1
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Shamabadi A, Asadigandomani H, Kazemzadeh K, Farahmand K, Arabzadeh Bahri R, Akhondzadeh S. Crocus sativus (saffron) and age-related macular degeneration. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2024; 13:139-150. [PMID: 39507811 PMCID: PMC11537240 DOI: 10.51329/mehdiophthal1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Background Age-related macular degeneration (ARMD) leads to impaired vision and potential blindness. Globally, it accounts for approximately 9% of vision loss cases, and a projected 288 million individuals will be affected by 2040. Current treatments have limitations such as variable effectiveness, high costs, and potential side effects. Additionally, atrophic ARMD management remains challenging. As saffron has shown promising neuroprotective and antioxidant effects by potentially delaying disease progression, this study aims to review the mechanistic, pre-clinical, and clinical evidence of the effects, safety, and tolerability of saffron in ARMD treatment. Methods The Scale for the Assessment of Narrative Review Articles was applied in this narrative review. To find relevant literature, the syntax "(saffron OR crocus) AND (retin* OR "geographic atrophy" OR "choroidal neovascular*" OR "macular degeneration")" was searched in PubMed/MEDLINE. Pre-clinical and clinical original investigations of the effects of saffron in ARMD along with the eligible studies cited in their reference lists were identified and included. Results Saffron and its active compounds, crocin and crocetin, have shown promising results in improving visual function and delaying ARMD progression. Several clinical studies have found that daily supplementation with 20-50 mg of saffron or 5-15 mg of crocin for 3-12 months significantly improved best-corrected visual acuity, contrast sensitivity, and retinal function as measured by electroretinogram and microperimetry, with benefits observed in both dry and wet forms of ARMD. The effects were independent of genetic risk factors and maintained during the follow-up periods, suggesting the potential role of saffron as a long-term treatment option. Saffron reduces ARMD progression via anti-angiogenic, neuroprotective, and antioxidant mechanisms. Moreover, saffron is safe and well tolerated. Conclusions Although further research is needed to confirm long-term safety and efficacy, current evidence supports the use of saffron or crocin supplements as a safe and tolerable adjunct therapy for ARMD management.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kimia Kazemzadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Khan R, Farooq MS, Khelifi A, Ahmad U, Ahmad F, Riaz S. Internet of things (IoT) based saffron cultivation system in greenhouse. Sci Rep 2024; 14:22589. [PMID: 39343800 PMCID: PMC11439948 DOI: 10.1038/s41598-024-69513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Saffron is the world's most expensive and legendary crop that is widely used in cuisine, drugs, and cosmetics. Therefore, the demand for saffron is increasing globally day by day. Despite its massive demand the cultivation of saffron has dramatically decreased and grown in only a few countries. Saffron is an environment-sensitive crop that is affected by various factors including rapid change in climate, light intensity, pH level, soil moisture, salinity level, and inappropriate cultivation techniques. It is not possible to control many of these environmental factors in traditional farming. Although, many innovative technologies like Artificial Intelligence and Internet of Things (IoT) have been used to enhance the growth of saffron still, there is a dire need for a system that can overcome primary issues related to saffron growth. In this research, we have proposed an IoT-based system for the greenhouse to control the numerous agronomical variables such as corm size, temperature, humidity, pH level, soil moisture, salinity, and water availability. The proposed architecture monitors and controls environmental factors automatically and sends real-time data from the greenhouse to the microcontroller. The sensed values of various agronomical variables are compared with threshold values and saved at cloud for sending to the farm owner for efficient management. The experiment results reveal that the proposed system is capable to maximize saffron production in the greenhouse by controlling environmental factors as per crop needs.
Collapse
Affiliation(s)
- Rabia Khan
- Scool of System and Technology, University of Management and Technology, Lahore, 54000, Pakistan
| | - Muhammad Shoaib Farooq
- Scool of System and Technology, University of Management and Technology, Lahore, 54000, Pakistan
| | - Adel Khelifi
- Computer Science and Information Technology, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Umer Ahmad
- Department of Computer Science, Garrison University Lahore, Lahore, Pakistan
| | - Faizan Ahmad
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
| | - Shamyla Riaz
- Scool of System and Technology, University of Management and Technology, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Rashid M, Rashid R, Saroya S, Deverapalli M, Brim H, Ashktorab H. Saffron as a Promising Therapy for Inflammatory Bowel Disease. Nutrients 2024; 16:2353. [PMID: 39064796 PMCID: PMC11280066 DOI: 10.3390/nu16142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn's disease (CD) or ulcerative colitis (UC). Despite substantial advances in understanding the underlying causes of IBD, the available treatments remain restricted and are sometimes accompanied by severe consequences. Consequently, there is an urgent need to study alternate therapeutic options. This review assesses the present drugs, identifies their limitations, and proposes the use of saffron, a natural plant with great therapeutic potential based on preclinical and clinical investigations. Saffron has gained attention for its potential therapeutic benefits in treating various ailments due to its established bioactive compounds possessing antioxidant and anti-inflammatory properties. This review covers how saffron impacts the levels of calprotectin, an inflammatory marker, for various inflammatory responses in multiple diseases including IBD. Data from clinical trials were assessed to determine the efficacy and safety of using saffron to counter inflammation in multiple diseases. Studies have shown that saffron may protect against inflammatory bowel disease (IBD) through several mechanisms by inhibiting pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), reducing oxidative stress through antioxidant effects, enhancing mucosal barrier function by upregulating tight junction proteins, and modulating the gut microbiota composition to promote beneficial bacteria while suppressing pathogenic ones; these combined actions contribute to its therapeutic potential in managing and alleviating the symptoms of IBD. This will enable future research endeavors and expedite the translation of saffron-based interventions into clinical practice as a valuable adjunctive therapy or a potential alternative to conventional treatments, thereby enhancing the quality of life for individuals suffering from inflammatory diseases including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC 20059, USA; (M.R.); (R.R.); (S.S.); (M.D.); (H.B.)
| |
Collapse
|
5
|
D’Angelo A, Vitiello L, Gagliardi V, Salerno G, De Pascale I, Coppola A, Abbinante G, Pellegrino A, Giannaccare G. The Role of Oral Supplementation for the Management of Age-Related Macular Degeneration: A Narrative Review. J Pers Med 2024; 14:653. [PMID: 38929874 PMCID: PMC11204429 DOI: 10.3390/jpm14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The majority of neurodegenerative eye disorders occur with aging and significantly impair quality of life. Age-related macular degeneration (AMD) is the third most common cause of visual impairment and blindness worldwide. One of the most important elements in the pathophysiology of neurodegenerative eye disease is certainly oxidative stress, with neuroinflammation and ocular ischemia which may also be significant factors. Antioxidants, either by food or oral supplementation, may be able to mitigate the deleterious effects of reactive oxygen species that build as a result of oxidative stress, ischemia, and inflammation. Over the past few decades, a number of research works examining the potential adjuvant impact of antioxidants in AMD have been published. In fact, there is not only more and more interest in already known molecules but also in new molecules that can help clinicians in the management of this complex multifactorial disease, such as astaxanthin and melatonin. However, while some studies showed encouraging outcomes, others were conflicting. In addition, more and more attention is also being paid to nutrition, considered a pivotal key point, especially to prevent AMD. For this reason, the purpose of this review is to analyze the main antioxidant molecules currently used as oral supplements for AMD treatment, as well as the role of diet and food intake in this ocular disease, to better understand how all these factors can improve the clinical management of AMD patients.
Collapse
Affiliation(s)
- Angela D’Angelo
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, MI, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Vincenzo Gagliardi
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulio Salerno
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Ilaria De Pascale
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alessia Coppola
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulia Abbinante
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alfonso Pellegrino
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| |
Collapse
|
6
|
Baksh J, Lee D, Mori K, Zhang Y, Torii H, Jeong H, Hou J, Negishi K, Tsubota K, Kurihara T. Myopia Is an Ischemic Eye Condition: A Review from the Perspective of Choroidal Blood Flow. J Clin Med 2024; 13:2777. [PMID: 38792319 PMCID: PMC11122110 DOI: 10.3390/jcm13102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Myopia is a common refractive error that affects a large proportion of the population. Recent studies have revealed that alterations in choroidal thickness (ChT) and choroidal blood flow (ChBF) play important roles in the progression of myopia. Reduced ChBF could affect scleral cellular matrix remodeling, which leads to axial elongation and further myopia progression. As ChT and ChBF could be used as potential biomarkers for the progression of myopia, several recent myopia treatments have targeted alterations in ChT and ChBF. Our review provides a comprehensive overview of the recent literature review on the relationship between ChBF and myopia. We also highlight the importance of ChT and ChBF in the progression of myopia and the potential of ChT as an important biomarker for myopia progression. This summary has significant implications for the development of novel strategies for preventing and treating myopia.
Collapse
Affiliation(s)
- Jiaul Baksh
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yan Zhang
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Heonuk Jeong
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jing Hou
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, Inc., 34 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
7
|
Wang C, Li X, Su J, Duan J, Yao Y, Shang Q. Crocetin inhibits choroidal neovascularization in both in vitro and in vivo models. Exp Eye Res 2024; 238:109751. [PMID: 38097101 DOI: 10.1016/j.exer.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Choroidal neovascularization (CNV) is the primary pathogenic process underlying wet age-related macular degeneration, leading to severe vision loss. Despite current anti-vascular endothelial growth factor (VEGF) therapies, several limitations persist. Crocetin, a major bioactive constituent of saffron, exhibits multiple pharmacological activities, yet its role and mechanism in CNV remain unclear. Here, we investigated the potential effects of crocetin on CNV using in vitro and in vivo models. In human umbilical vein endothelial cells, crocetin demonstrated inhibition of VEGF-induced cell proliferation, migration, and tube formation in vitro, as assessed by CCK-8 and EdU assays, transwell and scratch assays, and tube formation analysis. Additionally, crocetin suppressed choroidal sprouting in ex vivo experiments. In the human retinal pigment epithelium (RPE) cell line ARPE-19, crocetin attenuated cobalt chloride-induced hypoxic cell injury, as evidenced by CCK-8 assay. As evaluated by quantitative PCR and Western blot assay, it also reduced hypoxia-induced expression of VEGF and hypoxia-inducible factor 1α (HIF-1α), while enhancing zonula occludens-1 expression. In a laser-induced CNV mouse model, intravitreal administration of crocetin significantly reduced CNV size and suppressed elevated expressions of VEGF, HIF-1α, TNFα, IL-1β, and IL-6. Moreover, crocetin treatment attenuated the elevation of phospho-S6 in laser-induced CNV and hypoxia-induced RPE cells, suggesting its potential anti-angiogenic effects through antagonizing the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Our findings indicate that crocetin may hold promise as an effective drug for the prevention and treatment of CNV.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xuejing Li
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jing Su
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jialiang Duan
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
8
|
Demir M, Altinoz E, Koca O, Elbe H, Onal MO, Bicer Y, Karayakali M. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue Cell 2023; 84:102182. [PMID: 37523948 DOI: 10.1016/j.tice.2023.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Doxorubicin (DXR) is widely used in cancer treatment. However, it has not yet been possible to prevent the side effects of DXR. The aim of this study was to investigate the hepatoprotective effect of crocin against DXR used in cancer treatment. For this reason; forty Wistar rats (male-250-300 g) were allocated into four groups (n = 10/group): Control, Crocin, DXR and DXR+Crocin. Control and Crocin groups were administered saline and crocin (40 mg/kg, i.p) for 15 days, respectively. DXR group, cumulative dose 12 mg/kg DXR, was administered for 12 days via 48 h intervals in six injections (2 mg/kg each, i.p). DXR+Crocin group, crocin (40 mg/kg-i.p) was administered for 15 days, and DXR was given as in the DXR group. The results revealed that serum liver markers (alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) increased significantly after DXR administration but recovered after crocin therapy. In addition, lipid peroxidation (MDA), and inflammatory cytokine (TNF-α) increased after DXR application and the antioxidative defense system (GSH, SOD, CAT) significantly decreased and re-achieved by crocin treatment. Our results conclude that crocin treatment was related to ameliorated hepatocellular architecture and reduced hepatic oxidative stress and inflammation in rats with DXR-induced hepatotoxicity.
Collapse
Affiliation(s)
- M Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - O Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - M O Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Y Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
9
|
Maggi MA, Consonni R, Cagliani LR, Prestipino G, Bisti S, Picco C. Saffron and retinal neurodegenerative diseases: Relevance of chemical composition. J Anat 2023; 243:265-273. [PMID: 35778985 PMCID: PMC10335369 DOI: 10.1111/joa.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Saffron is an ancient spice largely used in traditional medicine. It has been found to be effective in treatment of retinal neurodegenerative diseases like age-related macular degeneration and Stargardt. In the present manuscript, it is shown that saffron's neuroprotective power is strongly related to the bioactivity of all its chemical components. Nuclear magnetic resonance spectroscopy and "in vitro" experiments confirm the relevance of crocins for saffron efficacy. These results underline the importance of strictly defining the chemical composition of the natural compounds in saffron to optimize their effectiveness in the treatment of diseases.
Collapse
Affiliation(s)
- Maria A. Maggi
- Hortus Novus srlCanistroItaly
- Department of Physical and Chemical SciencesUniversity of L’AquilaCoppitoItaly
| | - Roberto Consonni
- Lab. NMR, Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC)National Research CouncilMilanItaly
- National Institute of Biostructure and Biosystem (INBB)RomeItaly
| | - Laura R. Cagliani
- Lab. NMR, Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC)National Research CouncilMilanItaly
| | | | - Silvia Bisti
- National Institute of Biostructure and Biosystem (INBB)RomeItaly
- Department of Biotecnology and Applied Clinical Sciences, DISCABUniversity of L’AquilaCoppitoItaly
| | - Cristiana Picco
- National Institute of Biostructure and Biosystem (INBB)RomeItaly
- Institute of Biophysics (IBF)National Research CouncilGenoaItaly
| |
Collapse
|
10
|
Kovács-Valasek A, Rák T, Pöstyéni E, Csutak A, Gábriel R. Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them. Int J Mol Sci 2023; 24:ijms24108728. [PMID: 37240082 DOI: 10.3390/ijms24108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Tibor Rák
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
11
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
12
|
Upton R. Nomenclature: Herbal Taxonomy in the Global Commerce of Botanicals. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:221-260. [PMID: 37392313 DOI: 10.1007/978-3-031-26768-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
In the world trade of medicinal plants, the naming of plants is fundamental to understanding which species are acceptable for therapeutic use. There are a variety of nomenclatural systems that are used, inclusive of common names, Latinized binomials, Galenic or pharmaceutical names, and pharmacopeial definitions. Latinized binomials are the primary system used for naming wild plants, but these alone do not adequately define medicinal plant parts. Each system has its specific applications, advantages, and disadvantages. The topic of medicinal plant nomenclature is discussed broadly by underscoring when and how varying nomenclatural systems should be used. It is emphasized that pharmacopeial definitions represent the only naming system that integrates plant identity, relevant plant parts, and the specific quality metrics to which a material must comply, thus affording the most appropriate identification method available for medicinal plant materials.
Collapse
Affiliation(s)
- Roy Upton
- American Herbal Pharmacopoeia, P.O. Box 66809, Scotts Valley, CA, 95067, USA.
| |
Collapse
|
13
|
Yin Q, Xiong H. Chemotherapy-induced nephrotoxicity was improved by crocin in mouse model. Eur J Histochem 2022; 66:3541. [PMID: 36190398 PMCID: PMC9577377 DOI: 10.4081/ejh.2022.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Cisplatin (CDDP) has been widely used in cancer therapy, but it has been linked to side effects such as nephrotoxicity. Crocin is a carotenoid found in crocus and gardenia flowers that has been shown to have anti-oxidant properties, inhibit tumor growth, and provide neuroprotection. The purpose of this study was to investigate the protective effect of crocin against CDDP-induced nephrotoxicity in a mouse model. Kunming mice were administered orally with crocin for 7 days at the dose of 6.25 mg/kg and 12.5 mg/kg per body weight daily and were injected with CDDP via intraperitoneal route at the dose of 10 mg/kg per body weight. Using commercial kits, the oxidative stress markers glutathione, malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase were measured in the kidneys of mice. Immunohistochemistry was used to assess the levels of p53, cleaved caspase-3, and phospho-p38 mitogen-activated protein kinase in the kidneys. Crocin significantly reduced CDDP-induced changes in serum creatinine and blood urea nitrogen levels, according to the findings. Crocin reduced malondialdehyde levels and increased glutathione, glutathione peroxidase, catalase, and superoxide dismutase levels in CDDP-induced lipid peroxidation. Crocin also significantly inhibited p38 mitogen-activated protein kinase activation, p53 expression, and caspase-3 cleavage. In conclusion, crocin protects against CDDP-induced oxidative stress and nephrotoxicity by attenuating the activation of p38 mitogen-activated protein kinase and caspase-3 cleavage.
Collapse
Affiliation(s)
- Qichao Yin
- Department of Hematology, the Affiliated Hospital of Qinghai University, Xining.
| | - Hua Xiong
- Department of Hematology, the Affiliated Hospital of Qinghai University, Xining.
| |
Collapse
|
14
|
Omidkhoda SF, Hosseinzadeh H. Saffron and its active ingredients against human disorders: A literature review on existing clinical evidence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:913-933. [PMID: 36159329 PMCID: PMC9464341 DOI: 10.22038/ijbms.2022.63378.13985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
Saffron, the stigmas of Crocus sativus L., has been mentioned extensively in the traditional reference texts as a herbal medicine. Many clinical trials have been conducted on this valuable herbal substance and its main constituents following numerous cellular and animal assessments. In the present review, we have collected almost all of these clinical studies to clarify how much knowledge has clinically been achieved in this field so far and which scientific gaps are needed to be filled by more studies. A comprehensive literature review was conducted through a two-round search. First, we performed a general search for identifying the human disorders against which saffron was studied. Then, we searched specifically for the combination of saffron keywords and each disease name. Scientific databases including Scopus, PubMed, and Web of science were used for this search. Studies were collected through electronic databases from their inception up to August 2021. The largest number of these clinical studies represent the investigations into saffron efficacy in different neurological and mental disorders, particularly depression. This substance has clinically revealed significant protective effects against various types of depression, age-related macular degeneration, and allergic asthma. In some cases, such as sexual dysfunction, cognitive and metabolic disorder, the effects of saffron are still clinically open to dispute, or there are limited data on its positive influences. Overall, saffron and its constituents have promising effects on human disorders; however, it needs more clinical evidence or meta-analyses to be confirmed.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251;
| |
Collapse
|
15
|
Yousefi-Manesh H, Aghamollaei H, Dehpour AR, Sheibani M, Tavangar SM, Bagheri M, Shirooie S, Daryabari SH, Noori T. The role of saffron in improvement of ocular surface disease in a mouse model of Lacrimal Gland Excision-induced dry eye disease. Exp Eye Res 2022; 221:109127. [DOI: 10.1016/j.exer.2022.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
16
|
The Age-Related Macular Degeneration (AMD)-Preventing Mechanism of Natural Products. Processes (Basel) 2022. [DOI: 10.3390/pr10040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is related to central visual loss in elderly people and, based on the increment in the percentage of the aging population, the number of people suffering from AMD could increase. AMD is initiated by retinal pigment epithelium (RPE) cell death, finally leading to neovascularization in the macula lutea. AMD is an uncurable disease, but the symptom can be suppressed. The current therapy of AMD can be classified into four types: device-based treatment, anti-inflammatory drug treatment, anti-vascular endothelial growth factor treatment, and natural product treatment. All these therapies have adverse effects, however early AMD therapy used with products has several advantages, as it can prevent RPE cell apoptosis in safe doses. Cell death (apoptosis) is caused by various factors, such as oxidative stress, inflammation, carbonyl stress, and a deficiency in essential components for cells, and RPE cell death is related to oxidative stress, inflammation, and carbonyl stress. Some natural products have anti-oxidative effects, anti-inflammation effects, and/or anti-carbonylation effects. The AMD preventive mechanism of natural products varies, with some natural products activating one or more anti-apoptotic pathways, such as the Nrf2/HO-1 anti-oxidative pathway, the anti-inflammasome pathway, and the anti-carbonyl pathway. As AMD drug candidates from natural products effectively inhibit RPE cell death, they have the potential to be developed as drugs for preventing early (dry) AMD.
Collapse
|
17
|
Survey of the History and Applications of Saffron. CHINESE MEDICINE AND CULTURE 2022. [DOI: 10.1097/mc9.0000000000000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Heydari M, Zare M, Badie MR, Watson RR, Talebnejad MR, Afarid M. Crocin as a vision supplement. Clin Exp Optom 2022; 106:249-256. [PMID: 35231199 DOI: 10.1080/08164622.2022.2039554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Crocin is a natural ingredient of saffron (Crocus sativus L.) flower that has shown potential for application as a supplement in eye health and preserving vision. Crocin has been examined for its potential to treat various eye diseases such as glaucoma, macular dystrophies, diabetic retinopathy, and age-related macular degeneration. This review briefly discusses the role of crocin in different eye diseases. The underlying pathophysiological pathways involved in the effect of crocin on ophthalmic diseases are also reviewed. Preclinical evidence shows the cytoprotective, antioxidative, anti-inflammatory, and blood-flow enhancing effects of crocin in retinal tissue. Crocin also affects the retinal pathologies by activating PI3K/Akt and inhibiting NF-κB signalling pathways. Clinical evidence suggests that crocin improves outcomes in patients with retinal degenerations, retinal dystrophies, and glaucoma. Overall, crocin can be suggested as a potential vision supplement in healthy populations and patients with eye diseases. However, more clinical studies with larger sample sizes and longer follow-up durations are needed to confirm the current evidence.
Collapse
Affiliation(s)
- Mojtaba Heydari
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mousa Zare
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Badie
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
20
|
El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, Khallouki F, El Hessni A, Ibrahimi SO, Latruffe N, Couture R, Kharoubi O, Brahmi F, Hammami S, Masmoudi-Kouki O, Hammami M, Ghrairi T, Vejux A, Lizard G. Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients 2022; 14:nu14030597. [PMID: 35276955 PMCID: PMC8839854 DOI: 10.3390/nu14030597] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| | - Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comte, 21000 Dijon, France;
| | - Mohamed Ksila
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Salama Ouazzani Ibrahimi
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran 31000, Algeria;
| | - Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Sonia Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Olfa Masmoudi-Kouki
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Taoufik Ghrairi
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| |
Collapse
|
21
|
Nafees S, Akhtar J, Kaur J. Indian traditional medicinal plants in ophthalmic diseases. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:566-575. [PMID: 36583172 PMCID: PMC9768859 DOI: 10.22038/ajp.2022.20345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
Objective Traditional herbal plants have been in use since ancient times to treat ophthalmic conditions; so, the aim of this study is to evaluate some potent Indian traditional medicinal plants used in ophthalmic diseases in order to summarize their potential effect in ophthalmology along with their mechanism of action. Materials and Methods Databases PubMed, Google Scholar, and Embase were extensively explored. Additionally, relevant textbooks and literatures were consulted to summarize most of the considerable scientific literature for the review. Search term included ophthalmology, glaucoma, cataract, trachoma, conjunctivitis, traditional medicines, Unani drugs, and ayurvedic drugs were used. Around 80 review articles were consulted from the year 1982 to 2021. Results The traditional medicinal plants are easily available, cost-effective and have no associated side effects in comparison to current conventional treatments. Moreover, these drugs in oppose to modern medicine, have an inherent potential to accelerate the body's own immunity to fight against any infection. A large volume of scientific studies has reported the beneficial effects of traditional drugs in ophthalmology. Conclusion This review, therefore, describes the potential benefits and uses of some traditional medicinal plants used in ophthalmic diseases.
Collapse
Affiliation(s)
- Sana Nafees
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India,Corresponding Author: Tel: +9818558547,
| |
Collapse
|
22
|
Effect of Crocus sativus (Saffron) Intake on Top of Standard Treatment, on Disease Outcomes and Comorbidities in Patients with Rheumatic Diseases: Synthesis without Meta-Analysis (SWiM) and Level of Adherence to the CONSORT Statement for Randomized Controlled Trials Delivering Herbal Medicine Interventions. Nutrients 2021; 13:nu13124274. [PMID: 34959826 PMCID: PMC8706139 DOI: 10.3390/nu13124274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Rheumatic diseases (RDs) are often complicated by chronic symptoms and frequent side-effects associated with their treatment. Saffron, a spice derived from the Crocus sativus L. flower, is a popular complementary and alternative medicine among patients with RDs. The present systematic review aimed to summarize the available evidence regarding the efficacy of supplementation with saffron on disease outcomes and comorbidities in patients with RD diagnoses. PubMed, CENTRAL, clinicaltrials.gov and the grey literature were searched until October 2021, and relevant randomized controlled trials (RCTs) were screened for eligibility using Rayyan. Risk of bias was assessed using the Cochrane’s Risk of Bias-2.0 (RoB) tool. A synthesis without meta-analysis (SWiM) was performed by vote counting and an effect direction plot was created. Out of 125 reports, seven fulfilled the eligibility criteria belonging to five RCTs and were included in the SWiM. The RCTs involved patients with rheumatoid arthritis, osteoarthritis and fibromyalgia, and evaluated outcomes related to pain, disease activity, depression, immune response, inflammation, oxidative stress, health, fatigue and functional ability. The majority of trials demonstrated some concerns regarding overall bias. Moreover, the majority of trialists failed to adhere to the formula elaborations suggested by the CONSORT statement for RCTs incorporating herbal medicine interventions. Standardization of herbal medicine confirms its identity, purity and quality; however, the majority of trials failed to adhere to these guidelines. Due to the great heterogeneity and the lack of important information regarding the standardization and content of herbal interventions, it appears that the evidence is not enough to secure a direction of effect for any of the examined outcomes.
Collapse
|
23
|
Di Paolo M. Sequential PBM-Saffron Treatment in an Animal Model of Retinal Degeneration. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1059. [PMID: 34684096 PMCID: PMC8538989 DOI: 10.3390/medicina57101059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
Background and Objectives: Saffron treatment and photobiomodulation (PBM) are non-invasive therapeutic approaches able to mitigate and stabilize retinal degenerative diseases such as age-related macular degeneration (AMD). Although different, these therapies partially match their modulated pattern of genes. Recent attempts to find an additive effect by coadministration of saffron and PBM have failed. Instead, in this study, a different protocol to increase neuroprotection by providing consecutive saffron and PBM treatment administration is suggested. Materials and Methods: Albino rats, whose retinal damage was caused by light exposure (LD, light damage), were subjected to differential treatment protocols before and after LD: (1) PBM followed by saffron; and (2) single treatments of PBM. Thinning of the photoreceptor layer and neuro-inflammatory markers for gliosis and microglia were assessed via immune-histochemical techniques. Results: Results confirm that PBM and saffron alone cope with retinal neurodegenerative processes, preserving retinal thickness and gliosis and microglia invasion in a differential way. However, the synergistic effect of the combined treatment was restricted to the early neuroinflammation, even when provided sequentially. Conclusion: The broad spectra of action of both neuroprotectants require further investigation to identify other key pathways helpful in enhancing the effects of these two approaches in combination.
Collapse
Affiliation(s)
- Mattia Di Paolo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56121 Pisa, Italy;
- Interuniversity Consortium Biostructures and Biosystems National Institute, Via Medaglie d’Oro 305, 00136 Roma, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, Via Vetoio, 1, 67100 l’Aquila, Italy
- Bio Aurum srl, Via Mangionello, 12, 73024 Maglie, Italy
| |
Collapse
|
24
|
Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res 2021; 36:98-111. [PMID: 34532906 DOI: 10.1002/ptr.7286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
Crocus sativus Linn. (Saffron) is valued worldwide for its potential use in the management of various degenerative disorders, including cardiovascular diseases (CVDs), diabetes, cancer, metabolic syndrome (MetS), neurodegenerative diseases, immune disorders, and sexual dysfunction. Previous reports, based on clinical trials, suggest that crocetin, crocin, picrocrocin, and safranal are the main bioactive components of saffron with antioxidant, anti-inflammatory, and anti-apoptotic effects. In this comprehensive narrative review, we studied the recent clinical trials, investigating the medicinal applications of saffron and/or its components. The present results can provide important insights into the potential of saffron in preventing and treating different disorders, with a special focus on the underlying cellular and molecular mechanisms. However, further high-quality studies are needed to firmly establish the clinical efficacy of saffron in treating some degenerative diseases.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Shah HM, Jain AS, Joshi SV, Kharkar PS. Crocetin and related oxygen diffusion-enhancing compounds: Review of chemical synthesis, pharmacology, clinical development, and novel therapeutic applications. Drug Dev Res 2021; 82:883-895. [PMID: 33817811 PMCID: PMC8273373 DOI: 10.1002/ddr.21814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
The current pandemic forced us to introspect and revisit our armamentarium of medicinal agents which could be life‐saving in emergency situations. Oxygen diffusion‐enhancing compounds represent one such class of potential therapeutic agents, particularly in ischemic conditions. As rewarding as the name suggests, these agents, represented by the most advanced and first‐in‐class molecule, trans‐sodium crocetinate (TSC), are the subject of intense clinical investigation, including Phase 1b/2b clinical trials for COVID‐19. Being a successor of a natural product, crocetin, TSC is being investigated for various cancers as a radiosensitizer owing to its oxygen diffusion enhancement capability. The unique properties of TSC make it a promising therapeutic agent for various ailments such as hemorrhagic shock, stroke, heart attack, among others. The present review outlines various (bio)synthetic strategies, pharmacological aspects, clinical overview and potential therapeutic benefits of crocetin and related compounds including TSC. The recent literature focusing on the delivery aspects of these compounds is covered as well to paint the complete picture to the curious reader. Given the potential TSC holds as a first‐in‐class agent, small‐ and/or macromolecular therapeutics based on the core concept of improved oxygen diffusion from blood to the surrounding tissues where it is needed the most, will be developed in future and satisfy the unmet medical need for many diseases and disorders.
Collapse
Affiliation(s)
- Hriday M Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ashvi S Jain
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Shreerang V Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
26
|
Retinal Neurodegeneration: Correlation between Nutraceutical Treatment and Animal Model. Nutrients 2021; 13:nu13030770. [PMID: 33673449 PMCID: PMC7997156 DOI: 10.3390/nu13030770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal diseases can be induced by a variety of factors, including gene mutations, environmental stresses and dysmetabolic processes. The result is a progressive deterioration of visual function, which sometimes leads to blindness. Many treatments are under investigation, though results are still mostly unsatisfactory and restricted to specific pathologies, particularly in the case of gene therapy. The majority of treatments have been tested in animal models, but very few have progressed to human clinical trials. A relevant approach is to study the relation between the type of treatments and the degenerative characteristics of the animal model to better understand the effectiveness of each therapy. Here we compare the results obtained from different animal models treated with natural compounds (saffron and naringenin) to anticipate the potentiality of a single treatment in different pathologies.
Collapse
|
27
|
Antioxidant-Loaded Mucoadhesive Nanoparticles for Eye Drug Delivery: A New Strategy to Reduce Oxidative Stress. Processes (Basel) 2021. [DOI: 10.3390/pr9020379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There are several approaches to treat ocular diseases, which can be invasive or non-invasive. Within the non-invasive, new pharmaceutical strategies based on nanotechnology and mucoadhesive polymers are emerging methodologies, which aim to reach an efficient treatment of eye diseases. The aim of this work was the development of novel chitosan/hyaluronic acid nanoparticle systems with mucoadhesive properties, intended to encapsulate antioxidant molecules (e.g., crocin) aiming to reduce eye oxidative stress and, consequently, ocular disease. An ultraviolet (UV) absorber molecule, actinoquinol, was also added to the nanoparticles, to further decrease oxidative stress. The developed nanoparticles were characterized and the results showed a mean particle size lower than 400 nm, polydispersity index of 0.220 ± 0.034, positive zeta potential, and high yield. The nanoparticles were also characterized in terms of pH, osmolality, and viscosity. Mucoadhesion studies involving the determination of zeta potential, viscosity, and tackiness, showed a strong interaction between the nanoparticles and mucin. In vitro release studies using synthetic membranes in Franz diffusion cells were conducted to unravel the drug release kinetic profile. Ex vitro studies using pig eye scleras in Franz diffusion cells were performed to evaluate the permeation of the nanoparticles. Furthermore, in vitro assays using the ARPE-19 (adult retinal pigment epithelium) cell line showed that the nanoparticles can efficiently decrease oxidative stress and showed low cytotoxicity. Thus, the developed chitosan/hyaluronic acid nanoparticles are a promising system for the delivery of antioxidants to the eye, by increasing their residence time and controlling their delivery.
Collapse
|
28
|
Crosslinked Hyaluronic Acid with Liposomes and Crocin Confers Cytoprotection in an Experimental Model of Dry Eye. Molecules 2021; 26:molecules26040849. [PMID: 33561944 PMCID: PMC7915152 DOI: 10.3390/molecules26040849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial condition caused by tear deficiency and accompanied by ocular surface damage. Recent data support a key role of oxidative and inflammatory processes in the pathogenesis of DED. Hyaluronic acid (HA) is widely used in artificial tears to treat DED by improving ocular hydration and reducing surface friction. Crocin (Cr), the main constituent of saffron, is a renowned compound that exhibits potent antioxidant and anti-inflammatory effects. The present study was undertaken to assess the viscosity and muco-adhesiveness of a photoactivated formulation with crosslinked HA (cHA), Cr, and liposomes (cHA-Cr-L). Our aim was also to evaluate whether cHA-Cr-L may exert cytoprotective effects against oxidative and inflammatory processes in human corneal epithelial cells (HCECs). Viscosity was measured using a rotational rheometer, and then the muco-adhesiveness was evaluated. Under hyperosmolarity (450 mOsm), the HCECs were treated with cHA-Cr-L. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR). The levels of reactive oxygen species (ROS) were measured using the DCF assay. The combined action of cHA-Cr-L produced a higher viscosity and muco-adhesiveness compared to the control. The anti-inflammatory effect of cHA-Cr-L was achieved through a significant reduction of IL-1β and TNFα (p < 0.001). The results also showed that cHA-Cr-L reduces ROS production under conditions of hyperosmolarity (p < 0.001). We conclude that cHA-Cr-L has potential as a therapeutic agent in DED, which should be further investigated.
Collapse
|
29
|
Bosch-Morell F, Villagrasa V, Ortega T, Acero N, Muñoz-Mingarro D, González-Rosende ME, Castillo E, Sanahuja MA, Soriano P, Martínez-Solís I. Medicinal plants and natural products as neuroprotective agents in age-related macular degeneration. Neural Regen Res 2020; 15:2207-2216. [PMID: 32594032 PMCID: PMC7749482 DOI: 10.4103/1673-5374.284978] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
The retina may suffer neurodegenerative damages, as other tissues of the central nervous system do, and serious eye diseases may develop. One of them is age-related macular degeneration, which causes progressive loss of vision due to retina degeneration. Treatment of age-related macular degeneration focuses on antioxidant agents and anti-vascular endothelial growth factor compounds, among others, that prevent/diminish oxidative stress and reduce neovascularisation respectively. The phytochemicals, medicinal plants and/or plant-diet supplements might be a useful adjunct in prevention or treatment of age-related macular degeneration owing to their antioxidant and anti-vascular endothelial growth factor properties. This review article presents the most investigated plants and natural products in relation to age-related macular degeneration, such as saffron, ginkgo, bilberry and blueberry, curcuma or turmeric, carotenoids, polyphenols, and vitamins C and E. This study provides up-to-date information on the effects, treatments, safety and efficiency of these phytotherapy products.
Collapse
Affiliation(s)
- Francisco Bosch-Morell
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Victoria Villagrasa
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Teresa Ortega
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Acero
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Dolores Muñoz-Mingarro
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M. Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - M. Amparo Sanahuja
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Pilar Soriano
- ICBiBE-Botanical Garden, University of Valencia, Valencia, Spain
| | - Isabel Martínez-Solís
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
- ICBiBE-Botanical Garden, University of Valencia, Valencia, Spain
| |
Collapse
|
30
|
Saffron: Chemical Composition and Neuroprotective Activity. Molecules 2020; 25:molecules25235618. [PMID: 33260389 PMCID: PMC7731018 DOI: 10.3390/molecules25235618] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron's ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components. We summarize previous evidence and provide original data showing that results obtained both "in vivo" and "in vitro" lead to the same conclusion.
Collapse
|
31
|
Skourtis G, Krontira A, Ntaoula S, Ferlemi AV, Zeliou K, Georgakopoulos C, Margarity GM, Lamari NF, Pharmakakis N. Protective antioxidant effects of saffron extract on retinas of streptozotocin-induced diabetic rats. Rom J Ophthalmol 2020; 64:394-403. [PMID: 33367177 PMCID: PMC7739020 DOI: 10.22336/rjo.2020.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: Oxidative stress plays an important role in the pathogenesis of diabetic retinopathy. The aim of the present study was to investigate the effect of Crocus sativus L. styles (saffron) extract on oxidative stress indices of retina in streptozotocin (STZ)-induced diabetic rats. Methods: Adult male Wistar rats (n=20) were randomized into the following 4 groups (n=6-7/ group): Control group (C): normal, Control + Saffron group (CS): non-diabetic rats treated with 60 mg/ kg of saffron extract, Diabetic group (D) and Diabetic + Saffron group (DS): diabetic rats treated with 60 mg/ kg saffron extract. We determined the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) as markers of antioxidant response, as well as malondialdehyde (MDA) as a marker of lipid peroxidation. Results: Induction of diabetes caused a significant decline in the activities of CAT (76.43%), SOD (53.43%) and GPx (77.58%). MDA levels were significantly lower in the DS group (0.878 ± 0.375 nmol MDA/ mg protein) as compared to D group (1.950 ± 0.299 nmol MDA/ mg protein, p<0.01) and in the CS group (0.503 ± 0.221) in comparison to C group (1.699 ± 0.454, p<0.01). Moreover, SOD and GPx activities were significantly higher (more than 1.5 and 3.5-fold respectively) after treatment with saffron (p<0.01). Regarding the retinas of non-diabetic animals, the administration of the extract caused an > 1.8-fold increase in the activity of CAT (p<0.05) and a 3-fold decrease in MDA levels (p<0.01). Conclusions: This study showed that saffron extract has a protective antioxidant action in retinas of diabetic rats. Abbreviations: C = Control group, CS = non-diabetic rats diabetic rats treated with 60 mg/ kg saffron extract, D = diabetic group, DS = diabetic rats treated with 60 mg/ kg saffron extract, SOD = superoxide dismutase, GPx = glutathione peroxidase, CAT = catalase, MDA = malondialdehyde, DM = diabetes mellitus, DR = diabetic retinopathy, ROS = reactive oxygen species, STZ = streptozotocin, GSH = reduced glutathione.
Collapse
Affiliation(s)
- Georgios Skourtis
- Ophthalmology Clinic, Department of Medicine, University of Patras, Rio, Greece
| | - Anthi Krontira
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, Greece
| | - Stavroula Ntaoula
- Ophthalmology Clinic, Department of Medicine, University of Patras, Rio, Greece
| | - Anastasia Varvara Ferlemi
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, Rio, Greece
| | - Konstantina Zeliou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, Rio, Greece
| | | | | | - Nikolaos Fotini Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, Rio, Greece
| | | |
Collapse
|
32
|
Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD + Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020; 12:nu12092871. [PMID: 32961812 PMCID: PMC7551676 DOI: 10.3390/nu12092871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.
Collapse
Affiliation(s)
- Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, Wales, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- School of Medicine, Cardiff University, Cardiff CF14 4YS, Wales, UK
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| |
Collapse
|
33
|
Sánchez-González JM, De-Hita-Cantalejo C, Sánchez-González MC. Crosslinked hyaluronic acid with liposomes and crocin for management symptoms of dry eye disease caused by moderate meibomian gland dysfunction. Int J Ophthalmol 2020; 13:1368-1373. [PMID: 32953573 DOI: 10.18240/ijo.2020.09.05] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
AIM To study the effect of uncrosslinked and crosslinked hyaluronic acid combined with other artificial tear components in patients with dry eye caused by moderate meibomian gland dysfunction. METHODS Prospective, single-blind, contralateral eye study. Fifty eyes (25 patients) were analyzed. Eye selection for each tear type was random, and the eye drop formulations, 0.4% uncrosslinked hyaluronic acid and 0.2% galactoxyloglucan (tear A) and 0.15% crosslinked hyaluronic acid, crocin, and liposomes (tear B) were used. The determined dosing schedule was three times a day for six weeks, and the study participants underwent a clinical examination before and 45d after lubricant treatment. The Schirmer test, tear breakup time (TBUT) test, and Ocular Surface Disease Index (OSDI) questionnaire were applied before and after instillation period with both types of artificial tears. RESULTS On the Schirmer test, a significant improvement was obtained with both tear A (P<0.01) and tear B (P<0.01). On the TBUT test, a significant improvement was obtained with tear A (P<0.01) and tear B (P<0.01). The OSDI score significantly decreased after instillation period with both artificial tear types (P<0.01). CONCLUSION Uncrosslinked hyaluronic acid combined with other components, such as tamarind seed polysaccharide, and crosslinked hyaluronic acid combined with liposomes and crocin are effective for management symptoms of dry eye disease.
Collapse
|
34
|
Liu P, Xue Y, Zheng B, Liang Y, Zhang J, Shi J, Chu X, Han X, Chu L. Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88:106959. [PMID: 32919218 DOI: 10.1016/j.intimp.2020.106959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Arsenic trioxide (ATO)-induced renal toxicity through oxidative stress and apoptosis restricts the therapeutic action of acute myelogenous leukemia. Crocetin (Crt) possesses antioxidant and antiapoptosis properties, and has certain renal protective effects, but it has not been reported that it has protective effect on renal injury caused by ATO. The current study explored the effects and mechanisms of Crt on kidney damage induced by ATO. Fifty Sprague-Dawley rats were randomly divided into five groups. Adult rats were given Crt concurrently with ATO for 1 week. On the 8th day, rats were killed and blood and kidney tissues were collected. Histopathological changes were measured, and kidneytissues and serum were used to determine renal function and antioxidant enzyme activity. In addition, the protein expression levels of P-PI3K, PI3K, P-AKT, AKT, CytC, Bax, Bcl-2 and Caspase-3 were determined via western blot analysis. Results revealed ATO induced renal morphological alterations and activated serum BUN and CRE. Compared with the control group, ROS, MDA, IL-1β, TNF-α, protein carbonyls (PC), lipid hydroperoxides (LOOH) and arsenic concentration levels were found to be significantly increased and SOD, CAT, GSH-Px, GSH and total sulphydryl groups (TSH) levels were attenuated in the ATO group. Crt markedly reduced oxidative stress in ATO-induced nephrotoxicity. Further, ATO induced apoptosis by significantly enhancing CytC, Bax and Caspase-3 and inhibiting Bcl-2. Administration with Crt markedly improved the expression of apoptosis factor. Moreover, Crt treatment stimulated the expressions of P-PI3K, PI3K, P-AKT, AKT induced by ATO. This study indicates Crt could prevent renal injury caused by ATO through inhibiting oxidative stress, inflammation and apoptosis, and its mechanism may be related to activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yurun Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yingran Liang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jing Shi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China.
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
35
|
Huang CP, Lin YW, Huang YC, Tsai FJ. Mitochondrial Dysfunction as a Novel Target for Neuroprotective Nutraceuticals in Ocular Diseases. Nutrients 2020; 12:nu12071950. [PMID: 32629966 PMCID: PMC7400242 DOI: 10.3390/nu12071950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The eyes require a rich oxygen and nutrient supply; hence, the high-energy demand of the visual system makes it sensitive to oxidative stress. Excessive free radicals result in mitochondrial dysfunction and lead to retinal neurodegeneration, as an early stage of retinal metabolic disorders. Retinal cells are vulnerable because of their coordinated interaction and intricate neural networks. Nutraceuticals are believed to target multiple pathways and have shown neuroprotective benefits by scavenging free radicals and promoting mitochondrial gene expression. Furthermore, encouraging results demonstrate that nutraceuticals improve the organization of retinal cells and visual functions. This review discusses the mitochondrial impairments of retinal cells and the mechanisms underlying the neuroprotective effects of nutraceuticals. However, some unsolved problems still exist between laboratory study and clinical therapy. Poor bioavailability and bioaccessibility strongly limit their development. A new delivery system and improved formulation may offer promise for health care applications.
Collapse
Affiliation(s)
- Chun-Ping Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yu-Chuen Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (Y.-C.H.); (F.-J.T.)
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Children’s Hospital of China Medical University, Taichung 404, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (Y.-C.H.); (F.-J.T.)
| |
Collapse
|
36
|
Bioaccessibility and Pharmacokinetics of a Commercial Saffron ( Crocus sativus L.) Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1575730. [PMID: 32089715 PMCID: PMC7013346 DOI: 10.1155/2020/1575730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/04/2020] [Indexed: 01/06/2023]
Abstract
There are few studies about the pharmacokinetics of the low-molecular mass carotenoids crocetin or crocin isomers from saffron (Crocus sativus L.). None has been performed with a galenic preparation of a standardised saffron extract. The aim of the present research work was to study the effect of in vitro digestion process on the main bioactive components of saffron extract tablets and the corresponding pharmacokinetic parameters in humans. Pharmacokinetics were calculated collecting blood samples every 30 min during the first 3 h and at 24 h after administration of two different concentrations (56 and 84 mg of the saffron extract) to 13 healthy human volunteers. Additionally, an in vitro digestion process was performed in order to determine the bioaccessibility of saffron main bioactive compounds. Identification and quantification analysis were performed by HPLC-PAD/MS. Digestion resulted in 40% of bioaccesibility for crocin isomers, whereas, safranal content followed an opposite trend increasing about 2 folds its initial concentration after the digestion process. Crocetin in plasma was detected in a maximum concentration (C max) in blood between 60 and 90 min after oral consumption with dose-dependent response kinetics, showing that crocin isomers from galenic preparation of saffron extract are rapidly transformed into crocetin. The results showed that this tested galenic form is an efficient way to administer a saffron extract, since the observed crocetin C max was similar and more quickly bioavailable than those obtained by other studies with much higher concentrations of crocetin.
Collapse
|
37
|
Fernández-Albarral JA, de Hoz R, Ramírez AI, López-Cuenca I, Salobrar-García E, Pinazo-Durán MD, Ramírez JM, Salazar JJ. Beneficial effects of saffron ( Crocus sativus L.) in ocular pathologies, particularly neurodegenerative retinal diseases. Neural Regen Res 2020; 15:1408-1416. [PMID: 31997799 PMCID: PMC7059587 DOI: 10.4103/1673-5374.274325] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Saffron (Crocus sativus L.) has been traditionally used in food preparation and as a medicinal plant. It currently has numerous therapeutic properties attributed to it, such as protection against ischemia, as well as anticonvulsant, antidepressant, anxiolytic, hypolipidemic, anti-atherogenic, anti-hypertensive, antidiabetic, and anti-cancer properties. In addition, saffron has remarkable beneficial properties, such as anti-apoptotic, anti-inflammatory and antioxidant activities, due to its main metabolites, among which crocin and crocetin stand out. Furthermore, increasing evidence underwrites the possible neuroprotective role of the main bioactive saffron constituents in neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, both in experimental models and in clinical studies in patients. Currently, saffron supplementation is being tested for ocular neurodegenerative pathologies, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration and glaucoma, among others, and shows beneficial effects. The present article provides a comprehensive and up to date report of the investigations on the beneficial effects of saffron extracts on the main neurodegenerative ocular pathologies and other ocular diseases. This review showed that saffron extracts could be considered promising therapeutic agents to help in the treatment of ocular neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Madrid, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Madrid, Spain
| | | | - María D Pinazo-Durán
- Unidad de Investigación Oftalmológica Santiago Grisolia, Universidad de Valencia, Valencia, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Madrid, Spain
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Madrid, Spain
| |
Collapse
|
38
|
Abstract
Diet is a key lifestyle factor that can have long-term effects on ocular health [...].
Collapse
|
39
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, López-Villarín N, Salobrar-García E, López-Cuenca I, Licastro E, Inarejos-García AM, Almodóvar P, Pinazo-Durán MD, Ramírez JM, Salazar JJ. Neuroprotective and Anti-Inflammatory Effects of a Hydrophilic Saffron Extract in a Model of Glaucoma. Int J Mol Sci 2019; 20:E4110. [PMID: 31443568 PMCID: PMC6747458 DOI: 10.3390/ijms20174110] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs). An increase in the intraocular pressure is the principal risk factor for such loss, but controlling this pressure does not always prevent glaucomatous damage. Activation of immune cells resident in the retina (microglia) may contribute to RGC death. Thus, a substance with anti-inflammatory activity may protect against RGC degeneration. This study investigated the neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract standardized to 3% crocin content in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Treatment with saffron extract decreased microglion numbers and morphological signs of their activation, including soma size and process retraction, both in OHT and in contralateral eyes. Saffron extract treatment also partially reversed OHT-induced down-regulation of P2RY12. In addition, the extract prevented retinal ganglion cell death in OHT eyes. Oral administration of saffron extract was able to decrease the neuroinflammation associated with increased intraocular pressure, preventing retinal ganglion cell death. Our findings indicate that saffron extract may exert a protective effect in glaucomatous pathology.
Collapse
Affiliation(s)
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, 28037 Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, 28037 Madrid, Spain
| | - Nerea López-Villarín
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain
| | - Ester Licastro
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain
| | | | - Paula Almodóvar
- Pharmactive Biotech Products, SL. Parque Científico de Madrid, Faraday 7, 28049 Madrid, Spain
| | - Maria D Pinazo-Durán
- Unidad de Investigación Oftalmológica Santiago Grisolia, Universidad de Valencia, 46017 Valencia, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain.
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, UCM, 28040 Madrid, Spain.
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, UCM, 28040 Madrid, Spain.
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, 28037 Madrid, Spain.
| |
Collapse
|
40
|
Mori K, Torii H, Fujimoto S, Jiang X, Ikeda SI, Yotsukura E, Koh S, Kurihara T, Nishida K, Tsubota K. The Effect of Dietary Supplementation of Crocetin for Myopia Control in Children: A Randomized Clinical Trial. J Clin Med 2019; 8:jcm8081179. [PMID: 31394821 PMCID: PMC6724222 DOI: 10.3390/jcm8081179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
The prevalence of myopia has been increasing in recent years. The natural carotenoid crocetin has been reported to suppress experimental myopia in mice. We evaluated the effects of crocetin on myopia suppression in children. A multicenter randomized double-blind placebo-controlled clinical trial was performed with 69 participants aged 6 to 12 years, whose cycloplegic spherical equivalent refractions (SER) were between -1.5 and -4.5 diopter (D). The participants were randomized to receive either a placebo or crocetin and followed up for 24 weeks. Axial length (AL) elongation and changes in SER were evaluated for 24 weeks. Both written informed assent from the participants and written informed consent from legal guardians were obtained in this study because the selection criteria of this trial included children aged between 6 and 12 years old. This trial was approved by the institutional review boards. A mixed-effects model was used for analysis, using both eyes. Two participants dropped out and 67 children completed this trial. The change in SER in the placebo group, -0.41 ± 0.05 D (mean ± standard deviation), was significantly more myopic compared to that in the crocetin group, -0.33 ± 0.05 D (p = 0.049). The AL elongation in the placebo group, 0.21 ± 0.02 mm, was significantly bigger than that in the crocetin group, 0.18 ± 0.02 mm (p = 0.046). In conclusion, dietary crocetin may have a suppressive effect on myopia progression in children, but large-scale studies are required in order to confirm this effect.
Collapse
Affiliation(s)
- Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoko Fujimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Xiaoyan Jiang
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shin-Ichi Ikeda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Erisa Yotsukura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shizuka Koh
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|