1
|
Yutharaksanukul P, Tangpromphan P, Tunsagool P, Sae-Tan S, Nitisinprasert S, Somnuk S, Nakphaichit M, Pusuntisumpun N, Wanikorn B. Effects of Purified Vitexin and Iso-Vitexin from Mung Bean Seed Coat on Antihyperglycemic Activity and Gut Microbiota in Overweight Individuals' Modulation. Nutrients 2024; 16:3017. [PMID: 39275332 PMCID: PMC11396884 DOI: 10.3390/nu16173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Exceeding a healthy weight significantly elevates the likelihood of developing type 2 diabetes (T2DM). A commercially available singular constituent, available as either purified vitexin or iso-vitexin, has been associated with a decreased risk of T2DM, but its synergistic effect has not been reported yet. Vitexin and iso-vitexin were extracted using an ethanol-based solvent from mung bean seed coat (MBCE) and subsequently purified using preparative liquid chromatography (Prep-LC). Eleven mixture ratios of vitexin and/or iso-vitexin were determined for their antioxidant and antihyperglycemic activities. The 1:1.5 ratio of vitexin to iso-vitexin from MBCE demonstrated the most synergistic effects for enzyme inhibition and glucose uptake in HepG2 cells within an insulin-resistant system, while these ratios exhibited a significantly lower antioxidant capacity than that of each individual component. In a gut model system, the ratio of 1:1.5 (vitexin and iso-vitexin) regulated the gut microbiota composition in overweight individuals by decreasing the growth of Enterobacteriaceae and Enterococcaceae, while increasing in Ruminococcaceae and Lachnospiraceae. The application of vitexin/iso-vitexin for 24 h fermentation enhanced a high variety of abundances of 21 genera resulting in five genera of Parabacteroides, Ruminococcus, Roseburia, Enterocloster, and Peptacetobacter, which belonged to the phylum Firmicutes, exhibiting high abundant changes of more than 5%. Only two genera of Proteus and Butyricicoccus belonging to Proteobacteria and Firmicutes decreased. The findings suggest that these phytochemicals interactions could have synergistic effects in regulating glycemia, through changes in antihyperglycemic activity and in the gut microbiota in overweight individuals. This optimal ratio can be utilized by industries to formulate more potent functional ingredients for functional foods and to create nutraceutical supplements aimed at reducing the risk of T2DM in overweight individuals.
Collapse
Affiliation(s)
- Pornlada Yutharaksanukul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Preuk Tangpromphan
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Surasawadee Somnuk
- Department of Sports and Health Science, Faculty of Sports Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nut Pusuntisumpun
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
3
|
de Wouters d'Oplinter A, Verce M, Huwart SJP, Lessard-Lord J, Depommier C, Van Hul M, Desjardins Y, Cani PD, Everard A. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. MICROBIOME 2023; 11:94. [PMID: 37106463 PMCID: PMC10142783 DOI: 10.1186/s40168-023-01526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Excessive hedonic consumption is one of the main drivers for weight gain. Identifying contributors of this dysregulation would help to tackle obesity. The gut microbiome is altered during obesity and regulates host metabolism including food intake. RESULTS By using fecal material transplantation (FMT) from lean or obese mice into recipient mice, we demonstrated that gut microbes play a role in the regulation of food reward (i.e., wanting and learning processes associated with hedonic food intake) and could be responsible for excessive motivation to obtain sucrose pellets and alterations in dopaminergic and opioid markers in reward-related brain areas. Through untargeted metabolomic approach, we identified the 3-(3'-hydroxyphenyl)propanoic acid (33HPP) as highly positively correlated with the motivation. By administrating 33HPP in mice, we revealed its effects on food reward. CONCLUSIONS Our data suggest that targeting the gut microbiota and its metabolites would be an interesting therapeutic strategy for compulsive eating, preventing inappropriate hedonic food intake. Video Abstract.
Collapse
Affiliation(s)
- Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
4
|
Basal Diet Fed to Recipient Mice Was the Driving Factor for Colitis and Colon Tumorigenesis, despite Fecal Microbiota Transfer from Mice with Severe or Mild Disease. Nutrients 2023; 15:nu15061338. [PMID: 36986068 PMCID: PMC10052649 DOI: 10.3390/nu15061338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consumption of the total Western diet (TWD) in mice has been shown to increase gut inflammation, promote colon tumorigenesis, and alter fecal microbiome composition when compared to mice fed a healthy diet, i.e., AIN93G (AIN). However, it is unclear whether the gut microbiome contributes directly to colitis-associated CRC in this model. The objective of this study was to determine whether dynamic fecal microbiota transfer (FMT) from donor mice fed either the AIN basal diet or the TWD would alter colitis symptoms or colitis-associated CRC in recipient mice, which were fed either the AIN diet or the TWD, using a 2 × 2 factorial experiment design. Time-matched FMT from the donor mice fed the TWD did not significantly enhance symptoms of colitis, colon epithelial inflammation, mucosal injury, or colon tumor burden in the recipient mice fed the AIN diet. Conversely, FMT from the AIN-fed donors did not impart a protective effect on the recipient mice fed the TWD. Likewise, the composition of fecal microbiomes of the recipient mice was also affected to a much greater extent by the diet they consumed than by the source of FMT. In summary, FMT from the donor mice fed either basal diet with differing colitis or tumor outcomes did not shift colitis symptoms or colon tumorigenesis in the recipient mice, regardless of the basal diet they consumed. These observations suggest that the gut microbiome may not contribute directly to the development of disease in this animal model.
Collapse
|
5
|
Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet. Nutrients 2022; 14:nu14245270. [PMID: 36558431 PMCID: PMC9786988 DOI: 10.3390/nu14245270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Black raspberries (BRB) are rich in anthocyanins with purported anti-inflammatory properties. However, it is not known whether dietary supplementation would ameliorate Western-diet enhanced gut inflammation and colon tumorigenesis. We employed a mouse model of colitis-associated colorectal cancer (CAC) to determine the effects of dietary supplementation with 5 to 10% (w/w) whole, freeze-dried BRB in male C57BL/6J mice fed either a standard healthy diet (AIN93G) or the total Western diet (TWD). In a pilot study, BRB suppressed colitis and colon tumorigenesis while also shifting the composition of the fecal microbiome in favor of taxa with purported health benefits, including Bifidobacterium pseudolongum. In a follow-up experiment using a 2 × 2 factorial design with AIN and TWD basal diets with and without 10% (w/w) BRB, supplementation with BRB reduced tumor multiplicity and increased colon length, irrespective of the basal diet, but it did not apparently affect colitis symptoms, colon inflammation or mucosal injury based on histopathological findings. However, BRB intake increased alpha diversity, altered beta diversity and changed the relative abundance of Erysipelotrichaceae, Bifidobacteriaceae, Streptococcaceae, Rikenellaceae, Ruminococcaceae and Akkermansiaceae, among others, of the fecal microbiome. Notably, changes in microbiome profiles were inconsistent with respect to the basal diet consumed. Overall, these studies provide equivocal evidence for in vivo anti-inflammatory effects of BRB on colitis and colon tumorigenesis; yet, BRB supplementation led to dynamic changes in the fecal microbiome composition over the course of disease development.
Collapse
|
6
|
Zhuang Z, Li N, Wang J, Yang R, Wang W, Liu Z, Huang T. GWAS-associated bacteria and their metabolites appear to be causally related to the development of inflammatory bowel disease. Eur J Clin Nutr 2022; 76:1024-1030. [PMID: 35046568 DOI: 10.1038/s41430-022-01074-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Accumulating evidence has suggested that the imbalance of gut microbiota is commonly observed in patients with inflammatory bowel disease (IBD). However, it remains unclear whether dysbiosis is a cause or consequence of chronic intestinal inflammation. We aimed to investigate the causal relationships of gut microbiota and metabolites with IBD, including ulcerative colitis (UC) and Crohn's disease (CD). METHODS We applied two-sample Mendelian randomization using summary statistics from the gut microbiota genetic consortium (n = 1812), the Framingham Heart Study (n = 2076) and the International IBD Genetics Consortium (n = 86,640). RESULTS Using the genetic approach, the increase in OTU10032 unclassified Enterobacteriaceae was associated with higher risks of IBD (OR, 1.03; 95% CI, 1.00-1.06; P = 0.033) and CD (1.04; 1.01-1.08; P = 0.015). Importantly, an Enterobacteriaceae-related metabolite taurine was positively associated with risks of IBD (1.04; 1.01-1.08; P = 0.016) and UC (1.05; 1.01-1.10; P = 0.024). Notably, we also found betaine, a downstream product of Enterobacteriaceae metabolism, was causally associated with a higher risk of CD (1.10; 1.02-1.18; P = 0.008). In addition, increased Erysipelotrichaceae family were causally related to lower risks of IBD (0.88; 0.78-0.98; P = 0.026) and UC (0.86; 0.75-0.99; P = 0.042), and Actinobacteria class (0.80; 0.65-0.98; P = 0.028) and Unclassified Erysipelotrichaceae (0.79; 0.64-0.98; P = 0.036) were associated with lower risks of UC and CD, respectively. CONCLUSIONS Our finding provided new insights into the key role of gut metabolites such as taurine and betaine in host-microbiota interactions of IBD pathogenesis, indicating that host-microbe balance strongly influences inflammatory conditions.
Collapse
Affiliation(s)
- Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
- Institute of Reproductive and Child Health/Chinese National Health Commission Key Laboratory of Reproductive Health, Peking University Health Science Center, Dongguan, China
| | - Jiayi Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ruotong Yang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Wenxiu Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Zhonghua Liu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191, Beijing, China.
- Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, 100191, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, 100191, Beijing, China.
| |
Collapse
|
7
|
de Wouters d’Oplinter A, Rastelli M, Van Hul M, Delzenne NM, Cani PD, Everard A. Gut microbes participate in food preference alterations during obesity. Gut Microbes 2022; 13:1959242. [PMID: 34424831 PMCID: PMC8386729 DOI: 10.1080/19490976.2021.1959242] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypothalamic regulations of food intake are altered during obesity. The dopaminergic mesocorticolimbic system, responsible for the hedonic response to food intake, is also affected. Gut microbes are other key players involved in obesity. Therefore, we investigated whether the gut microbiota plays a causal role in hedonic food intake alterations contributing to obesity. We transferred fecal material from lean or diet-induced obese mice into recipient mice and evaluated the hedonic food intake using a food preference test comparing the intake of control and palatable diets (HFHS, High-Fat High-Sucrose) in donor and recipient mice. Obese mice ate 58% less HFHS during the food preference test (p < 0.0001) than the lean donors, suggesting a dysregulation of the hedonic food intake during obesity. Strikingly, the reduction of the pleasure induced by eating during obesity was transferable through gut microbiota transplantation since obese gut microbiota recipient mice exhibited similar reduction in HFHS intake during the food preference test (40% reduction as compared to lean gut microbiota recipient mice, p < 0.01). This effect was associated with a consistent trend in modifications of dopaminergic markers expression in the striatum. We also pinpointed a highly positive correlation between HFHS intake and Parabacteroides (p < 0.0001), which could represent a potential actor involved in hedonic feeding probably through the gut-to-brain axis. We further demonstrated the key roles played by gut microbes in this paradigm since depletion of gut microbiota using broad-spectrum antibiotics also altered HFHS intake during food preference test in lean mice. In conclusion, we discovered that gut microbes regulate hedonic aspects of food intake. Our data demonstrate that gut microbiota modifications associated with obesity participate in dysregulations of the reward and hedonic components of the food intake. These data provide evidence that gut microbes could be an interesting therapeutic target to tackle hedonic disorders related to obesity.
Collapse
Affiliation(s)
- Alice de Wouters d’Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium,CONTACT Amandine Everard UCLouvain, Université Catholique De Louvain, LDRI, Metabolism and Nutrition Research Group, Av. E. Mounier, 73 Box B1.73.11, B-1200Brussels, Belgium
| |
Collapse
|
8
|
Comparing Published Gut Microbiome Taxonomic Data Across Multinational Studies. Nurs Res 2022; 71:43-53. [PMID: 34985847 PMCID: PMC8740627 DOI: 10.1097/nnr.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nurse researchers are well poised to study the connection of the microbiome to health and disease. Evaluating published microbiome results can assist with study design and hypothesis generation. OBJECTIVES This article aims to present and define important analysis considerations in microbiome study planning and to identify genera shared across studies despite methodological differences. This methods article will highlight a workflow that the nurse scientist can use to combine and evaluate taxonomy tables for microbiome study or research proposal planning. METHODS We compiled taxonomy tables from 13 published gut microbiome studies that had used Ion Torrent sequencing technology. We searched for studies that had amplified multiple hypervariable (V) regions of the 16S rRNA gene when sequencing the bacteria from healthy gut samples. RESULTS We obtained 15 taxonomy tables from the 13 studies, comprised of samples from four continents and eight V regions. Methodology among studies was highly variable, including differences in V regions amplified, geographic location, and population demographics. Nevertheless, of the 354 total genera identified from the 15 data sets, 25 were shared in all V regions and the four continents. When relative abundance differences across the V regions were compared, Dorea and Roseburia were statistically different. Taxonomy tables from Asian subjects had increased average abundances of Prevotella and lowered abundances of Bacteroides compared with the European, North American, and South American study subjects. DISCUSSION Evaluating taxonomy tables from previously published literature is essential for study planning. The genera found from different V regions and continents highlight geography and V region as important variables to consider in microbiome study design. The 25 shared genera across the various studies may represent genera commonly found in healthy gut microbiomes. Understanding the factors that may affect the results from a variety of microbiome studies will allow nurse scientists to plan research proposals in an informed manner. This work presents a valuable framework for future cross-study comparisons conducted across the globe.
Collapse
|
9
|
Balaji A, Sapoval N, Seto C, Leo Elworth R, Fu Y, Nute MG, Savidge T, Segarra S, Treangen TJ. KOMB: K-core based de novo characterization of copy number variation in microbiomes. Comput Struct Biotechnol J 2022; 20:3208-3222. [PMID: 35832621 PMCID: PMC9249589 DOI: 10.1016/j.csbj.2022.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Characterizing metagenomes via kmer-based, database-dependent taxonomic classification has yielded key insights into underlying microbiome dynamics. However, novel approaches are needed to track community dynamics and genomic flux within metagenomes, particularly in response to perturbations. We describe KOMB, a novel method for tracking genome level dynamics within microbiomes. KOMB utilizes K-core decomposition to identify Structural variations (SVs), specifically, population-level Copy Number Variation (CNV) within microbiomes. K-core decomposition partitions the graph into shells containing nodes of induced degree at least K, yielding reduced computational complexity compared to prior approaches. Through validation on a synthetic community, we show that KOMB recovers and profiles repetitive genomic regions in the sample. KOMB is shown to identify functionally-important regions in Human Microbiome Project datasets, and was used to analyze longitudinal data and identify keystone taxa in Fecal Microbiota Transplantation (FMT) samples. In summary, KOMB represents a novel graph-based, taxonomy-oblivious, and reference-free approach for tracking CNV within microbiomes. KOMB is open source and available for download at https://gitlab.com/treangenlab/komb.
Collapse
Affiliation(s)
- Advait Balaji
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Charlie Seto
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - R.A. Leo Elworth
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Michael G. Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Segarra
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Corresponding author.
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
10
|
Liu C, Cheung W, Li J, Chow SK, Yu J, Wong SH, Ip M, Sung JJY, Wong RMY. Understanding the gut microbiota and sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle 2021; 12:1393-1407. [PMID: 34523250 PMCID: PMC8718038 DOI: 10.1002/jcsm.12784] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/03/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gut microbiota dysbiosis and sarcopenia commonly occur in the elderly. Although the concept of the gut-muscle axis has been raised, the casual relationship is still unclear. This systematic review analyses the current evidence of gut microbiota effects on muscle/sarcopenia. METHODS A systematic review was performed in PubMed, Embase, Web of Science, and The Cochrane Library databases using the keywords (microbiota* OR microbiome*) AND (sarcopen* OR muscle). Studies reporting the alterations of gut microbiota and muscle/physical performance were analysed. RESULTS A total of 26 pre-clinical and 10 clinical studies were included. For animal studies, three revealed age-related changes and relationships between gut microbiota and muscle. Three studies focused on muscle characteristics of germ-free mice. Seventy-five per cent of eight faecal microbiota transplantation studies showed that the recipient mice successfully replicated the muscle phenotype of donors. There were positive effects on muscle from seven probiotics, two prebiotics, and short-chain fatty acids (SCFAs). Ten studies investigated on other dietary supplements, antibiotics, exercise, and food withdrawal that affected both muscle and gut microbiota. Twelve studies explored the potential mechanisms of the gut-muscle axis. For clinical studies, 6 studies recruited 676 elderly people (72.8 ± 5.6 years, 57.8% female), while 4 studies focused on 244 young adults (29.7 ± 7.8 years, 55.4% female). The associations of gut microbiota and muscle had been shown in four observational studies. Probiotics, prebiotics, synbiotics, fermented milk, caloric restriction, and exercise in six studies displayed inconsistent effects on muscle mass, function, and gut microbiota. CONCLUSIONS Altering the gut microbiota through bacteria depletion, faecal transplantation, and various supplements was shown to directly affect muscle phenotypes. Probiotics, prebiotics, SCFAs, and bacterial products are potential novel therapies to enhance muscle mass and physical performance. Lactobacillus and Bifidobacterium strains restored age-related muscle loss. Potential mechanisms of microbiome modulating muscle mainly include protein, energy, lipid, and glucose metabolism, inflammation level, neuromuscular junction, and mitochondrial function. The role of the gut microbiota in the development of muscle loss during aging is a crucial area that requires further studies for translation to patients.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Wing‐Hoi Cheung
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Jie Li
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Simon Kwoon‐Ho Chow
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Jun Yu
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Sunny Hei Wong
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Margaret Ip
- Department of MicrobiologyThe Chinese University of Hong KongHong Kong SARChina
| | - Joseph Jao Yiu Sung
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
11
|
Clancy AK, Gunaratne AW, Borody TJ. Dietary Management for Faecal Microbiota Transplant: An International Survey of Clinical and Research Practice, Knowledge and Attitudes. Front Nutr 2021; 8:653653. [PMID: 34760906 PMCID: PMC8572886 DOI: 10.3389/fnut.2021.653653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Faecal microbiota transplantation (FMT) involves homogenisation and infusion of stool from a healthy, highly screened individual into the bowel of an unwell recipient. Dietary intake is an important modulator of the gut microbiota. Currently there are no clinical practice recommendations available to provide patients or stool donors with dietary advice for FMT. This study aimed to conduct an international survey to examine health professionals and researchers' attitudes, knowledge and current practice recommendations for diet in patients undergoing FMT. An online, cross-sectional, international survey comprising of health professionals and researchers managing patients undergoing treatment with FMT was conducted between July-October 2020. Purposeful and snowball sampling techniques were employed to identify eligible participants who were sent an email invitation and two email reminders with a link to participate in the electronic survey. The survey comprised 21 questions covering demographics, current practice, beliefs and future directions regarding FMT and diet. Closed responses were calculated as proportions of total responses. Open-ended responses were systematically categorised. Common themes were identified from recurring categories. Fifty-eight (M 60%) participants from 14 countries completed the survey. Participants were gastroenterologists (55%), with 1-5 years' experience working in FMT (48%) and treating up to ten patients with FMT per month (74%). Participants agreed that diet was an important consideration for FMT recipients and stool donors (both 71%), and that it would affect the outcomes of FMT. However, they did not feel confident in providing dietary advice to patients, nor that there was sufficient evidence to provide dietary advice and this was reflected in their practice. Future research must collect information on the dietary intake of patients and donors to better understand the relationship between diet and FMT outcomes. In clinical practice, promotion of healthy eating guidelines aligns with current practice and literature.
Collapse
|
12
|
Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses 2021; 13:v13081601. [PMID: 34452466 PMCID: PMC8402659 DOI: 10.3390/v13081601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the mammalian gut microbiome is very important for the health and disease of the host. Significant correlations of particular gut microbiota with host immune responsiveness and various infectious and noninfectious host conditions, such as chronic enteric infections, type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial and viral intestinal infections have been developed to explore the interrelationships of diet, gut microbiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the disease. Future research will concentrate on the definition of microbial/host/diet interrelationships which will inform rationales for improving host conditions, in particular in relation to optimization of immune responses to childhood vaccines.
Collapse
|
13
|
Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G847-G863. [PMID: 33729005 DOI: 10.1152/ajpgi.00475.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calorie restriction is a primary dietary intervention demonstrated over many decades in cellular and animal models to modulate aging pathways, positively affect age-associated diseases and, in clinical studies, to promote beneficial health outcomes. Because long-term compliance with daily calorie restriction has proven problematic in humans several intermittent fasting regimens, including alternate day fasting and time-restricted feeding, have evolved revealing similar clinical benefits as calorie restriction. Despite significant research on the cellular and physiological mechanisms contributing to, and responsible for, these observed benefits, relatively little research has investigated the impact of these various fasting protocols on the gut microbiome (GM). Reduced external nutrient supply to the gut may beneficially alter the composition and function of a "fed" gut microflora. Indeed, the prevalent, obesogenic Western diet can promote deleterious changes in the GM, signaling intermediates involved in lipid and glucose metabolism, and immune responses in the gastrointestinal tract. This review describes recent preclinical and clinical effects of varying fasting regimens on GM composition and associated physiology. Although the number of preclinical and clinical interventions are limited, significant data thus far suggest fasting interventions impact GM composition and physiology. However, there are considerable heterogeneities of study design, methodological considerations, and practical implications. Ongoing research on the health impact of fasting regimens on GM modulation is warranted.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,Isagenix International LLC, Gilbert, Arizona
| | | | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
14
|
The Western Dietary Pattern Combined with Vancomycin-Mediated Changes to the Gut Microbiome Exacerbates Colitis Severity and Colon Tumorigenesis. Nutrients 2021; 13:nu13030881. [PMID: 33803094 PMCID: PMC8000903 DOI: 10.3390/nu13030881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Previous work by our group using a mouse model of inflammation-associated colorectal cancer (CAC) showed that the total Western diet (TWD) promoted colon tumor development. Others have also shown that vancomycin-mediated changes to the gut microbiome increased colorectal cancer (CRC). Therefore, the objective of this study was to determine the impact of vancomycin on colon tumorigenesis in the context of a standard mouse diet or the TWD. A 2 × 2 factorial design was used, in which C57Bl/6J mice were fed either the standard AIN93G diet or TWD and with vancomycin in the drinking water or not. While both the TWD and vancomycin treatments independently increased parameters associated with gut inflammation and tumorigenesis compared to AIN93G and plain water controls, mice fed the TWD and treated with vancomycin had significantly increased tumor multiplicity and burden relative to all other treatments. Vancomycin treatment significantly decreased alpha diversity and changed the abundance of several taxa at the phylum, family, and genus levels. Conversely, basal diet had relatively minor effects on the gut microbiome composition. These results support our previous research that the TWD promotes colon tumorigenesis and suggest that vancomycin-induced changes to the gut microbiome are associated with higher tumor rates.
Collapse
|
15
|
Kaiser T, Nalluri H, Zhu Z, Staley C. Donor Microbiota Composition and Housing Affect Recapitulation of Obese Phenotypes in a Human Microbiota-Associated Murine Model. Front Cell Infect Microbiol 2021; 11:614218. [PMID: 33692965 PMCID: PMC7937608 DOI: 10.3389/fcimb.2021.614218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Human microbiota-associated (HMA) mouse models offer a valuable approach to study the role of intestinal microbiota in the development of obesity. In this study, we used an HMA model to evaluate whether engraftment of human obese or lean microbiota, from each of three donors, could recapitulate host phenotypes under conventional and specific-pathogen-free housing. Microbiota engraftment was correlated with donor relative abundances of the class Bacteroidia (Spearman's ρ = 0.73, P ≤ 0.001), and one obese donor resulted in significant weight gain (P ≤ 0.003) and compromised insulin sensitivity under conventional housing. SPF housing partially blunted phenotypic response. Results of this study indicate that our HMA model partially recapitulates obese phenotypes under conventional housing and highlights a need to consider donor-specific effects as well as housing conditions when studying the role of the microbiota in obesity.
Collapse
Affiliation(s)
- Thomas Kaiser
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States.,Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Harika Nalluri
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States.,Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Zhigang Zhu
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States.,Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States.,Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
16
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Dione N, Lacroix S, Taschler U, Deschênes T, Abolghasemi A, Leblanc N, Di Marzo V, Silvestri C. Mgll Knockout Mouse Resistance to Diet-Induced Dysmetabolism Is Associated with Altered Gut Microbiota. Cells 2020; 9:E2705. [PMID: 33348740 PMCID: PMC7765900 DOI: 10.3390/cells9122705] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Monoglyceride lipase (MGLL) regulates metabolism by catabolizing monoacylglycerols (MAGs), including the endocannabinoid 2-arachidonoyl glycerol (2-AG) and some of its bioactive congeners, to the corresponding free fatty acids. Mgll knockout mice (Mgll-/-) exhibit elevated tissue levels of MAGs in association with resistance to the metabolic and cardiovascular perturbations induced by a high fat diet (HFD). The gut microbiome and its metabolic function are disrupted in obesity in a manner modulated by 2-arachidonoyl glycerol (2-AG's) main receptors, the cannabinoid CB1 receptors. We therefore hypothesized that Mgll-/- mice have an altered microbiome, that responds differently to diet-induced obesity from that of wild-type (WT) mice. We subjected mice to HFD and assessed changes in the microbiomes after 8 and 22 weeks. As expected, Mgll-/- mice showed decreased adiposity, improved insulin sensitivity, and altered circulating incretin/adipokine levels in response to HFD. Mgll-/- mice on a chow diet exhibited significantly higher levels of Hydrogenoanaerobacterium, Roseburia, and Ruminococcus than WT mice. The relative abundance of the Lactobacillaceae and Coriobacteriaceae and of the Lactobacillus, Enterorhabdus, Clostridium_XlVa, and Falsiporphyromonas genera was significantly altered by HFD in WT but not Mgll-/- mice. Differently abundant families were also associated with changes in circulating adipokine and incretin levels in HFD-fed mice. Some gut microbiota family alterations could be reproduced by supplementing 2-AG or MAGs in culturomics experiments carried out with WT mouse fecal samples. We suggest that the altered microbiome of Mgll-/- mice contributes to their obesity resistant phenotype, and results in part from increased levels of 2-AG and MAGs.
Collapse
Affiliation(s)
- Niokhor Dione
- Département de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.D.); (A.A.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Sébastien Lacroix
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
| | - Thomas Deschênes
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Armita Abolghasemi
- Département de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.D.); (A.A.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Nadine Leblanc
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Département de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.D.); (A.A.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Cristoforo Silvestri
- Département de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.D.); (A.A.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in metabolic Health, Québec, QC G1V 4G5, Canada; (S.L.); (T.D.); (N.L.)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| |
Collapse
|
18
|
Park JC, Im SH. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med 2020; 52:1383-1396. [PMID: 32908211 PMCID: PMC8080820 DOI: 10.1038/s12276-020-0473-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Considerable evidence points to the critical role of the gut microbiota in physiology and disease. The administration of live microbes as a therapeutic modality is increasingly being considered. However, key questions such as how to identify candidate microorganisms and which preclinical models are relevant to recapitulate human microbiota remain largely unanswered. The establishment of a humanized gnotobiotic mouse model through the fecal microbiota transplantation of human feces into germ-free mice provides an innovative and powerful tool to mimic the human microbial system. However, numerous considerations are required in designing such a model, as various elements, ranging from the factors pertaining to human donors to the mouse genetic background, affect how microbes colonize the gut. Thus, it is critical to match the murine context to that of human donors to provide a continuous and faithful progression of human flora in mice. This is of even greater importance when the need for accuracy and reproducibility across global research groups are taken into account. Here, we review the key factors that affect the formulation of a humanized mouse model representative of the human gut flora and propose several approaches as to how researchers can effectively design such models for clinical relevance.
Collapse
Affiliation(s)
- John Chulhoon Park
- Department of Life Sciences, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
- ImmunoBiome Inc. POSTECH Biotech Center, Pohang, 37673, Republic of Korea.
| |
Collapse
|
19
|
Zhu Q, Jiang S, Du G. Effects of exercise frequency on the gut microbiota in elderly individuals. Microbiologyopen 2020; 9:e1053. [PMID: 32356611 PMCID: PMC7424259 DOI: 10.1002/mbo3.1053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Growing evidence has shown that exercise can affect the gut microbiota. The effects of exercise frequency on the gut microbiota in elderly individuals are still largely unknown. In the present study, samples from 897 elderly and 1,589 adult individuals (18–60 years old) from the American Gut Project were screened. Microbial diversity and composition were analyzed by QIIME2, and microbial function was predicted by PICRUSt2. The outcomes were further analyzed by STAMP. The analysis showed that the α‐diversity of gut microbiota increased with increasing age, and regular exercise reshaped the alterations in microbial composition and function induced by aging. Moreover, the α‐diversity of gut microbiota was higher in overweight elderly individuals than in normoweight elderly individuals, and regular exercise significantly affected the microbial composition and function in overweight elderly individuals. In conclusion, we revealed that regular exercise benefits elderly individuals, especially overweight elderly individuals, by modulating the gut microbiota.
Collapse
Affiliation(s)
- Qiwei Zhu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Shangfei Jiang
- Human Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
20
|
Food matrix and the microbiome: considerations for preclinical chronic disease studies. Nutr Res 2020; 78:1-10. [PMID: 32247914 DOI: 10.1016/j.nutres.2020.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 01/05/2023]
Abstract
Animal models of chronic disease are continuously being refined and have evolved with the goal of increasing the translation of results to human populations. Examples of this progress include transgenic models and germ-free animals conventionalized with human microbiota. The gut microbiome is involved in the etiology of several chronic diseases. Therefore, consideration of the experimental conditions that may affect the gut microbiome in preclinical disease is very important. Of note, diet plays a large role in shaping the gut microbiome and can be a source of variation between animal models and human populations. Traditionally, nutrition researchers have focused on manipulating the macronutrient profile of experimental diets to model diseases such as metabolic syndrome. However, other dietary components found in human foods, but not in animal diets, can have sizable effects on the composition and metabolic capacity of the gut microbiome and, as a consequence, manifestation of the chronic disease being modeled. The purpose of this review is to describe how food matrix food components, including diverse fiber sources, oxidation products from cooking, and dietary fat emulsifiers, shape the composition of the gut microbiome and influence gut health.
Collapse
|
21
|
Singh P, Baisthakur P, Yemul OS. Synthesis, characterization and application of crosslinked alginate as green packaging material. Heliyon 2020; 6:e03026. [PMID: 32021918 PMCID: PMC6992982 DOI: 10.1016/j.heliyon.2019.e03026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022] Open
Abstract
Plastic films for food wrapping, packing are widely used due to their special properties. These fossil fuel derived films are associated with long degradation time, toxicity and environmental pollution. Pineapple waste, sea weed can be very good renewable, alternative carbon sources to produce edible films. These edible films can be consumed by lower animals thereby overcoming the disposal problems of accumulating waste plastic and hence reducing pollution. In the present study, crosslinked polymers are prepared from pectin (P)/sodium alginate (SA) through crosslinking with bio-based acids such as citric acid (CA) and tartaric acid (TA). Pectin was extracted from waste pineapple shell and sodium alginate extracted from seaweed. The crosslinked films were characterized by using various analytical techniques such as FT-IR, thermogravimetry, and scanning electron microscopy (SEM). Mice feed study (testing of edibility), plant growth substrate and vermicomposting of these films was studied. Finally a suitable application of these newly prepared polymeric films has been evaluated as wrapping material on food products such as chocolate and Indian vegetable puff to enhance the shelf life of food.
Collapse
Affiliation(s)
- Pratiksha Singh
- School of Chemical Sciences, Swami Ramanand Teerth Marathawada University, Nanded, Maharashtra, 431 606, India
| | - Pankaj Baisthakur
- School of Life Sciences, Swami Ramanand Teerth Marathawada University, Nanded, Maharashtra, 431 606, India
| | - Omprakash S Yemul
- School of Chemical Sciences, Swami Ramanand Teerth Marathawada University, Nanded, Maharashtra, 431 606, India
| |
Collapse
|
22
|
Grape seed flour intake decreases adiposity gain in high-fat-diet induced obese mice by activating thermogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|