1
|
Gensberger-Reigl S, Zenker HE. Detection of intact bovine milk proteins after simulated gastrointestinal infant digestion using UHPLC - HRMS. Food Chem 2025; 465:142034. [PMID: 39571429 DOI: 10.1016/j.foodchem.2024.142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
This study demonstrates the development and application of an ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) method for the rapid and sensitive identification of intact bovine milk proteins following simulated gastrointestinal infant digestion. The new method enables the differentiation between partially hydrolysed/modified and fully intact proteins. In the raw milk, intact α-lactalbumin was visible on SDS - PAGE until the end of the gastrointestinal digestion, while it was not detected with UHPLC-HRMS. Analysis of both raw and heated milk samples revealed that the method is applicable to various milk types. Interestingly, heated milk showed additional signals in the mass spectrum, indicating non-enzymatic post-translational modifications. The relative abundance of these proteoforms could be followed along digestion. These findings highlight the versatility and sensitivity of UHPLC-HRMS in elucidating protein structures and modifications, providing valuable insights into how simulated digestion affects milk protein composition.
Collapse
Affiliation(s)
- Sabrina Gensberger-Reigl
- Chair of Food Chemistry, Department Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Hannah E Zenker
- Chair of Food Chemistry, Department Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Croes CACC, Chrysanthou M, Hoppenbrouwers T, Wichers H, Keijer J, Savelkoul HFJ, Teodorowicz M. Diabetic Glycation of Human Serum Albumin Affects Its Immunogenicity. Biomolecules 2024; 14:1492. [PMID: 39766199 PMCID: PMC11673269 DOI: 10.3390/biom14121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here. HSA was glycated with D-glucose, MGO, or glyoxylic acid (CML). Glycation-related biochemical changes were characterized using various biochemical methods. The binding of differentially glycated HSA to AGE receptors was determined with inhibition ELISAs, and the impact on inflammatory markers in macrophage cell line THP-1 and adherent monocytes isolated from human peripheral blood mononuclear cells (PBMCs) was studied. All glycation methods led to unique AGE profiles and had a distinct impact on protein structure. Glycation resulted in increased binding of HSA to the AGE receptors, with MGO modification showing the highest binding, followed by glucose and, lastly, CML. Additionally, modification of HSA with MGO led to the increased expression of pro-inflammatory markers in THP-1 macrophages and enhanced phosphorylation of NF-κB p65. The same pattern, although less prominent, was observed for HSA glycated with glucose and CML, respectively. An increase in pro-inflammatory markers was also observed in PBMC-derived monocytes exposed to all glycated forms of HSA, although HSA-CML led to a significantly higher inflammatory response. In conclusion, the type of HSA glycation impacts immune functional readouts with potential relevance for diabetes.
Collapse
Affiliation(s)
- Cresci-Anne C. C. Croes
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Marialena Chrysanthou
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
| | - Tamara Hoppenbrouwers
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Harry Wichers
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| |
Collapse
|
3
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Glycation of soy and pea proteins influences infant gastric digestibility more than intestinal digestibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ren Q, Boiani M, He T, Wichers HJ, Hettinga KA. Heating affects protein digestion of skimmed goat milk under simulated infant conditions. Food Chem 2023; 402:134261. [DOI: 10.1016/j.foodchem.2022.134261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022]
|
6
|
Yang J, Kuang H, Xiong X, Li N, Song J. Alteration of the allergenicity of cow's milk proteins using different food processing modifications. Crit Rev Food Sci Nutr 2022; 64:4622-4642. [PMID: 36377678 DOI: 10.1080/10408398.2022.2144792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Milk is an essential source of protein for infants and young children. At the same time, cow's milk is also one of the most common allergenic foods causing food allergies in children. Recently, cow's milk allergy (CMA) has become a common public health issue worldwide. Modern food processing technologies have been developed to reduce the allergenicity of milk proteins and improve the quality of life of patients with CMA. In this review, we summarize the main allergens in cow's milk, and introduce the recent findings on CMA responses. Moreover, the reduced effects and underlying mechanisms of different food processing techniques (such as heating, high pressure, γ-ray irradiation, ultrasound irradiation, hydrolysis, glycosylation, etc.) on the allergenicity of cow's milk proteins, and the application of processed cow's milk in clinical studies, are discussed. In addition, we describe the changes of nutritional value in cow's milk treated by different food processing technologies. This review provides an in-depth understanding of the allergenicity reduction of cow's milk proteins by various food processing techniques.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- College of Modern Industry for Nutrition & Health, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Xiaoli Xiong
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ning Li
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Maillard Reaction Induced Changes in Allergenicity of Food. Foods 2022; 11:foods11040530. [PMID: 35206007 PMCID: PMC8870895 DOI: 10.3390/foods11040530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Food allergy is increasing in prevalence, posing aheavier social and financial burden. At present, there is still no widely accepted treatment for it. Methods to reduce or eliminate the allergenicity of trigger foods are urgently needed. Technological processing contributes to producing some hypoallergenic foods. Among the processing methods, the Maillard reaction (MR) is popular because neither special chemical materials nor sophisticated equipment is needed. MR may affect the allergenicity of proteins by disrupting the conformational epitope, disclosing the hidden epitope, masking the linear epitope, and/or forming a new epitope. Changes in the allergenicity of foods after processing are affected by various factors, such as the characteristics of the allergen, the processing parameters, and the processing matrix, and they are therefore variable and difficult to predict. This paper reviews the effects of MR on the allergenicity of each allergen group from common allergenic foods.
Collapse
|
8
|
Receptor Mediated Effects of Advanced Glycation End Products (AGEs) on Innate and Adaptative Immunity: Relevance for Food Allergy. Nutrients 2022; 14:nu14020371. [PMID: 35057553 PMCID: PMC8778532 DOI: 10.3390/nu14020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
As of late, evidence has been emerging that the Maillard reaction (MR, also referred to as glycation) affects the structure and function of food proteins. MR induces the conformational and chemical modification of food proteins, not only on the level of IgG/IgE recognition, but also by increasing the interaction and recognition of these modified proteins by antigen-presenting cells (APCs). This affects their biological properties, including digestibility, bioavailability, immunogenicity, and ultimately their allergenicity. APCs possess various receptors that recognize glycation structures, which include receptor for advanced glycation end products (RAGE), scavenger receptors (SRs), galectin-3 and CD36. Through these receptors, glycation structures may influence the recognition, uptake and antigen-processing of food allergens by dendritic cells (DCs) and monocytes. This may lead to enhanced cytokine production and maturation of DCs, and may also induce adaptive immune responses to the antigens/allergens as a result of antigen uptake, processing and presentation to T cells. Here, we aim to review the current literature on the immunogenicity of AGEs originating from food (exogenous or dietary AGEs) in relation to AGEs that are formed within the body (endogenous AGEs), their interactions with receptors present on immune cells, and their effects on the activation of the innate as well as the adaptive immune system. Finally, we review the clinical relevance of AGEs in food allergies.
Collapse
|
9
|
Zhang L, Zhou R, Zhang J, Zhou P. Heat-induced denaturation and bioactivity changes of whey proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zenker HE, Teodorowicz M, Wichers HJ, Hettinga KA. No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods 2021; 10:foods10081836. [PMID: 34441613 PMCID: PMC8394258 DOI: 10.3390/foods10081836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
For the determination of the binding of heated cow’s milk whey proteins such as β-lactoglobulin to the receptors expressed on immune cells, inhibition ELISA with the soluble form of the receptor for advanced glycation end products (sRAGE) and scavenger receptor class B (CD36) has been successfully used in the past. However, binding to heated and glycated caseins in this read-out system has not been tested. In this study, inhibition ELISA was applied to measure the binding of cow’s milk casein alone, as well as all milk proteins together, which underwent differential heat treatment, to sRAGE and CD36, and we compared those results to a dot blot read out. Moreover, binding to sRAGE and CD36 of differentially heated milk protein was measured before and after in vitro digestion. Casein showed binding to sRAGE and CD36, independent from the heat treatment, in ELISA, while the dot blot showed only binding to high-temperature-heated milk protein, indicating that the binding is not related to processing but to the physicochemical characteristics of the casein. This binding decreased after passage of casein through the intestinal phase.
Collapse
Affiliation(s)
- Hannah E. Zenker
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
| | - Malgorzata Teodorowicz
- Cell Biology & Immunology, Wageningen University & Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Harry J. Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
| | - Kasper A. Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
11
|
Zahir M, Fogliano V, Capuano E. Soybean germination limits the role of cell wall integrity in controlling protein physicochemical changes during cooking and improves protein digestibility. Food Res Int 2021; 143:110254. [PMID: 33992360 DOI: 10.1016/j.foodres.2021.110254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Previous studies showed that in vitro digestibility of proteins in cooked beans is modulated by heat treatment and that the effect may be different whether proteins are heated in intact cotyledon or in a bean flour. In this study, germinated and non-germinated soybean cotyledons and flour were boiled at 100 °C for varying times (30, 90, or 180 min). After grinding, the level of trypsin inhibitors, protein aggregation, surface hydrophobicity, the secondary structure, and in vitro digestibility were studied. The presence of an intact cell wall during cooking increased protein denaturation temperature by about 10% and reduced the denaturation of trypsin inhibitors, and induced distinct changes in protein surface hydrophobicity and secondary structure. These physicochemical properties translated into an increment in protein degree of hydrolysis (DH, 72%) of protein cooked for 30 min as flour compared to proteins cooked in intact soybean tissues (64%). Increase in cooking times (90 and 180 min) resulted in limited improvement in the protein digestibility and changes in protein physicochemical properties for both boiled cotyledons and flour. Soybean germination resulted in distinct changes in protein physicochemical properties and higher protein DH% of raw soybean (61%) compared to non-germinated raw soybean (36%). An increase in protein digestibility of germinated soybean was also observed after boiling for both cotyledon and flour. However, significant differences in DH% were not observed between proteins boiled in intact cotyledon and in a flour. This work provides extra knowledge of the role of cellular integrity on protein properties in plant foods and suggests that germination or grinding before cooking may increase protein digestibility.
Collapse
Affiliation(s)
- Mostafa Zahir
- Food Quality and Design Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
12
|
Teodorowicz M, Zenker HE, Ewaz A, Tsallis T, Mauser A, Gensberger‐Reigl S, de Jong NW, Hettinga KA, Wichers HJ, van Neerven RJJ, Savelkoul HFJ. Enhanced Uptake of Processed Bovine β-Lactoglobulin by Antigen Presenting Cells: Identification of Receptors and Implications for Allergenicity. Mol Nutr Food Res 2021; 65:e2000834. [PMID: 33559978 PMCID: PMC8244112 DOI: 10.1002/mnfr.202000834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Indexed: 12/12/2022]
Abstract
SCOPE β-lactoglobulin (BLG) is a major cow milk allergen encountered by the immune system of infants fed with milk-based formulas. To determine the effect of processing on immunogenicity of BLG, this article characterized how heated and glycated BLG are recognized and internalized by APCs. Also, the effect of heat-induced structural changes as well as gastrointestinal digestion on immunogenicity of BLG is evaluated. METHODS AND RESULTS The binding and uptake of BLG from raw cow milk and heated either alone (BLG-H) or with lactose/glucose (BLG-Lac and BLG-Glu) to the receptors present on APCs are analyzed by ELISA and cell-binding assays. Heated and glycated BLG is internalized via galectin-3 (Gal-3)and scavenger receptors (CD36 and SR-AI) while binding to the receptor for advanced glycation end products (R AGE) does not cause internalization. Receptor affinity of BLG is dependent on increased hydrophobicity, β-sheet exposure and aggregation. Digested glycated BLG maintained binding to sRAGE and Gal-3 but not to CD36 and SR-AI, and is detected on the surface of APCs. This suggests a mechanism via which digested glycated BLG may trigger innate (via RAGE) and adaptive immunity (via Gal-3). CONCLUSIONS This study defines structural characteristics of heated and glycated BLG determining its interaction with APCs via specific receptors thus revealing enhanced immunogenicity of glycated versus heated BLG.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Hannah E. Zenker
- Food Quality & Design GroupWageningen University & Research CentreWageningenthe Netherlands
| | - Arifa Ewaz
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Theodoros Tsallis
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Andreas Mauser
- Food Chemistry, Department of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Sabrina Gensberger‐Reigl
- Food Chemistry, Department of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Nicolette W. de Jong
- Internal Medicine, Allergology & Clinical ImmunologyErasmus University Medical Centre Rotterdam, the Netherlands
| | - Kasper A. Hettinga
- Food Quality & Design GroupWageningen University & Research CentreWageningenthe Netherlands
| | - Harry J. Wichers
- Food & Biobased ResearchWageningen University & Research CentreWageningenthe Netherlands
| | - R. J. Joost van Neerven
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
- Friesland CampinaAmersfoortthe Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| |
Collapse
|
13
|
Cow's Milk Processing-Friend or Foe in Food Allergy? Foods 2021; 10:foods10030572. [PMID: 33803451 PMCID: PMC8000412 DOI: 10.3390/foods10030572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cow’s milk (CM) is an integral part of our daily diet starting in infancy and continuing throughout our lifetime. Its composition is rich in proteins with a high nutritional value, bioactive components, milk minerals including calcium, and a range of immunoactive substances. However, cow’s milk can also induce a range of immune-mediated diseases including non-IgE-mediated food allergies and IgE-mediated food allergies. Cow’s milk allergens have been identified and characterized and the most relevant ones can be assigned to both, the whey and casein fraction. For preservation a range of processing methods are applied to make cow’s milk and dairy products safe for consumers. However, these methods affect milk components and thus alter the overall immunogenic activity of cow’s milk. This review summarizes the current knowledge on cow’s milk allergens and immunoactive substances and the impact of the different processes up- or downregulating the immunogenicity of the respective proteins. It highlights the gaps of knowledge of the related disease mechanisms and the still unidentified beneficial immunomodulating compounds of cow’s milk.
Collapse
|
14
|
Deng Y, Govers C, Ter Beest E, van Dijk AJ, Hettinga K, Wichers HJ. A THP-1 Cell Line-Based Exploration of Immune Responses Toward Heat-Treated BLG. Front Nutr 2021; 7:612397. [PMID: 33521038 PMCID: PMC7838438 DOI: 10.3389/fnut.2020.612397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Allergen recognition and processing by antigen presenting cells is essential for the sensitization step of food allergy. Macrophages and dendritic cells are both phagocytic antigen presenting cells and play important roles in innate immune responses and signaling between the innate and adaptive immune system. To obtain a model system with a homogeneous genetic background, we derived macrophages and dendritic cells from THP-1 monocytes. The difference between macrophages and dendritic cells was clearly shown by differences in their transcription response (microarray) and protein expression levels. Their resemblance to primary cells was analyzed by comparison to properties as described in literature. The uptake of β-lactoglobulin after wet-heating (60°C in solution) by THP-1 derived macrophages was earlier reported to be significantly increased. To analyse the subsequent immune response, we incubated THP-1 derived macrophages and dendritic cells with native and differently processed β-lactoglobulin and determined the transcription and cytokine expression levels of the cells. A stronger transcriptional response was found in macrophages than in dendritic cells, while severely structurally modified β-lactoglobulin induced a more limited transcriptional response, especially when compared to native and limitedly modified β-lactoglobulin. These results show that processing is relevant for the transcriptional response toward β-lactoglobulin of innate immune cells.
Collapse
Affiliation(s)
- Ying Deng
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Coen Govers
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Ellen Ter Beest
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Aalt-Jan van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Zenker HE, Raupbach J, Boeren S, Wichers HJ, Hettinga KA. The effect of low vs. high temperature dry heating on solubility and digestibility of cow's milk protein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Zenker HE, Wichers HJ, Tomassen MMM, Boeren S, De Jong NW, Hettinga KA. Peptide Release after Simulated Infant In Vitro Digestion of Dry Heated Cow's Milk Protein and Transport of Potentially Immunoreactive Peptides across the Caco-2 Cell Monolayer. Nutrients 2020; 12:nu12082483. [PMID: 32824739 PMCID: PMC7468992 DOI: 10.3390/nu12082483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Dry heating of cow’s milk protein, as applied in the production of “baked milk”, facilitates the resolution of cow’s milk allergy symptoms upon digestion. The heating and glycation-induced changes of the protein structure can affect both digestibility and immunoreactivity. The immunological consequences may be due to changes in the peptide profile of the digested dry heated milk protein. Therefore, cow’s milk protein powder was heated at low temperature (60 °C) and high temperature (130 °C) and applied to simulated infant in vitro digestion. Digestion-derived peptides after 10 min and 60 min in the intestinal phase were measured using LC-MS/MS. Moreover, digests after 10 min intestinal digestion were applied to a Caco-2 cell monolayer. T-cell epitopes were analysed using prediction software, while specific immunoglobin E (sIgE) binding epitopes were identified based on the existing literature. The largest number of sIgE binding epitopes was found in unheated samples, while T-cell epitopes were equally represented in all samples. Transport of glycated peptide indicated a preference for glucosyl lysine and lactosyl-lysine-modified peptides, while transport of peptides containing epitope structures was limited. This showed that the release of immunoreactive peptides can be affected by the applied heating conditions; however, availability of peptides containing epitopes might be limited.
Collapse
Affiliation(s)
- Hannah E. Zenker
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
| | - Harry J. Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands; (H.J.W.); (M.M.M.T.)
- Laboratory of Food chemistry, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands
| | - Monic M. M. Tomassen
- Wageningen Food & Biobased Research, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands; (H.J.W.); (M.M.M.T.)
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research Centre, 6708 WE Wageningen, The Netherlands;
| | - Nicolette W. De Jong
- Internal Medicine, Department of Allergology & Clinical Immunology, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands;
| | - Kasper A. Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
17
|
Binding of CML-Modified as Well as Heat-Glycated β-lactoglobulin to Receptors for AGEs Is Determined by Charge and Hydrophobicity. Int J Mol Sci 2020; 21:ijms21124567. [PMID: 32604964 PMCID: PMC7348724 DOI: 10.3390/ijms21124567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
Intake of dietary advanced glycation end products (AGEs) is associated with inflammation-related health problems. Nε-carboxymethyl lysine (CML) is one of the best characterised AGEs in processed food. AGEs have been described as ligands for receptors present on antigen presenting cells. However, changes in protein secondary and tertiary structure also induce binding to AGE receptors. We aimed to discriminate the role of different protein modifications in binding to AGE receptors. Therefore, β-lactoglobulin was chemically modified with glyoxylic acid to produce CML and compared to β-lactoglobulin glycated with lactose. Secondary structure was monitored with circular dichroism, while hydrophobicity and formation of β-sheet structures was measured with ANS-assay and ThT-assay, respectively. Aggregation was monitored using native-PAGE. Binding to sRAGE, CD36, and galectin-3 was measured using inhibition ELISA. Even though no changes in secondary structure were observed in all tested samples, binding to AGE receptors increased with CML concentration of CML-modified β-lactoglobulin. The negative charge of CML was a crucial determinant for the binding of protein bound CML, while binding of glycated BLG was determined by increasing hydrophobicity. This shows that sRAGE, galectin-3, and CD36 bind to protein bound CML and points out the role of negatively charged AGEs in binding to AGE receptors.
Collapse
|
18
|
van Neerven RJJ, Savelkoul HFJ. The Two Faces of Cow's Milk and Allergy: Induction of Cow's Milk Allergy vs. Prevention of Asthma. Nutrients 2019; 11:E1945. [PMID: 31430905 PMCID: PMC6722535 DOI: 10.3390/nu11081945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cow's milk has been consumed by humans for over 5000 years and contributed to a drastic change in lifestyle form nomadic to settled communities. As the composition of cow's milk is relatively comparable to breast milk, it has for a very long time been used as an alternative to breastfeeding. Today, cow's milk is typically introduced into the diet of infants around 6 months, except when breastfeeding is not an option. In that case, most often cow's milk based infant formulas are given. Some children will develop cow's milk allergy (CMA) during the first year of life. However, epidemiological evidence also suggests that consumption of unprocessed, "raw" cow's milk is associated with a lowered prevalence of other allergies. This Special Issue of Nutrients on "Cow's Milk and Allergy" (https://www.mdpi.com/journal/nutrients/special_issues/milk_allergy) is dedicated to these two different sides of cow's milk and allergy, ranging from epidemiology of CMA, clinical presentation and sensitization patterns, treatment and prevention, effects of milk processing, and current management guidelines for CMA, but also the epidemiological evidence linking cow's milk to lower asthma prevalence as well as the tolerance-inducing effect of raw cow's milk in food allergy models. In this editorial, we discuss these issues by highlighting the contributions in this Special Issue.
Collapse
Affiliation(s)
- R J Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands.
- FrieslandCampina, 3818 LE, Amersfoort, The Netherlands.
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
- Allergy Consortium Wageningen, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|