - Xiubing Pang
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Guoxin Huang
- Shantou Central Hospital, Clinical research center, Waima road No.114, Shantou, CHINA
| | - Xin Chen
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Haoge Lin
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Yong Lin
- Beihai Baozhulin Ocean Technology Co.LTD, None, Hunan road Lvye garden 18, Beihai, CHINA
| | - Zhenxing Chen
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe road No.13, 530200, Nanning, CHINA
| | - Jiang Lin
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| |
Collapse
|
18
|
Li Z, Jiang R, Wang M, Zhai L, Liu J, Xu X, Sun L, Zhao D. Ginsenosides repair UVB-induced skin barrier damage in BALB/c hairless mice and HaCaT keratinocytes. J Ginseng Res 2022; 46:115-125. [PMID: 35035244 PMCID: PMC8753432 DOI: 10.1016/j.jgr.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022] Open
Abstract
Background Ginsenosides (GS) have potential value as cosmetic additives for prevention of skin photoaging. However, their protective mechanisms against skin barrier damage and their active monomeric constituents are unknown. Methods GS monomer types and their relative proportions were identified. A UVB-irradiated BALB/c hairless mouse model was used to assess protective effects of GS components on skin epidermal thickness and transepidermal water loss (TEWL). Skin barrier function, reflected by filaggrin (FLG), involucrin (IVL), claudin-1 (Cldn-1), and aquaporin 3 (AQP3) levels and MAPK phosphorylation patterns, were analyzed in UVB-irradiated hairless mice or HaCaT cells. Results Total GS monomeric content detected by UPLC was 85.45% and was largely attributed to 17 main monomers that included Re (16.73%), Rd (13.36%), and Rg1 (13.38%). In hairless mice, GS ameliorated UVB-induced epidermal barrier dysfunction manifesting as increased epidermal thickness, increased TEWL, and decreased stratum corneum water content without weight change. Furthermore, GS treatment of UVB-irradiated mice restored protein expression levels and epidermal tissue distributions of FLG, IVL, Cldn-1, and AQP3, with consistent mRNA and protein expression results obtained in UVB-irradiated HaCaT cells (except for unchanging Cldn-1 expression). Mechanistically, GS inhibited JNK, p38, and ERK phosphorylation in UVB-irradiated HaCaT cells, with a mixture of Rg2, Rg3, Rk3, F2, Rd, and Rb3 providing the same protective MAPK pathway inhibition-associated upregulation of IVL and AQP3 expression as provided by intact GS treatment. Conclusion GS protection against UVB-irradiated skin barrier damage depends on activities of six ginsenoside monomeric constituents that inhibit the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhenzhuo Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Manying Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
19
|
Hong JA, Bae D, Oh KN, Oh DR, Kim Y, Kim Y, Jeong Im S, Choi EJ, Lee SG, Kim M, Jeong C, Choi CY. Protective effects of Quercus acuta Thunb. fruit extract against UVB-induced photoaging through ERK/AP-1 signaling modulation in human keratinocytes. BMC Complement Med Ther 2022; 22:6. [PMID: 34983480 PMCID: PMC8728912 DOI: 10.1186/s12906-021-03473-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Quercus acuta Thunb. (Fagaceae) or Japanese evergreen oak is cultivated as an ornamental plant in South Korea, China, Japan, and Taiwan and used in traditional medicine. The acorn or fruit of Quercus acuta Thunb. (QAF) is the main ingredient of acorn jelly, a traditional food in Korea. Its leaf was recently shown to have potent xanthine oxidase inhibitory and anti-hyperuricemic activities; however, there have been no studies on the biological activity of QAF extracts. Solar ultraviolet light triggers photoaging of the skin, which increases the production of reactive oxygen species (ROS) and expression of matrix metalloproteinase (MMPs), and destroys collagen fibers, consequently inducing wrinkle formation. The aim of this study was to investigate the effect of water extracts of QAF against UVB-induced skin photoaging and to elucidate the underlying molecular mechanisms in human keratinocytes (HaCaT). Methods In this study, we used HPLC to identify the major active components of QAF water extracts. Anti-photoaging effects of QAF extracts were evaluated by analyzing ROS procollagen type I in UVB-irradiated HaCaT keratinocytes. Antiradical activity was determined using 2,2-diphenyl-1-picrylhydrazyl and 2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) assays. The expression of MMP-1 was tested by western blotting and ELISA kits. QAF effects on phosphorylation of the MAPK (p38, JNK, and ERK) pathway and transcription factor AP-1, which enhances the expression of MMPs, were analyzed by western blots. Results We identified two major active components in QAF water extracts, gallotannic acid and ellagic acid. The QAF aqueous extracts recovered UVB-induced cell toxicity and reduced oxidative stress by inhibiting intracellular ROS generation in HaCaT cells. QAF rescued UVB-induced collagen degradation by suppressing MMP-1 expression. The anti-photoaging activities of QAF were associated with the inhibition of UVB-induced phosphorylation of extracellular signal-regulated kinase (ERK) and activator protein 1 (AP-1). Our findings indicated that QAF prevents UVB-induced skin damage due to collagen degradation and MMP-1 activation via inactivation of the ERK/AP-1 signaling pathway. Overall, this study strongly suggests that QAF exerts anti-skin-aging effects and is a potential natural biomaterial that inhibits UVB-induced photoaging. Conclusion These results show that QAF water extract effectively prevents skin photoaging by enhancing collagen deposition and inhibiting MMP-1 via the ERK/AP-1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03473-1.
Collapse
Affiliation(s)
- Ji-Ae Hong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea.,School of Biological Sciences and Biotechnology, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Donghyuk Bae
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Kyo-Nyeo Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Dool-Ri Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Yujin Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Yonguk Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - So Jeong Im
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Eun-Jin Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Seul-Gi Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Moonjong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Changsik Jeong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, 309, pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
20
|
Han HS, Chung KS, Shin YK, Yu JS, Kang SH, Lee SH, Lee KT. Effect of Standardized Hydrangea serrata (Thunb.) Ser. Leaves Extract on Body Weight and Body Fat Reduction in Overweight or Obese Humans: A Randomized Double-Blind Placebo-Controlled Study. Nutrients 2022; 14:nu14010208. [PMID: 35011083 PMCID: PMC8747274 DOI: 10.3390/nu14010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Obesity is a major health problem that is caused by body fat accumulation and that can lead to metabolic diseases. Owing to several side effects of the currently used antiobesity drugs, natural plants have risen as safe and potential candidates to alleviate obesity. We have previously reported the antiobesity effect of Hydrangea serrata (Thunb.) Ser. leaves extract (WHS) and its underlying mechanisms. As an extension of our preclinical studies, this study aimed to investigate the effect of WHS on body weight and body fat reduction in overweight or obese humans. A total of 93 healthy overweight or obese males and females, aged 19–65 years, with body mass indexes (BMIs) ≥ 25 and <32 kg/m2, were recruited and received either an oral administration of 600 mg of WHS, or placebo tablets for 12 weeks. Daily supplementation with WHS decreased body weights, body fat masses, and BMIs compared with the placebo-treated group. The hip circumferences, visceral fat areas, abdominal fat areas, and visceral-to-subcutaneous ratios decreased after WHS supplementation. No significant side effects were observed during or after the 12 weeks of WHS intake. In conclusion, WHS, which has beneficial effects on body weight and body fat reduction, could be a promising antiobesity supplement that does not produce any side effects.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.-S.H.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.-S.H.); (K.-S.C.)
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (J.-S.Y.)
| | - Jae-Sik Yu
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (J.-S.Y.)
| | - Seung-Hyun Kang
- Clinical Research Center of H PLUS Yangji Hospital, Sillim-dong, Gwanak-gu, Seoul 08779, Korea;
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (J.-S.Y.)
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.-S.H.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|
21
|
Choi SI, Han HS, Kim JM, Park G, Jang YP, Shin YK, Ahn HS, Lee SH, Lee KT. Eisenia bicyclis Extract Repairs UVB-Induced Skin Photoaging In Vitro and In Vivo: Photoprotective Effects. Mar Drugs 2021; 19:693. [PMID: 34940692 PMCID: PMC8709268 DOI: 10.3390/md19120693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic exposure to ultraviolet B (UVB) is a major cause of skin aging. The aim of the present study was to determine the photoprotective effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) against UVB-induced skin aging. By treating human dermal fibroblasts (Hs68) with EEB after UVB irradiation, we found that EEB had a cytoprotective effect. EEB treatment significantly decreased UVB-induced matrix metalloproteinase-1 (MMP-1) production by suppressing the activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling and enhancing the protein expression of tissue inhibitors of metalloproteinases (TIMPs). EEB was also found to recover the UVB-induced degradation of pro-collagen by upregulating Smad signaling. Moreover, EEB increased the mRNA expression of filaggrin, involucrin, and loricrin in UVB-irradiated human epidermal keratinocytes (HaCaT). EEB decreased UVB-induced reactive oxygen species (ROS) generation by upregulating glutathione peroxidase 1 (GPx1) and heme oxygenase-1 (HO-1) expression via nuclear factor erythroid-2-related factor 2 (Nrf2) activation in Hs68 cells. In a UVB-induced HR-1 hairless mouse model, the oral administration of EEB mitigated photoaging lesions including wrinkle formation, skin thickness, and skin dryness by downregulating MMP-1 production and upregulating the expression of pro-collagen type I alpha 1 chain (pro-COL1A1). Collectively, our findings revealed that EEB prevents UVB-induced skin damage by regulating MMP-1 and pro-collagen type I production through MAPK/AP-1 and Smad pathways.
Collapse
Affiliation(s)
- Se-In Choi
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
| | - Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
22
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
23
|
Standardized Hydrangea serrata (Thunb.) Ser. Extract Ameliorates Obesity in db/db Mice. Nutrients 2021; 13:nu13103624. [PMID: 34684625 PMCID: PMC8538090 DOI: 10.3390/nu13103624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
We previously reported the potential anti-obesity effects of the water extract of Hydrangea serrata (Thunb.) Ser. leaves (WHS) in high-fat diet-induced obese mice. As an extension of our previous study, we investigated the anti-adipogenic and anti-obesity effects of WHS and its underlying molecular mechanisms in 3T3-L1 preadipocytes and genetically obese db/db mice. WHS attenuated the gene expression of adipogenic transcription factors, CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1. Moreover, WHS inhibited the mitotic clonal expansion of preadipocytes by inducing G1 cell cycle arrest. Oral administration of WHS alleviated body weight gain and body fat accumulation in vivo. In addition, adipocyte hypertrophy and liver steatosis were ameliorated by WHS treatment. WHS reduced C/EBPα, PPARγ, and SREBP-1 expression and activated AMPKα phosphorylation in both white adipose tissue (WAT) and liver tissue. WHS also mildly upregulated the expression of thermogenic proteins, including uncoupling protein-1, PPARs, PPARγ coactivator-1α, and sirtuin-1, in brown adipose tissue (BAT). Furthermore, WHS altered the gut microbiota composition to resemble that of wild-type mice. Taken together, our findings suggest that WHS could alleviate adiposity by inhibiting adipogenesis in WAT and the liver and modulating the gut microbiota.
Collapse
|
24
|
Ahn HS, Kim HJ, Na C, Jang DS, Shin YK, Lee SH. The Protective Effect of Adenocaulon himalaicum Edgew. and Its Bioactive Compound Neochlorogenic Acid against UVB-Induced Skin Damage in Human Dermal Fibroblasts and Epidermal Keratinocytes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081669. [PMID: 34451713 PMCID: PMC8399472 DOI: 10.3390/plants10081669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 05/08/2023]
Abstract
Skin aging induced by ultraviolet (UV) irradiation increases expression of matrix metalloproteinase-1 (MMP-1) and destroys collagen fibers, as a result accelerating wrinkle formation. Natural products have been received scientific attention as utilized agents against photoaging. The aim of this study was to investigate the protective effect of Adenocaulon himalaicum Edgew. extract (AHE) against ultraviolet B (UVB)-induced skin damage, and to explain the underlying mechanisms in human dermal fibroblasts and epidermal keratinocytes. AHE effectively protects skin photoaging by preventing collagen degradation through MMP-1 inhibition via the MAPK/AP-1 signaling pathway. AHE significantly increased the expression of skin hydration factors, such as filaggrin, involucrin, loricrin, and caspase-14. To find how AHE possesses a direct impact on cellular activities, we identified neochlorogenic acid as a bioactive component of AHE for the first time. Neochlorogenic acid showed the anti-photoaging effect through ameliorating UVB-induced collagen degradation, reinforcing the skin barrier. Like the AHE-regulating mechanism, neochlorogenic acid modulates the MAPK/AP-1 signaling pathway and skin hydration factors. Taken together, these results suggest that AHE and neochlorogenic acid are well-qualified candidate for enhancing the conditions of photoaged skin.
Collapse
Affiliation(s)
- Hye Shin Ahn
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
| | - Hyun Jae Kim
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
| | - Changseon Na
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Dongdaemun-gu, Korea;
| | - Yu-Kyong Shin
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
- Correspondence: (Y.-K.S.); (S.H.L.); Tel.: +82-31-8018-0388 (Y.-K.S.); +82-31-8018-0384 (S.H.L.)
| | - Sun Hee Lee
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
- Correspondence: (Y.-K.S.); (S.H.L.); Tel.: +82-31-8018-0388 (Y.-K.S.); +82-31-8018-0384 (S.H.L.)
| |
Collapse
|
25
|
Panax ginseng C. A. Meyer Phenolic Acid Extract Alleviates Ultraviolet B-Irradiation-Induced Photoaging in a Hairless Mouse Skin Photodamage Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9962007. [PMID: 34394397 PMCID: PMC8356000 DOI: 10.1155/2021/9962007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
Here, we evaluated the in vivo skin-protective effects of topical applications of Panax ginseng C. A. Meyer extract (PG2) and its phenolic acid- (PA-) based components against UVB-induced skin photoaging. PG2 or PA applied to skin of hairless mice after UVB-irradiation alleviated UVB-induced effects observed in untreated skin, such as increased transepidermal water loss (TEWL), increased epidermal thickness, and decreased stratum corneum water content without affecting body weight. Moreover, PG2 and PA treatments countered reduced mRNA-level expression of genes encoding filaggrin (FLG), transglutaminase-1 (TGM1), and hyaluronan synthases (HAS1, HAS2, and HAS3) caused by UVB exposure and reduced UVB-induced collagen fiber degradation by inhibiting the expression of matrix metalloproteinase genes encoding MMP-1, MMP-2, and MMP-9. Meanwhile, topical treatments reduced cyclooxygenase-2 (COX-2) mRNA-level expression in photodamaged skin, leading to the inhibition of interleukin-1β (IL-1β) and interleukin-6 (IL-6) mRNA-level expression. Thus, ginseng phenolic acid-based preparations have potential value as topical treatments to protect skin against UVB-induced photoaging.
Collapse
|
26
|
Han HS, Lee HH, Gil HS, Chung KS, Kim JK, Kim DH, Yoon J, Chung EK, Lee JK, Yang WM, Shin YK, Ahn HS, Lee SH, Lee KT. Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food Funct 2021; 12:2672-2685. [PMID: 33656018 DOI: 10.1039/d0fo02185g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity is an increasing health problem worldwide as it is the major risk factor for metabolic diseases. In the present study, we investigated the anti-obesity effects of WHS by examining its effects on high fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed either a normal diet (ND) or a high fat diet (HFD) with or without WHS. At the end of the experiment, we observed the changes in their body weight and white adipose tissue (WAT) weight and lipid profiles in plasma. We performed western blot and histological analyses of WAT and liver to elucidate the molecular mechanisms of action. We also conducted fecal 16S rRNA analysis for investigating the gut microbiota. Our results indicated that pre- and post-oral administration of WHS significantly prevented body weight gain and reduced body fat weight in HFD-induced obese mice. In addition, WHS was found to improve adipocyte hypertrophy and liver fat accumulation by regulating the AMPK and AKT/mTOR pathways. WHS ameliorated hyperlipidemia by reducing total cholesterol and low-density lipoprotein (LDL) and decreased the energy metabolism-related hormones, leptin and insulin, in mouse plasma. Furthermore, we found that WHS modulated gut dysbiosis by normalizing HFD-induced changes. Taken together, our in vivo data implicate that WHS can be considered as a potential dietary supplement for alleviating obesity.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Geum NG, Eo HJ, Kim HJ, Park GH, Son HJ, Jeong JB. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264.7 cells and immunosuppressed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Oral Intake of Hydrangea serrata (Thunb.) Ser. Leaves Extract Improves Wrinkles, Hydration, Elasticity, Texture, and Roughness in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2020; 12:nu12061588. [PMID: 32481760 PMCID: PMC7352416 DOI: 10.3390/nu12061588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that the hot water extract of Hydrangea serrata leaves (WHS) and its active component, hydrangenol, possess in vitro and in vivo effects on skin wrinkles and moisturization. We conducted a randomized, double-blind, placebo-controlled trial to clinically evaluate the effect of WHS on human skin. Participants (n = 151) were randomly assigned to receive either WHS 300 mg, WHS 600 mg, or placebo, once daily for 12 weeks. Skin wrinkle, hydration, elasticity, texture, and roughness parameters were assessed at baseline and after 4, 8, and 12 weeks. Compared to the placebo, skin wrinkles were significantly reduced in both WHS groups after 8 and 12 weeks. In both WHS groups, five parameters (R1-R5) of skin wrinkles significantly improved and skin hydration was significantly enhanced when compared to the placebo group after 12 weeks. Compared with the placebo, three parameters of skin elasticity, including overall elasticity (R2), net elasticity (R5), and ratio of elastic recovery to total deformation (R7), improved after 12 weeks of oral WHS (600 mg) administration. Changes in skin texture and roughness were significantly reduced in both WHS groups. No WHS-related adverse reactions were reported. Hence, WHS could be used as a health supplement for skin anti-aging.
Collapse
|
29
|
Andrographis Paniculata and Its Bioactive Diterpenoids Protect Dermal Fibroblasts Against Inflammation and Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9050432. [PMID: 32429312 PMCID: PMC7278656 DOI: 10.3390/antiox9050432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Andrographis paniculata (Burm.f.) has long been used in ayurvedic medicine through its anti-inflammatory properties. However, its protective effect of skin aging has not been studied in vitro. This study aimed to investigate the anti-aging effects of methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12) on human dermal fibroblasts (HDFa) under pro-oxidant or pro-inflammatory condition. The in vitro anti-aging capacity of ME, ANDRO, NEO, 14DAP, and 14DAP11-12 (1, 2.5 and 5 µg/mL) was performed in HDFa. Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by the fluorescence of DCF-DA probe and cytokines were quantified by ELISA (IL6 and IL8) or RTqPCR (TNF-α). Procollagen type I production was determined by an ELISA. Our results showed a decrease in ROS production with ME and 14DAP at 5 µg/mL and 1 µg/mL, respectively. Furthermore, IL-6 production and TNF-α expression decreased under ANDRO and ME at 5 µg/mL. Our data indicated that ME and 14DAP protect from oxidative stress. Additionally, ME and ANDRO decreased an inflammation marker, IL-6. This suggests their potential natural treatment against skin damage. Hence, their applications could be of interest in cosmetics for preventing skin ageing.
Collapse
|
30
|
Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus acidophilus KCCM12625P. Int J Mol Sci 2020; 21:ijms21051620. [PMID: 32120828 PMCID: PMC7084287 DOI: 10.3390/ijms21051620] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
UVB irradiation can induce generation of reactive oxygen species (ROS) that cause skin aging or pigmentation. Lactobacillus acidophilus is a well-known probiotic strain that regulates skin health through antimicrobial peptides and organic products produced by metabolism and through immune responses. In this study, we investigated the antioxidative, antiwrinkle, and antimelanogenesis effects of tyndallized Lactobacillus acidophilus KCCM12625P (AL). To analyze the effects of AL on UV irradiation-induced skin wrinkle formation in vitro, human keratinocytes and human dermal fibroblasts were exposed to UVB. Subsequent treatment with AL induced antiwrinkle effects by regulating wrinkle-related genes such as matrix metalloproteinases (MMPs), SIRT-1, and type 1 procollagen (COL1AL). In addition, Western blotting assays confirmed that regulation of MMPs by AL in keratinocytes was due to regulation of the AP-1 signaling pathway. Furthermore, we confirmed the ability of AL to regulate melanogenesis in B16F10 murine melanoma cells treated with α-melanocyte-stimulating hormone (α-MSH). In particular, AL reduced the mRNA expression of melanogenesis-related genes such as tyrosinase, TYRP-1, and TYRP-2. Finally, we used Western blotting assays to confirm that the antimelanogenesis role of AL was due to its regulation of the cyclic adenosine monophosphate (cAMP) signaling pathway. Collectively, these results indicate that AL has an antiwrinkle activity in damaged skin and can inhibit melanogenesis. Thus, AL should be considered an important substance for potential use in anti-aging drugs or cosmetics.
Collapse
|
31
|
Miao Z, Ding Y, Zhao N, Chen X, Cheng H, Wang J, Liu Y, Wang F. Transcriptome sequencing reveals fibrotic associated-genes involved in bovine mammary fibroblasts with Staphylococcus aureus. Int J Biochem Cell Biol 2020; 121:105696. [PMID: 32001362 DOI: 10.1016/j.biocel.2020.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022]
Abstract
Bovine mammary fibrosis represents a considerable health problem of cows, primarily indicated by lactation failure. Staphylococcus aureus (S. aureus) can cause mammary damage, this multifactorial disease necessitates to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections in bovine mammary gland. In this study, we have aimed to determine the transcriptional responses in bovine mammary fibroblasts (BMFBs) induced by S. aureus using bioinformatics analysis to determine whether mRNA expression profile changes between BMFBs activation and quiescence. Established primary BMFBs obtained from healthy Holstein bovine were induced 106 CFU/mL heat-inactivated S. aureus and total RNA was isolated 6 h after treatment. The 574 DEGs were involved in gene ontology (GO) that were immune response, apoptotic process, extracellular region, receptor binding, endopeptidase activity and protein kinase activity et al. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, distinct pathway contained signaling molecules common to various inflammatory and fibrotic pathways were Pathways in cancer, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway and Toll-like receptor signaling pathway. The BMFBs was treated with heat-inactivated S. aureus (106 CFU/mL) and also with pharmacological inhibitors of ERK1/2, P38 MAPK and JNK. The MMP-2 activity were examined gelatin zymography, MMP-2, TIMP-1, -2 and PLAU/PAI-1 protein expression were examined in vitro by western blot. The MMP-2 activity was significantly inhibited by simultaneous inhibition of ERK1/2, P38 MAPK and JNK, and MMP-2, TIMP-1,-2 and PLAU/PAI-1 protein expression were significantly decreased by inhibiting ERK1/2, P38 MAPK or JNK. This suggested a crosstalk between the ERK1/2, P38 MAPK or JNK signaling pathways in regulating extracellular matrix metabolism in the BMFBs with S. aureus. Our study complement our initial study on S. aureus-induced responses by fibrosis-associated genes in BMFBs. This may lead to development of novel therapeutic targets to control bovine mammary fibrosis induced by S. aureus.
Collapse
Affiliation(s)
- Zengqiang Miao
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Yulin Ding
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Nan Zhao
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Xunan Chen
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Huixin Cheng
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Jinling Wang
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Yonghong Liu
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Fenglong Wang
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
32
|
Tanaka Y, Uchi H, Furue M. Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci 2019; 96:151-158. [PMID: 31735467 DOI: 10.1016/j.jdermsci.2019.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation disrupts skin through several deleterious actions, such as induction of reactive oxygen species (ROS), DNA damage, and collagen degradation. Cinnamaldehyde (CIN) is a major constituent of the cinnamon and it possesses potent antioxidative activity; however, it is unclear whether CIN is capable of inhibiting the adverse effects of UVB. OBJECTIVE To investigate protective effects of CIN against UVB-induced photodamage. METHODS HaCaT keratinocytes were pretreated with CIN, irradiated with UVB, and assessed for the ROS production by flow cytometry and for the DNA damage by ELISA. As in vivo mouse model, Hos:HR-1 hairless mice were treated with ointments containing DMSO or CIN and irradiated multiple times with UVB. After 10 weeks of irradiation, wrinkle formation, epidermal thickness, infiltrating cell number, malondialdehyde amount, collagen amount, MAP kinase signaling, and related gene expressions (Hmox1, Col1a1, Mmp1a, and Mmp13) were analyzed. RESULTS CIN significantly reduced the ROS production and accelerated the repair of DNA damage pyrimidine(6-4)pyrimidone photoproducts in UVB-irradiated human keratinocytes in vitro. In the mouse model, topical application of CIN significantly inhibited wrinkle formation, epidermal hyperplasia, and dermal inflammatory cell infiltration. The antioxidative process was significantly promoted in the CIN-applied site, as evidenced by upregulation of the antioxidative enzyme Hmox1 as well as the reduced accumulation of malondialdehyde. In addition, topical application of CIN normalized the UVB-induced collagen/Col1a1 downregulation and the UVB-induced Mmp13 upregulation, implying the prevention of UVB-induced collagen degradation. CONCLUSIONS CIN and CIN-containing herbal agents may exert potent protective effects against UVB exposure on skin.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, National Hospital organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|